Computer match prediction for fluorescent dyes by neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/45230 |
Resumo: | Fluorescent dyes present difficulties for match prediction due to their variable excitation and emission characteristics, which depend on a variety of factors. An empirical approach is therefore favoured, such as that used in the artificial neural network method. In this paper, the production of a database with four acid dyes (two fluorescent and two non-fluorescent) is described, along with the large number of mixture dyeings that were carried out. The data were used to construct a network connecting reflectance values with concentrations in formulations. The results show that, although time consuming, this approach is viable and accurate |
id |
UFRN_58c06dab9e204e86c8652221705bff2e |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/45230 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Bezerra, Clovis de MedeirosHawkyard, C. J.2021-12-07T17:58:08Z2021-12-07T17:58:08Z2006-06-22BEZERRA, Clovis de Medeiros; HAWKYARD, C.J. Computer match prediction for fluorescent dyes by neural networks. Coloration Technology, [S. l.], v. 116, n. 5-6, p. 163-169, maio 2000. Wiley. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1478-4408.2000.tb00035.x. Acesso em: 04 dez. 2021. DOI: http://dx.doi.org/10.1111/j.1478-4408.2000.tb00035.x.1478-4408https://repositorio.ufrn.br/handle/123456789/452301478-4408.2000.tb00035.xFluorescent dyes present difficulties for match prediction due to their variable excitation and emission characteristics, which depend on a variety of factors. An empirical approach is therefore favoured, such as that used in the artificial neural network method. In this paper, the production of a database with four acid dyes (two fluorescent and two non-fluorescent) is described, along with the large number of mixture dyeings that were carried out. The data were used to construct a network connecting reflectance values with concentrations in formulations. The results show that, although time consuming, this approach is viable and accurateFluorescent dyes present difficulties for match prediction due to their variable excitation and emission characteristics, which depend on a variety of factors. An empirical approach is therefore favoured, such as that used in the artificial neural network method. In this paper, the production of a database with four acid dyes (two fluorescent and two non-fluorescent) is described, along with the large number of mixture dyeings that were carried out. The data were used to construct a network connecting reflectance values with concentrations in formulations. The results show that, although time consuming, this approach is viable and accurateJohn Wiley & SonsAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessFluorescent dyesArtificial neural network methodReflectanceComputer match prediction for fluorescent dyes by neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/45230/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/45230/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/452302022-05-27 19:01:56.868oai:https://repositorio.ufrn.br:123456789/45230Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-05-27T22:01:56Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Computer match prediction for fluorescent dyes by neural networks |
title |
Computer match prediction for fluorescent dyes by neural networks |
spellingShingle |
Computer match prediction for fluorescent dyes by neural networks Bezerra, Clovis de Medeiros Fluorescent dyes Artificial neural network method Reflectance |
title_short |
Computer match prediction for fluorescent dyes by neural networks |
title_full |
Computer match prediction for fluorescent dyes by neural networks |
title_fullStr |
Computer match prediction for fluorescent dyes by neural networks |
title_full_unstemmed |
Computer match prediction for fluorescent dyes by neural networks |
title_sort |
Computer match prediction for fluorescent dyes by neural networks |
author |
Bezerra, Clovis de Medeiros |
author_facet |
Bezerra, Clovis de Medeiros Hawkyard, C. J. |
author_role |
author |
author2 |
Hawkyard, C. J. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Bezerra, Clovis de Medeiros Hawkyard, C. J. |
dc.subject.por.fl_str_mv |
Fluorescent dyes Artificial neural network method Reflectance |
topic |
Fluorescent dyes Artificial neural network method Reflectance |
description |
Fluorescent dyes present difficulties for match prediction due to their variable excitation and emission characteristics, which depend on a variety of factors. An empirical approach is therefore favoured, such as that used in the artificial neural network method. In this paper, the production of a database with four acid dyes (two fluorescent and two non-fluorescent) is described, along with the large number of mixture dyeings that were carried out. The data were used to construct a network connecting reflectance values with concentrations in formulations. The results show that, although time consuming, this approach is viable and accurate |
publishDate |
2006 |
dc.date.issued.fl_str_mv |
2006-06-22 |
dc.date.accessioned.fl_str_mv |
2021-12-07T17:58:08Z |
dc.date.available.fl_str_mv |
2021-12-07T17:58:08Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BEZERRA, Clovis de Medeiros; HAWKYARD, C.J. Computer match prediction for fluorescent dyes by neural networks. Coloration Technology, [S. l.], v. 116, n. 5-6, p. 163-169, maio 2000. Wiley. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1478-4408.2000.tb00035.x. Acesso em: 04 dez. 2021. DOI: http://dx.doi.org/10.1111/j.1478-4408.2000.tb00035.x. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/45230 |
dc.identifier.issn.none.fl_str_mv |
1478-4408 |
dc.identifier.doi.none.fl_str_mv |
1478-4408.2000.tb00035.x |
identifier_str_mv |
BEZERRA, Clovis de Medeiros; HAWKYARD, C.J. Computer match prediction for fluorescent dyes by neural networks. Coloration Technology, [S. l.], v. 116, n. 5-6, p. 163-169, maio 2000. Wiley. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1478-4408.2000.tb00035.x. Acesso em: 04 dez. 2021. DOI: http://dx.doi.org/10.1111/j.1478-4408.2000.tb00035.x. 1478-4408 1478-4408.2000.tb00035.x |
url |
https://repositorio.ufrn.br/handle/123456789/45230 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
John Wiley & Sons |
publisher.none.fl_str_mv |
John Wiley & Sons |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/45230/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/45230/3/license.txt |
bitstream.checksum.fl_str_mv |
4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832760981815296 |