Predicting soft robot’s locomotion fitness
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/33049 |
Resumo: | Organisms with different body morphology and movement dynamics have distinct abilities to move through the environment. Despite such truism, there is a lack of general principles that predict which shapes and dynamics make the organisms more fit to move. Studying a minimal yet embodied soft robot model under the influence of gravity, we find three features that predict robot locomotion fitness: (1) A larger body is better. (2) Two-point contact with the ground is better than one-point contact. (3) Out-of-phase oscillating body parts increase locomotion fitness. These design principles can guide the selection rules for evolutionary algorithms to obtain robots with higher locomotion fitness |
id |
UFRN_5883f22f080a70dc24206d62c7134767 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/33049 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Biazzi, Renata BiaggiFujita, AndréTakahashi, Daniel Yasumasa2021-08-09T12:01:01Z2021-08-09T12:01:01Z2021-07-07BIAZZI, Renata B.; FUJITA, André; TAKAHASHI, Daniel Y. Predicting soft robot's locomotion fitness. In: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, 23., 2021, Lille, França. Proceedings […]. Nova Iorque: Association for Computing Machinery, 2021. p. 81-82. Disponível em: https://dl.acm.org/doi/10.1145/3449726.3459417. Acesso em: 6 ago. 21.https://repositorio.ufrn.br/handle/123456789/3304910.1145/3449726.3459417Evolutionary roboticsFitness evaluationHeuristicsComplex systemsTheoryPredicting soft robot’s locomotion fitnessinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectOrganisms with different body morphology and movement dynamics have distinct abilities to move through the environment. Despite such truism, there is a lack of general principles that predict which shapes and dynamics make the organisms more fit to move. Studying a minimal yet embodied soft robot model under the influence of gravity, we find three features that predict robot locomotion fitness: (1) A larger body is better. (2) Two-point contact with the ground is better than one-point contact. (3) Out-of-phase oscillating body parts increase locomotion fitness. These design principles can guide the selection rules for evolutionary algorithms to obtain robots with higher locomotion fitnessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessORIGINALPoster_PredictingSof_Takahashi_2021.pdfPoster_PredictingSof_Takahashi_2021.pdfPoster_PredictingSof_Takahashi_2021application/pdf2694200https://repositorio.ufrn.br/bitstream/123456789/33049/1/Poster_PredictingSof_Takahashi_2021.pdf31d66e27a95bb0d1cc7842d6566ed354MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81569https://repositorio.ufrn.br/bitstream/123456789/33049/2/license.txt6e6f57145bc87daf99079f06b081ff9fMD52123456789/330492021-08-09 09:01:02.168oai:https://repositorio.ufrn.br:123456789/33049TElDRU7Dh0HCoERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGHCoGxpY2Vuw6dhLCBvL2EgU3IuL1NyYS4gKGF1dG9yIG91IGRldGVudG9yIGRvcyBkaXJlaXRvcyBkZSBhdXRvcik6CgoKYSkgQ29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhwqBsaWNlbsOnYS4gRGVjbGFyYQp0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2UsIHRhbnRvIHF1YW50byBsaGUgw6kKcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UgZW50aWRhZGUuCgpjKSBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSBjb250w6ltIG1hdGVyaWFsIGRvIHF1YWwgbsOjbyBkZXTDqW0gb3MKZGlyZWl0b3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIG9idGV2ZSBhdXRvcml6YcOnw6NvIGRvIGRldGVudG9yIGRvcwpkaXJlaXRvcyBkZSBhdXRvciBwYXJhIGNvbmNlZGVyIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIFJpbyBHcmFuZGUgZG8gTm9ydGUgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YcKgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZQp0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdQpjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBzZXUgKHMpIG5vbWUocykgY29tbyBvIChzKSBhdXRvciAoZXMpIG91IGRldGVudG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50bwplbnRyZWd1ZSwgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRhcyBwZXJtaXRpZGFzIHBvcgplc3RhwqBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-08-09T12:01:02Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Predicting soft robot’s locomotion fitness |
title |
Predicting soft robot’s locomotion fitness |
spellingShingle |
Predicting soft robot’s locomotion fitness Biazzi, Renata Biaggi Evolutionary robotics Fitness evaluation Heuristics Complex systems Theory |
title_short |
Predicting soft robot’s locomotion fitness |
title_full |
Predicting soft robot’s locomotion fitness |
title_fullStr |
Predicting soft robot’s locomotion fitness |
title_full_unstemmed |
Predicting soft robot’s locomotion fitness |
title_sort |
Predicting soft robot’s locomotion fitness |
author |
Biazzi, Renata Biaggi |
author_facet |
Biazzi, Renata Biaggi Fujita, André Takahashi, Daniel Yasumasa |
author_role |
author |
author2 |
Fujita, André Takahashi, Daniel Yasumasa |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Biazzi, Renata Biaggi Fujita, André Takahashi, Daniel Yasumasa |
dc.subject.por.fl_str_mv |
Evolutionary robotics Fitness evaluation Heuristics Complex systems Theory |
topic |
Evolutionary robotics Fitness evaluation Heuristics Complex systems Theory |
description |
Organisms with different body morphology and movement dynamics have distinct abilities to move through the environment. Despite such truism, there is a lack of general principles that predict which shapes and dynamics make the organisms more fit to move. Studying a minimal yet embodied soft robot model under the influence of gravity, we find three features that predict robot locomotion fitness: (1) A larger body is better. (2) Two-point contact with the ground is better than one-point contact. (3) Out-of-phase oscillating body parts increase locomotion fitness. These design principles can guide the selection rules for evolutionary algorithms to obtain robots with higher locomotion fitness |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-08-09T12:01:01Z |
dc.date.available.fl_str_mv |
2021-08-09T12:01:01Z |
dc.date.issued.fl_str_mv |
2021-07-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BIAZZI, Renata B.; FUJITA, André; TAKAHASHI, Daniel Y. Predicting soft robot's locomotion fitness. In: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, 23., 2021, Lille, França. Proceedings […]. Nova Iorque: Association for Computing Machinery, 2021. p. 81-82. Disponível em: https://dl.acm.org/doi/10.1145/3449726.3459417. Acesso em: 6 ago. 21. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/33049 |
dc.identifier.doi.none.fl_str_mv |
10.1145/3449726.3459417 |
identifier_str_mv |
BIAZZI, Renata B.; FUJITA, André; TAKAHASHI, Daniel Y. Predicting soft robot's locomotion fitness. In: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, 23., 2021, Lille, França. Proceedings […]. Nova Iorque: Association for Computing Machinery, 2021. p. 81-82. Disponível em: https://dl.acm.org/doi/10.1145/3449726.3459417. Acesso em: 6 ago. 21. 10.1145/3449726.3459417 |
url |
https://repositorio.ufrn.br/handle/123456789/33049 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/33049/1/Poster_PredictingSof_Takahashi_2021.pdf https://repositorio.ufrn.br/bitstream/123456789/33049/2/license.txt |
bitstream.checksum.fl_str_mv |
31d66e27a95bb0d1cc7842d6566ed354 6e6f57145bc87daf99079f06b081ff9f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832963228008448 |