Extracting information from the shape and spatial distribution of evoked potentials

Detalhes bibliográficos
Autor(a) principal: Lopes-Dos-Santos, V
Data de Publicação: 2017
Outros Autores: Rey HG, Navajas J, Quian Quiroga R
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/24685
https://doi.org/10.1016/j.jneumeth.2017.12.014
Resumo: Background: Over 90 years after its first recording, scalp electroencephalography (EEG) remains one ofthe most widely used techniques in human neuroscience research, in particular for the study of event-related potentials (ERPs). However, because of its low signal-to-noise ratio, extracting useful information from these signals continues to be a hard-technical challenge. Many studies focus on simple properties of the ERPs such as peaks, latencies, and slopes of signal deflections. New method: To overcome these limitations, we developed the Wavelet-Information method which uses wavelet decomposition, information theory, and a quantification based on single-trial decoding performance to extract information from evoked responses. Results: Using simulations and real data from four experiments, we show that the proposed approach outperforms standard supervised analyses based on peak amplitude estimation. Moreover, the method can extract information using the raw data from all recorded channels using no a priori knowledge or pre-processing steps. Comparison with existing method(s): We show that traditional approaches often disregard important features of the signal such as the shape of EEG waveforms. Also, other approaches often require some form of a priori knowledge for feature selection and lead to problems of multiple comparisons. Conclusions: This approach offers a new and complementary framework to design experiments that go beyond the traditional analyses of ERPs. Potentially, it allows a wide usage beyond basic research; such as for clinical diagnosis, brain-machine interfaces, and neurofeedback applications requiring single-trial analyses
id UFRN_6a6dff1508659819e183f837eff3be38
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/24685
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Lopes-Dos-Santos, VRey HGNavajas JQuian Quiroga R2018-01-31T14:47:10Z2018-01-31T14:47:10Z2017-12-23https://repositorio.ufrn.br/jspui/handle/123456789/24685https://doi.org/10.1016/j.jneumeth.2017.12.014engWavelet decompositionEvent-related potentialsEEGExtracting information from the shape and spatial distribution of evoked potentialsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleBackground: Over 90 years after its first recording, scalp electroencephalography (EEG) remains one ofthe most widely used techniques in human neuroscience research, in particular for the study of event-related potentials (ERPs). However, because of its low signal-to-noise ratio, extracting useful information from these signals continues to be a hard-technical challenge. Many studies focus on simple properties of the ERPs such as peaks, latencies, and slopes of signal deflections. New method: To overcome these limitations, we developed the Wavelet-Information method which uses wavelet decomposition, information theory, and a quantification based on single-trial decoding performance to extract information from evoked responses. Results: Using simulations and real data from four experiments, we show that the proposed approach outperforms standard supervised analyses based on peak amplitude estimation. Moreover, the method can extract information using the raw data from all recorded channels using no a priori knowledge or pre-processing steps. Comparison with existing method(s): We show that traditional approaches often disregard important features of the signal such as the shape of EEG waveforms. Also, other approaches often require some form of a priori knowledge for feature selection and lead to problems of multiple comparisons. Conclusions: This approach offers a new and complementary framework to design experiments that go beyond the traditional analyses of ERPs. Potentially, it allows a wide usage beyond basic research; such as for clinical diagnosis, brain-machine interfaces, and neurofeedback applications requiring single-trial analysesinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTVitorLopes_ICe_2017_Extrating Information.pdf.txtVitorLopes_ICe_2017_Extrating Information.pdf.txtExtracted texttext/plain75949https://repositorio.ufrn.br/bitstream/123456789/24685/3/VitorLopes_ICe_2017_Extrating%20Information.pdf.txt17326767108fcff93425af37dd644ee5MD53THUMBNAILVitorLopes_ICe_2017_Extrating Information.pdf.jpgVitorLopes_ICe_2017_Extrating Information.pdf.jpgIM Thumbnailimage/jpeg9358https://repositorio.ufrn.br/bitstream/123456789/24685/4/VitorLopes_ICe_2017_Extrating%20Information.pdf.jpg00d0447248caf45a4a41c9e39f45437fMD54ORIGINALVitorLopes_ICe_2017_Extrating Information.pdfVitorLopes_ICe_2017_Extrating Information.pdfapplication/pdf1444240https://repositorio.ufrn.br/bitstream/123456789/24685/1/VitorLopes_ICe_2017_Extrating%20Information.pdffd1ceef3ae213e74b399fbd5674aff82MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/24685/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/246852019-01-30 14:20:37.341oai:https://repositorio.ufrn.br:123456789/24685Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2019-01-30T17:20:37Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Extracting information from the shape and spatial distribution of evoked potentials
title Extracting information from the shape and spatial distribution of evoked potentials
spellingShingle Extracting information from the shape and spatial distribution of evoked potentials
Lopes-Dos-Santos, V
Wavelet decomposition
Event-related potentials
EEG
title_short Extracting information from the shape and spatial distribution of evoked potentials
title_full Extracting information from the shape and spatial distribution of evoked potentials
title_fullStr Extracting information from the shape and spatial distribution of evoked potentials
title_full_unstemmed Extracting information from the shape and spatial distribution of evoked potentials
title_sort Extracting information from the shape and spatial distribution of evoked potentials
author Lopes-Dos-Santos, V
author_facet Lopes-Dos-Santos, V
Rey HG
Navajas J
Quian Quiroga R
author_role author
author2 Rey HG
Navajas J
Quian Quiroga R
author2_role author
author
author
dc.contributor.author.fl_str_mv Lopes-Dos-Santos, V
Rey HG
Navajas J
Quian Quiroga R
dc.subject.por.fl_str_mv Wavelet decomposition
Event-related potentials
EEG
topic Wavelet decomposition
Event-related potentials
EEG
description Background: Over 90 years after its first recording, scalp electroencephalography (EEG) remains one ofthe most widely used techniques in human neuroscience research, in particular for the study of event-related potentials (ERPs). However, because of its low signal-to-noise ratio, extracting useful information from these signals continues to be a hard-technical challenge. Many studies focus on simple properties of the ERPs such as peaks, latencies, and slopes of signal deflections. New method: To overcome these limitations, we developed the Wavelet-Information method which uses wavelet decomposition, information theory, and a quantification based on single-trial decoding performance to extract information from evoked responses. Results: Using simulations and real data from four experiments, we show that the proposed approach outperforms standard supervised analyses based on peak amplitude estimation. Moreover, the method can extract information using the raw data from all recorded channels using no a priori knowledge or pre-processing steps. Comparison with existing method(s): We show that traditional approaches often disregard important features of the signal such as the shape of EEG waveforms. Also, other approaches often require some form of a priori knowledge for feature selection and lead to problems of multiple comparisons. Conclusions: This approach offers a new and complementary framework to design experiments that go beyond the traditional analyses of ERPs. Potentially, it allows a wide usage beyond basic research; such as for clinical diagnosis, brain-machine interfaces, and neurofeedback applications requiring single-trial analyses
publishDate 2017
dc.date.issued.fl_str_mv 2017-12-23
dc.date.accessioned.fl_str_mv 2018-01-31T14:47:10Z
dc.date.available.fl_str_mv 2018-01-31T14:47:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/24685
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.jneumeth.2017.12.014
url https://repositorio.ufrn.br/jspui/handle/123456789/24685
https://doi.org/10.1016/j.jneumeth.2017.12.014
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/24685/3/VitorLopes_ICe_2017_Extrating%20Information.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/24685/4/VitorLopes_ICe_2017_Extrating%20Information.pdf.jpg
https://repositorio.ufrn.br/bitstream/123456789/24685/1/VitorLopes_ICe_2017_Extrating%20Information.pdf
https://repositorio.ufrn.br/bitstream/123456789/24685/2/license.txt
bitstream.checksum.fl_str_mv 17326767108fcff93425af37dd644ee5
00d0447248caf45a4a41c9e39f45437f
fd1ceef3ae213e74b399fbd5674aff82
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832827239235584