Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys

Detalhes bibliográficos
Autor(a) principal: Silva, Bismarck Luiz
Data de Publicação: 2017
Outros Autores: Silva, Vítor Covre Evangelista da, Garcia, Amauri, Spinelli, José Eduardo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/31836
Resumo: Samples extracted along the length of directionally solidified (DS) castings of three Sn-xBi alloys (x = 34 wt.%Bi, 52 wt.%Bi and 58 wt.%Bi) were first evaluated metallographically and then subjected to scanning electron microscopy and energy-dispersive x-ray spectroscopy analyses. The characteristic length scale of both eutectic and dendritic phases forming the microstructure were determined and correlated with solidification thermal parameters (growth rate V, and cooling rate Ṫ). Tensile and Vickers hardness tests were performed to allow strength and ductility to be discussed as a function of both microstructure features and alloy solute content. The tertiary dendrite arm spacings along the length of the DS Sn-52 wt.%Bi alloy casting are shown to be lower than those obtained for the Sn-34 wt.%Bi alloy casting. The results of mechanical tests show that, with the decrease in the alloy Bi content, both tensile strength and hardness are improved. This is shown to be mainly attributed to the higher density of Bi precipitates decorating the Sn-rich dendrites, which are finer than the equivalent phase developed for the Sn-52 wt.%Bi alloy. However, the ductility is shown to be significantly improved for specimens associated with regions of more refined microstructure of the Sn-52 wt.%Bi alloy DS casting. A microstructure combining much branched dendrites, fine Bi particles within the β-Sn dendritic matrix and an important proportion of very fine eutectic formed by alternate Bi-rich and Sn-rich phase, seems to be conducive to this higher ductility. In this case, the fracture surface is shown to be more finely broken with presence of dimples for this particular condition, i.e., characteristic of a ductile fracture mode
id UFRN_6179eef159949922e25dfcd87dd6f2b3
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/31836
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Silva, Bismarck LuizSilva, Vítor Covre Evangelista daGarcia, AmauriSpinelli, José Eduardo2021-03-12T15:14:30Z2021-03-12T15:14:30Z2017-01-10Bismarck, L.S.; SILVA, V. C. E.; Garcia, A. ; SPINELLI, J. E.. Effects of Solidification Thermal Parameters on Microstructure and Mechanical Properties of Sn-Bi Solder Alloys. Journal of Electronic Materials, v. 46, p. 1754-1769, 2017. Disponivel: https://link.springer.com/article/10.1007%2Fs11664-016-5225-7 Acesso em: 26 jan. 2021. https://doi.org/10.1007/s11664-016-5225-70361-52351543-186Xhttps://repositorio.ufrn.br/handle/123456789/3183610.1007/s11664-016-5225-7SpringerAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessSn-Bi alloysSolidificationMicrostructureBi precipitatesTensile strengthFracture surfaceEffects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloysinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleSamples extracted along the length of directionally solidified (DS) castings of three Sn-xBi alloys (x = 34 wt.%Bi, 52 wt.%Bi and 58 wt.%Bi) were first evaluated metallographically and then subjected to scanning electron microscopy and energy-dispersive x-ray spectroscopy analyses. The characteristic length scale of both eutectic and dendritic phases forming the microstructure were determined and correlated with solidification thermal parameters (growth rate V, and cooling rate Ṫ). Tensile and Vickers hardness tests were performed to allow strength and ductility to be discussed as a function of both microstructure features and alloy solute content. The tertiary dendrite arm spacings along the length of the DS Sn-52 wt.%Bi alloy casting are shown to be lower than those obtained for the Sn-34 wt.%Bi alloy casting. The results of mechanical tests show that, with the decrease in the alloy Bi content, both tensile strength and hardness are improved. This is shown to be mainly attributed to the higher density of Bi precipitates decorating the Sn-rich dendrites, which are finer than the equivalent phase developed for the Sn-52 wt.%Bi alloy. However, the ductility is shown to be significantly improved for specimens associated with regions of more refined microstructure of the Sn-52 wt.%Bi alloy DS casting. A microstructure combining much branched dendrites, fine Bi particles within the β-Sn dendritic matrix and an important proportion of very fine eutectic formed by alternate Bi-rich and Sn-rich phase, seems to be conducive to this higher ductility. In this case, the fracture surface is shown to be more finely broken with presence of dimples for this particular condition, i.e., characteristic of a ductile fracture modeengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALEffectsSolidificationThermal_SILVA_2017.pdfEffectsSolidificationThermal_SILVA_2017.pdfapplication/pdf10896575https://repositorio.ufrn.br/bitstream/123456789/31836/1/EffectsSolidificationThermal_SILVA_2017.pdf59200bc096174854cf87c96714d62abbMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/31836/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/31836/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTEffectsSolidificationThermal_SILVA_2017.pdf.txtEffectsSolidificationThermal_SILVA_2017.pdf.txtExtracted texttext/plain50983https://repositorio.ufrn.br/bitstream/123456789/31836/4/EffectsSolidificationThermal_SILVA_2017.pdf.txte6480659487548a1ee5df573d8a21dd4MD54THUMBNAILEffectsSolidificationThermal_SILVA_2017.pdf.jpgEffectsSolidificationThermal_SILVA_2017.pdf.jpgGenerated Thumbnailimage/jpeg1705https://repositorio.ufrn.br/bitstream/123456789/31836/5/EffectsSolidificationThermal_SILVA_2017.pdf.jpgcb37b3814beedb7a9469396bc3d13f74MD55123456789/318362021-03-14 05:46:16.606oai:https://repositorio.ufrn.br:123456789/31836Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-03-14T08:46:16Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys
title Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys
spellingShingle Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys
Silva, Bismarck Luiz
Sn-Bi alloys
Solidification
Microstructure
Bi precipitates
Tensile strength
Fracture surface
title_short Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys
title_full Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys
title_fullStr Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys
title_full_unstemmed Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys
title_sort Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys
author Silva, Bismarck Luiz
author_facet Silva, Bismarck Luiz
Silva, Vítor Covre Evangelista da
Garcia, Amauri
Spinelli, José Eduardo
author_role author
author2 Silva, Vítor Covre Evangelista da
Garcia, Amauri
Spinelli, José Eduardo
author2_role author
author
author
dc.contributor.author.fl_str_mv Silva, Bismarck Luiz
Silva, Vítor Covre Evangelista da
Garcia, Amauri
Spinelli, José Eduardo
dc.subject.por.fl_str_mv Sn-Bi alloys
Solidification
Microstructure
Bi precipitates
Tensile strength
Fracture surface
topic Sn-Bi alloys
Solidification
Microstructure
Bi precipitates
Tensile strength
Fracture surface
description Samples extracted along the length of directionally solidified (DS) castings of three Sn-xBi alloys (x = 34 wt.%Bi, 52 wt.%Bi and 58 wt.%Bi) were first evaluated metallographically and then subjected to scanning electron microscopy and energy-dispersive x-ray spectroscopy analyses. The characteristic length scale of both eutectic and dendritic phases forming the microstructure were determined and correlated with solidification thermal parameters (growth rate V, and cooling rate Ṫ). Tensile and Vickers hardness tests were performed to allow strength and ductility to be discussed as a function of both microstructure features and alloy solute content. The tertiary dendrite arm spacings along the length of the DS Sn-52 wt.%Bi alloy casting are shown to be lower than those obtained for the Sn-34 wt.%Bi alloy casting. The results of mechanical tests show that, with the decrease in the alloy Bi content, both tensile strength and hardness are improved. This is shown to be mainly attributed to the higher density of Bi precipitates decorating the Sn-rich dendrites, which are finer than the equivalent phase developed for the Sn-52 wt.%Bi alloy. However, the ductility is shown to be significantly improved for specimens associated with regions of more refined microstructure of the Sn-52 wt.%Bi alloy DS casting. A microstructure combining much branched dendrites, fine Bi particles within the β-Sn dendritic matrix and an important proportion of very fine eutectic formed by alternate Bi-rich and Sn-rich phase, seems to be conducive to this higher ductility. In this case, the fracture surface is shown to be more finely broken with presence of dimples for this particular condition, i.e., characteristic of a ductile fracture mode
publishDate 2017
dc.date.issued.fl_str_mv 2017-01-10
dc.date.accessioned.fl_str_mv 2021-03-12T15:14:30Z
dc.date.available.fl_str_mv 2021-03-12T15:14:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv Bismarck, L.S.; SILVA, V. C. E.; Garcia, A. ; SPINELLI, J. E.. Effects of Solidification Thermal Parameters on Microstructure and Mechanical Properties of Sn-Bi Solder Alloys. Journal of Electronic Materials, v. 46, p. 1754-1769, 2017. Disponivel: https://link.springer.com/article/10.1007%2Fs11664-016-5225-7 Acesso em: 26 jan. 2021. https://doi.org/10.1007/s11664-016-5225-7
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/31836
dc.identifier.issn.none.fl_str_mv 0361-5235
1543-186X
dc.identifier.doi.none.fl_str_mv 10.1007/s11664-016-5225-7
identifier_str_mv Bismarck, L.S.; SILVA, V. C. E.; Garcia, A. ; SPINELLI, J. E.. Effects of Solidification Thermal Parameters on Microstructure and Mechanical Properties of Sn-Bi Solder Alloys. Journal of Electronic Materials, v. 46, p. 1754-1769, 2017. Disponivel: https://link.springer.com/article/10.1007%2Fs11664-016-5225-7 Acesso em: 26 jan. 2021. https://doi.org/10.1007/s11664-016-5225-7
0361-5235
1543-186X
10.1007/s11664-016-5225-7
url https://repositorio.ufrn.br/handle/123456789/31836
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/31836/1/EffectsSolidificationThermal_SILVA_2017.pdf
https://repositorio.ufrn.br/bitstream/123456789/31836/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/31836/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/31836/4/EffectsSolidificationThermal_SILVA_2017.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/31836/5/EffectsSolidificationThermal_SILVA_2017.pdf.jpg
bitstream.checksum.fl_str_mv 59200bc096174854cf87c96714d62abb
4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
e6480659487548a1ee5df573d8a21dd4
cb37b3814beedb7a9469396bc3d13f74
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832830548541440