Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/29724 |
Resumo: | Manganese overexposure in non-human primates and humans causes a neurodegenerative disorder called manganism thought to be related to an accumulation of the metal in the basal ganglia. Here, we assess changes in the concentration of manganese in regions of the brain of a non-human primate (the common marmoset, Callithrix jacchus) following four systemic injections of 30 mg/kg MnCl2 H2O in the tail vein using T1-weighted magnetic resonance imaging (MRI) and compare these to changes in the rat following the same exposure route and dose. The doses were spaced 48 h apart and we imaged the animals 48 h after the final dose. We find that marmosets have significantly larger T1-weighted image enhancements in regions of the brain compared to rats, notably in the basal ganglia and the visual cortex. To confirm this difference across species reflects actual differences in manganese concentrations and not variations in the MRI properties of manganese, we measured the longitudinal relaxivity of manganese (χ1) in the in vivo brain and found no significant species' difference. The high manganese uptake in the marmoset basal ganglia and visual cortex can be explained by CSF-brain transport from the large lateral ventricles and we confirm this route of uptake with time-course MRI during a tail-vein infusion of manganese. There is also high uptake in the substructures of the hippocampus that are adjacent to the ventricles. The large manganese accumulation in these structures on overexposure may be common to all primates, including humans |
id |
UFRN_5f57843861d110214c344bd5ae0a7dc5 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/29724 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Bock, Nicholas A.Paiva, Fernando F.Nascimento, George Carlos doNewman, John D.Silva, Afonso C.2020-07-24T18:15:48Z2020-07-24T18:15:48Z2008-03-10BOCK, N.A.; PAIVA, F.F.; NASCIMENTO, G.C.; NEWMAN,J.D.; SILVA, A.C.. Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI.. Brain Research, v. 1198, p. 160-170, 2008. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0006899307030326?via%3Dihub. Acesso em: 21 jul. 2020. https://doi.org/10.1016/j.brainres.2007.12.0650006-8993https://repositorio.ufrn.br/jspui/handle/123456789/2972410.1016/j.brainres.2007.12.065ElsevierMarmosetMagnetic resonance imagingRatBrainManganeseCerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRIinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleManganese overexposure in non-human primates and humans causes a neurodegenerative disorder called manganism thought to be related to an accumulation of the metal in the basal ganglia. Here, we assess changes in the concentration of manganese in regions of the brain of a non-human primate (the common marmoset, Callithrix jacchus) following four systemic injections of 30 mg/kg MnCl2 H2O in the tail vein using T1-weighted magnetic resonance imaging (MRI) and compare these to changes in the rat following the same exposure route and dose. The doses were spaced 48 h apart and we imaged the animals 48 h after the final dose. We find that marmosets have significantly larger T1-weighted image enhancements in regions of the brain compared to rats, notably in the basal ganglia and the visual cortex. To confirm this difference across species reflects actual differences in manganese concentrations and not variations in the MRI properties of manganese, we measured the longitudinal relaxivity of manganese (χ1) in the in vivo brain and found no significant species' difference. The high manganese uptake in the marmoset basal ganglia and visual cortex can be explained by CSF-brain transport from the large lateral ventricles and we confirm this route of uptake with time-course MRI during a tail-vein infusion of manganese. There is also high uptake in the substructures of the hippocampus that are adjacent to the ventricles. The large manganese accumulation in these structures on overexposure may be common to all primates, including humansengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/29724/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/29724/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTCerebrospinalFluidBrain_Nascimento_2008.pdf.txtCerebrospinalFluidBrain_Nascimento_2008.pdf.txtExtracted texttext/plain51284https://repositorio.ufrn.br/bitstream/123456789/29724/4/CerebrospinalFluidBrain_Nascimento_2008.pdf.txt719ff90c623fb111290671833c514269MD54THUMBNAILCerebrospinalFluidBrain_Nascimento_2008.pdf.jpgCerebrospinalFluidBrain_Nascimento_2008.pdf.jpgGenerated Thumbnailimage/jpeg1684https://repositorio.ufrn.br/bitstream/123456789/29724/5/CerebrospinalFluidBrain_Nascimento_2008.pdf.jpgd45faef645636b8d4200d315a75a056dMD55123456789/297242023-01-26 15:40:59.82oai:https://repositorio.ufrn.br:123456789/29724Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-01-26T18:40:59Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI |
title |
Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI |
spellingShingle |
Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI Bock, Nicholas A. Marmoset Magnetic resonance imaging Rat Brain Manganese |
title_short |
Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI |
title_full |
Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI |
title_fullStr |
Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI |
title_full_unstemmed |
Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI |
title_sort |
Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI |
author |
Bock, Nicholas A. |
author_facet |
Bock, Nicholas A. Paiva, Fernando F. Nascimento, George Carlos do Newman, John D. Silva, Afonso C. |
author_role |
author |
author2 |
Paiva, Fernando F. Nascimento, George Carlos do Newman, John D. Silva, Afonso C. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Bock, Nicholas A. Paiva, Fernando F. Nascimento, George Carlos do Newman, John D. Silva, Afonso C. |
dc.subject.por.fl_str_mv |
Marmoset Magnetic resonance imaging Rat Brain Manganese |
topic |
Marmoset Magnetic resonance imaging Rat Brain Manganese |
description |
Manganese overexposure in non-human primates and humans causes a neurodegenerative disorder called manganism thought to be related to an accumulation of the metal in the basal ganglia. Here, we assess changes in the concentration of manganese in regions of the brain of a non-human primate (the common marmoset, Callithrix jacchus) following four systemic injections of 30 mg/kg MnCl2 H2O in the tail vein using T1-weighted magnetic resonance imaging (MRI) and compare these to changes in the rat following the same exposure route and dose. The doses were spaced 48 h apart and we imaged the animals 48 h after the final dose. We find that marmosets have significantly larger T1-weighted image enhancements in regions of the brain compared to rats, notably in the basal ganglia and the visual cortex. To confirm this difference across species reflects actual differences in manganese concentrations and not variations in the MRI properties of manganese, we measured the longitudinal relaxivity of manganese (χ1) in the in vivo brain and found no significant species' difference. The high manganese uptake in the marmoset basal ganglia and visual cortex can be explained by CSF-brain transport from the large lateral ventricles and we confirm this route of uptake with time-course MRI during a tail-vein infusion of manganese. There is also high uptake in the substructures of the hippocampus that are adjacent to the ventricles. The large manganese accumulation in these structures on overexposure may be common to all primates, including humans |
publishDate |
2008 |
dc.date.issued.fl_str_mv |
2008-03-10 |
dc.date.accessioned.fl_str_mv |
2020-07-24T18:15:48Z |
dc.date.available.fl_str_mv |
2020-07-24T18:15:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BOCK, N.A.; PAIVA, F.F.; NASCIMENTO, G.C.; NEWMAN,J.D.; SILVA, A.C.. Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI.. Brain Research, v. 1198, p. 160-170, 2008. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0006899307030326?via%3Dihub. Acesso em: 21 jul. 2020. https://doi.org/10.1016/j.brainres.2007.12.065 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/29724 |
dc.identifier.issn.none.fl_str_mv |
0006-8993 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.brainres.2007.12.065 |
identifier_str_mv |
BOCK, N.A.; PAIVA, F.F.; NASCIMENTO, G.C.; NEWMAN,J.D.; SILVA, A.C.. Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI.. Brain Research, v. 1198, p. 160-170, 2008. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0006899307030326?via%3Dihub. Acesso em: 21 jul. 2020. https://doi.org/10.1016/j.brainres.2007.12.065 0006-8993 10.1016/j.brainres.2007.12.065 |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/29724 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/29724/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/29724/3/license.txt https://repositorio.ufrn.br/bitstream/123456789/29724/4/CerebrospinalFluidBrain_Nascimento_2008.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/29724/5/CerebrospinalFluidBrain_Nascimento_2008.pdf.jpg |
bitstream.checksum.fl_str_mv |
4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 719ff90c623fb111290671833c514269 d45faef645636b8d4200d315a75a056d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832765119496192 |