Extracting information from the shape and spatial distribution of evoked potentials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/24685 https://doi.org/10.1016/j.jneumeth.2017.12.014 |
Resumo: | Background: Over 90 years after its first recording, scalp electroencephalography (EEG) remains one ofthe most widely used techniques in human neuroscience research, in particular for the study of event-related potentials (ERPs). However, because of its low signal-to-noise ratio, extracting useful information from these signals continues to be a hard-technical challenge. Many studies focus on simple properties of the ERPs such as peaks, latencies, and slopes of signal deflections. New method: To overcome these limitations, we developed the Wavelet-Information method which uses wavelet decomposition, information theory, and a quantification based on single-trial decoding performance to extract information from evoked responses. Results: Using simulations and real data from four experiments, we show that the proposed approach outperforms standard supervised analyses based on peak amplitude estimation. Moreover, the method can extract information using the raw data from all recorded channels using no a priori knowledge or pre-processing steps. Comparison with existing method(s): We show that traditional approaches often disregard important features of the signal such as the shape of EEG waveforms. Also, other approaches often require some form of a priori knowledge for feature selection and lead to problems of multiple comparisons. Conclusions: This approach offers a new and complementary framework to design experiments that go beyond the traditional analyses of ERPs. Potentially, it allows a wide usage beyond basic research; such as for clinical diagnosis, brain-machine interfaces, and neurofeedback applications requiring single-trial analyses |
id |
UFRN_6a6dff1508659819e183f837eff3be38 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/24685 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Lopes-Dos-Santos, VRey HGNavajas JQuian Quiroga R2018-01-31T14:47:10Z2018-01-31T14:47:10Z2017-12-23https://repositorio.ufrn.br/jspui/handle/123456789/24685https://doi.org/10.1016/j.jneumeth.2017.12.014engWavelet decompositionEvent-related potentialsEEGExtracting information from the shape and spatial distribution of evoked potentialsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleBackground: Over 90 years after its first recording, scalp electroencephalography (EEG) remains one ofthe most widely used techniques in human neuroscience research, in particular for the study of event-related potentials (ERPs). However, because of its low signal-to-noise ratio, extracting useful information from these signals continues to be a hard-technical challenge. Many studies focus on simple properties of the ERPs such as peaks, latencies, and slopes of signal deflections. New method: To overcome these limitations, we developed the Wavelet-Information method which uses wavelet decomposition, information theory, and a quantification based on single-trial decoding performance to extract information from evoked responses. Results: Using simulations and real data from four experiments, we show that the proposed approach outperforms standard supervised analyses based on peak amplitude estimation. Moreover, the method can extract information using the raw data from all recorded channels using no a priori knowledge or pre-processing steps. Comparison with existing method(s): We show that traditional approaches often disregard important features of the signal such as the shape of EEG waveforms. Also, other approaches often require some form of a priori knowledge for feature selection and lead to problems of multiple comparisons. Conclusions: This approach offers a new and complementary framework to design experiments that go beyond the traditional analyses of ERPs. Potentially, it allows a wide usage beyond basic research; such as for clinical diagnosis, brain-machine interfaces, and neurofeedback applications requiring single-trial analysesinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTVitorLopes_ICe_2017_Extrating Information.pdf.txtVitorLopes_ICe_2017_Extrating Information.pdf.txtExtracted texttext/plain75949https://repositorio.ufrn.br/bitstream/123456789/24685/3/VitorLopes_ICe_2017_Extrating%20Information.pdf.txt17326767108fcff93425af37dd644ee5MD53THUMBNAILVitorLopes_ICe_2017_Extrating Information.pdf.jpgVitorLopes_ICe_2017_Extrating Information.pdf.jpgIM Thumbnailimage/jpeg9358https://repositorio.ufrn.br/bitstream/123456789/24685/4/VitorLopes_ICe_2017_Extrating%20Information.pdf.jpg00d0447248caf45a4a41c9e39f45437fMD54ORIGINALVitorLopes_ICe_2017_Extrating Information.pdfVitorLopes_ICe_2017_Extrating Information.pdfapplication/pdf1444240https://repositorio.ufrn.br/bitstream/123456789/24685/1/VitorLopes_ICe_2017_Extrating%20Information.pdffd1ceef3ae213e74b399fbd5674aff82MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/24685/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/246852019-01-30 14:20:37.341oai:https://repositorio.ufrn.br:123456789/24685Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2019-01-30T17:20:37Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Extracting information from the shape and spatial distribution of evoked potentials |
title |
Extracting information from the shape and spatial distribution of evoked potentials |
spellingShingle |
Extracting information from the shape and spatial distribution of evoked potentials Lopes-Dos-Santos, V Wavelet decomposition Event-related potentials EEG |
title_short |
Extracting information from the shape and spatial distribution of evoked potentials |
title_full |
Extracting information from the shape and spatial distribution of evoked potentials |
title_fullStr |
Extracting information from the shape and spatial distribution of evoked potentials |
title_full_unstemmed |
Extracting information from the shape and spatial distribution of evoked potentials |
title_sort |
Extracting information from the shape and spatial distribution of evoked potentials |
author |
Lopes-Dos-Santos, V |
author_facet |
Lopes-Dos-Santos, V Rey HG Navajas J Quian Quiroga R |
author_role |
author |
author2 |
Rey HG Navajas J Quian Quiroga R |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Lopes-Dos-Santos, V Rey HG Navajas J Quian Quiroga R |
dc.subject.por.fl_str_mv |
Wavelet decomposition Event-related potentials EEG |
topic |
Wavelet decomposition Event-related potentials EEG |
description |
Background: Over 90 years after its first recording, scalp electroencephalography (EEG) remains one ofthe most widely used techniques in human neuroscience research, in particular for the study of event-related potentials (ERPs). However, because of its low signal-to-noise ratio, extracting useful information from these signals continues to be a hard-technical challenge. Many studies focus on simple properties of the ERPs such as peaks, latencies, and slopes of signal deflections. New method: To overcome these limitations, we developed the Wavelet-Information method which uses wavelet decomposition, information theory, and a quantification based on single-trial decoding performance to extract information from evoked responses. Results: Using simulations and real data from four experiments, we show that the proposed approach outperforms standard supervised analyses based on peak amplitude estimation. Moreover, the method can extract information using the raw data from all recorded channels using no a priori knowledge or pre-processing steps. Comparison with existing method(s): We show that traditional approaches often disregard important features of the signal such as the shape of EEG waveforms. Also, other approaches often require some form of a priori knowledge for feature selection and lead to problems of multiple comparisons. Conclusions: This approach offers a new and complementary framework to design experiments that go beyond the traditional analyses of ERPs. Potentially, it allows a wide usage beyond basic research; such as for clinical diagnosis, brain-machine interfaces, and neurofeedback applications requiring single-trial analyses |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-12-23 |
dc.date.accessioned.fl_str_mv |
2018-01-31T14:47:10Z |
dc.date.available.fl_str_mv |
2018-01-31T14:47:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/24685 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.jneumeth.2017.12.014 |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/24685 https://doi.org/10.1016/j.jneumeth.2017.12.014 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/24685/3/VitorLopes_ICe_2017_Extrating%20Information.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/24685/4/VitorLopes_ICe_2017_Extrating%20Information.pdf.jpg https://repositorio.ufrn.br/bitstream/123456789/24685/1/VitorLopes_ICe_2017_Extrating%20Information.pdf https://repositorio.ufrn.br/bitstream/123456789/24685/2/license.txt |
bitstream.checksum.fl_str_mv |
17326767108fcff93425af37dd644ee5 00d0447248caf45a4a41c9e39f45437f fd1ceef3ae213e74b399fbd5674aff82 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832827239235584 |