Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/31836 |
Resumo: | Samples extracted along the length of directionally solidified (DS) castings of three Sn-xBi alloys (x = 34 wt.%Bi, 52 wt.%Bi and 58 wt.%Bi) were first evaluated metallographically and then subjected to scanning electron microscopy and energy-dispersive x-ray spectroscopy analyses. The characteristic length scale of both eutectic and dendritic phases forming the microstructure were determined and correlated with solidification thermal parameters (growth rate V, and cooling rate Ṫ). Tensile and Vickers hardness tests were performed to allow strength and ductility to be discussed as a function of both microstructure features and alloy solute content. The tertiary dendrite arm spacings along the length of the DS Sn-52 wt.%Bi alloy casting are shown to be lower than those obtained for the Sn-34 wt.%Bi alloy casting. The results of mechanical tests show that, with the decrease in the alloy Bi content, both tensile strength and hardness are improved. This is shown to be mainly attributed to the higher density of Bi precipitates decorating the Sn-rich dendrites, which are finer than the equivalent phase developed for the Sn-52 wt.%Bi alloy. However, the ductility is shown to be significantly improved for specimens associated with regions of more refined microstructure of the Sn-52 wt.%Bi alloy DS casting. A microstructure combining much branched dendrites, fine Bi particles within the β-Sn dendritic matrix and an important proportion of very fine eutectic formed by alternate Bi-rich and Sn-rich phase, seems to be conducive to this higher ductility. In this case, the fracture surface is shown to be more finely broken with presence of dimples for this particular condition, i.e., characteristic of a ductile fracture mode |
id |
UFRN_6179eef159949922e25dfcd87dd6f2b3 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/31836 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Silva, Bismarck LuizSilva, Vítor Covre Evangelista daGarcia, AmauriSpinelli, José Eduardo2021-03-12T15:14:30Z2021-03-12T15:14:30Z2017-01-10Bismarck, L.S.; SILVA, V. C. E.; Garcia, A. ; SPINELLI, J. E.. Effects of Solidification Thermal Parameters on Microstructure and Mechanical Properties of Sn-Bi Solder Alloys. Journal of Electronic Materials, v. 46, p. 1754-1769, 2017. Disponivel: https://link.springer.com/article/10.1007%2Fs11664-016-5225-7 Acesso em: 26 jan. 2021. https://doi.org/10.1007/s11664-016-5225-70361-52351543-186Xhttps://repositorio.ufrn.br/handle/123456789/3183610.1007/s11664-016-5225-7SpringerAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessSn-Bi alloysSolidificationMicrostructureBi precipitatesTensile strengthFracture surfaceEffects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloysinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleSamples extracted along the length of directionally solidified (DS) castings of three Sn-xBi alloys (x = 34 wt.%Bi, 52 wt.%Bi and 58 wt.%Bi) were first evaluated metallographically and then subjected to scanning electron microscopy and energy-dispersive x-ray spectroscopy analyses. The characteristic length scale of both eutectic and dendritic phases forming the microstructure were determined and correlated with solidification thermal parameters (growth rate V, and cooling rate Ṫ). Tensile and Vickers hardness tests were performed to allow strength and ductility to be discussed as a function of both microstructure features and alloy solute content. The tertiary dendrite arm spacings along the length of the DS Sn-52 wt.%Bi alloy casting are shown to be lower than those obtained for the Sn-34 wt.%Bi alloy casting. The results of mechanical tests show that, with the decrease in the alloy Bi content, both tensile strength and hardness are improved. This is shown to be mainly attributed to the higher density of Bi precipitates decorating the Sn-rich dendrites, which are finer than the equivalent phase developed for the Sn-52 wt.%Bi alloy. However, the ductility is shown to be significantly improved for specimens associated with regions of more refined microstructure of the Sn-52 wt.%Bi alloy DS casting. A microstructure combining much branched dendrites, fine Bi particles within the β-Sn dendritic matrix and an important proportion of very fine eutectic formed by alternate Bi-rich and Sn-rich phase, seems to be conducive to this higher ductility. In this case, the fracture surface is shown to be more finely broken with presence of dimples for this particular condition, i.e., characteristic of a ductile fracture modeengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALEffectsSolidificationThermal_SILVA_2017.pdfEffectsSolidificationThermal_SILVA_2017.pdfapplication/pdf10896575https://repositorio.ufrn.br/bitstream/123456789/31836/1/EffectsSolidificationThermal_SILVA_2017.pdf59200bc096174854cf87c96714d62abbMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/31836/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/31836/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTEffectsSolidificationThermal_SILVA_2017.pdf.txtEffectsSolidificationThermal_SILVA_2017.pdf.txtExtracted texttext/plain50983https://repositorio.ufrn.br/bitstream/123456789/31836/4/EffectsSolidificationThermal_SILVA_2017.pdf.txte6480659487548a1ee5df573d8a21dd4MD54THUMBNAILEffectsSolidificationThermal_SILVA_2017.pdf.jpgEffectsSolidificationThermal_SILVA_2017.pdf.jpgGenerated Thumbnailimage/jpeg1705https://repositorio.ufrn.br/bitstream/123456789/31836/5/EffectsSolidificationThermal_SILVA_2017.pdf.jpgcb37b3814beedb7a9469396bc3d13f74MD55123456789/318362021-03-14 05:46:16.606oai:https://repositorio.ufrn.br:123456789/31836Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-03-14T08:46:16Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys |
title |
Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys |
spellingShingle |
Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys Silva, Bismarck Luiz Sn-Bi alloys Solidification Microstructure Bi precipitates Tensile strength Fracture surface |
title_short |
Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys |
title_full |
Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys |
title_fullStr |
Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys |
title_full_unstemmed |
Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys |
title_sort |
Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys |
author |
Silva, Bismarck Luiz |
author_facet |
Silva, Bismarck Luiz Silva, Vítor Covre Evangelista da Garcia, Amauri Spinelli, José Eduardo |
author_role |
author |
author2 |
Silva, Vítor Covre Evangelista da Garcia, Amauri Spinelli, José Eduardo |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Silva, Bismarck Luiz Silva, Vítor Covre Evangelista da Garcia, Amauri Spinelli, José Eduardo |
dc.subject.por.fl_str_mv |
Sn-Bi alloys Solidification Microstructure Bi precipitates Tensile strength Fracture surface |
topic |
Sn-Bi alloys Solidification Microstructure Bi precipitates Tensile strength Fracture surface |
description |
Samples extracted along the length of directionally solidified (DS) castings of three Sn-xBi alloys (x = 34 wt.%Bi, 52 wt.%Bi and 58 wt.%Bi) were first evaluated metallographically and then subjected to scanning electron microscopy and energy-dispersive x-ray spectroscopy analyses. The characteristic length scale of both eutectic and dendritic phases forming the microstructure were determined and correlated with solidification thermal parameters (growth rate V, and cooling rate Ṫ). Tensile and Vickers hardness tests were performed to allow strength and ductility to be discussed as a function of both microstructure features and alloy solute content. The tertiary dendrite arm spacings along the length of the DS Sn-52 wt.%Bi alloy casting are shown to be lower than those obtained for the Sn-34 wt.%Bi alloy casting. The results of mechanical tests show that, with the decrease in the alloy Bi content, both tensile strength and hardness are improved. This is shown to be mainly attributed to the higher density of Bi precipitates decorating the Sn-rich dendrites, which are finer than the equivalent phase developed for the Sn-52 wt.%Bi alloy. However, the ductility is shown to be significantly improved for specimens associated with regions of more refined microstructure of the Sn-52 wt.%Bi alloy DS casting. A microstructure combining much branched dendrites, fine Bi particles within the β-Sn dendritic matrix and an important proportion of very fine eutectic formed by alternate Bi-rich and Sn-rich phase, seems to be conducive to this higher ductility. In this case, the fracture surface is shown to be more finely broken with presence of dimples for this particular condition, i.e., characteristic of a ductile fracture mode |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-01-10 |
dc.date.accessioned.fl_str_mv |
2021-03-12T15:14:30Z |
dc.date.available.fl_str_mv |
2021-03-12T15:14:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Bismarck, L.S.; SILVA, V. C. E.; Garcia, A. ; SPINELLI, J. E.. Effects of Solidification Thermal Parameters on Microstructure and Mechanical Properties of Sn-Bi Solder Alloys. Journal of Electronic Materials, v. 46, p. 1754-1769, 2017. Disponivel: https://link.springer.com/article/10.1007%2Fs11664-016-5225-7 Acesso em: 26 jan. 2021. https://doi.org/10.1007/s11664-016-5225-7 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/31836 |
dc.identifier.issn.none.fl_str_mv |
0361-5235 1543-186X |
dc.identifier.doi.none.fl_str_mv |
10.1007/s11664-016-5225-7 |
identifier_str_mv |
Bismarck, L.S.; SILVA, V. C. E.; Garcia, A. ; SPINELLI, J. E.. Effects of Solidification Thermal Parameters on Microstructure and Mechanical Properties of Sn-Bi Solder Alloys. Journal of Electronic Materials, v. 46, p. 1754-1769, 2017. Disponivel: https://link.springer.com/article/10.1007%2Fs11664-016-5225-7 Acesso em: 26 jan. 2021. https://doi.org/10.1007/s11664-016-5225-7 0361-5235 1543-186X 10.1007/s11664-016-5225-7 |
url |
https://repositorio.ufrn.br/handle/123456789/31836 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/31836/1/EffectsSolidificationThermal_SILVA_2017.pdf https://repositorio.ufrn.br/bitstream/123456789/31836/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/31836/3/license.txt https://repositorio.ufrn.br/bitstream/123456789/31836/4/EffectsSolidificationThermal_SILVA_2017.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/31836/5/EffectsSolidificationThermal_SILVA_2017.pdf.jpg |
bitstream.checksum.fl_str_mv |
59200bc096174854cf87c96714d62abb 4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 e6480659487548a1ee5df573d8a21dd4 cb37b3814beedb7a9469396bc3d13f74 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832830548541440 |