Light propagation in quasiperiodic dielectric multilayers separated by graphene

Detalhes bibliográficos
Autor(a) principal: Costa, Carlos H.
Data de Publicação: 2017
Outros Autores: Pereira, Luiz Felipe Cavalcanti, Bezerra, Claudionor Gomes
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/29478
Resumo: The study of photonic crystals, artificial materials whose dielectric properties can be tailored according to the stacking of its constituents, remains an attractive research area. In this article we have employed a transfer matrix treatment to study the propagation of light waves in Fibonacci quasiperiodic dielectric multilayers with graphene embedded. We calculated their dispersion and transmission spectra in order to investigate the effects of the graphene monolayers and quasiperiodic disorder on the system physical behavior. The quasiperiodic dielectric multilayer is composed of two building blocks, silicon dioxide (building block A=SiO 2) and titanium dioxide (building block B=TiO2). Our numerical results show that the presence of graphene monolayers reduces the transmissivity on the whole range of frequency and induces a transmission gap in the low frequency region. Regarding the polarization of the light wave, we found that the transmission coefficient is higher for the transverse magnetic (TM) case than for the transverse electric (TE) one. We also conclude from our numerical results that the graphene induced photonic band gaps (GIPBGs) do not depend on the polarization (TE or TM) of the light wave nor on the Fibonacci generation index n. Moreover, the GIPBGs are omnidirectional photonic band gaps, therefore light cannot propagate in these structures for frequencies lower than a certain value, whatever the incidence angle. Finally, a plot of the transmission spectra versus chemical potential shows that one can, in principle, adjust the width of the photonic band gap by tuning the chemical potential via a gate voltage
id UFRN_7342f822460353024b1d0e819c6d6722
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/29478
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Costa, Carlos H.Pereira, Luiz Felipe CavalcantiBezerra, Claudionor Gomes2020-07-07T14:42:12Z2020-07-07T14:42:12Z2017-09-08COSTA, C. H.; PEREIRA, L. F. C.; BEZERRA, C. G.. Light propagation in quasiperiodic dielectric multilayers separated by graphene. Physical Review B, v. 96, p. 125412, 2017. Disponível em: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.125412. Acesso em: 06 jun. 2020. https://doi.org/10.1103/PhysRevB.96.1254122469-9950https://repositorio.ufrn.br/jspui/handle/123456789/2947810.1103/PhysRevB.96.125412American Physical SocietyAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessQuasiperiodic dielectricLight propagation in quasiperiodic dielectric multilayers separated by grapheneinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe study of photonic crystals, artificial materials whose dielectric properties can be tailored according to the stacking of its constituents, remains an attractive research area. In this article we have employed a transfer matrix treatment to study the propagation of light waves in Fibonacci quasiperiodic dielectric multilayers with graphene embedded. We calculated their dispersion and transmission spectra in order to investigate the effects of the graphene monolayers and quasiperiodic disorder on the system physical behavior. The quasiperiodic dielectric multilayer is composed of two building blocks, silicon dioxide (building block A=SiO 2) and titanium dioxide (building block B=TiO2). Our numerical results show that the presence of graphene monolayers reduces the transmissivity on the whole range of frequency and induces a transmission gap in the low frequency region. Regarding the polarization of the light wave, we found that the transmission coefficient is higher for the transverse magnetic (TM) case than for the transverse electric (TE) one. We also conclude from our numerical results that the graphene induced photonic band gaps (GIPBGs) do not depend on the polarization (TE or TM) of the light wave nor on the Fibonacci generation index n. Moreover, the GIPBGs are omnidirectional photonic band gaps, therefore light cannot propagate in these structures for frequencies lower than a certain value, whatever the incidence angle. Finally, a plot of the transmission spectra versus chemical potential shows that one can, in principle, adjust the width of the photonic band gap by tuning the chemical potential via a gate voltageengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALLightPropagationInQuasiperiodicDielectric_bezerra_2017.pdfLightPropagationInQuasiperiodicDielectric_bezerra_2017.pdfapplication/pdf3401911https://repositorio.ufrn.br/bitstream/123456789/29478/1/LightPropagationInQuasiperiodicDielectric_bezerra_2017.pdfd2280543d5a066bb5e8340ef3f3edc32MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/29478/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/29478/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTLightPropagationInQuasiperiodicDielectric_bezerra_2017.pdf.txtLightPropagationInQuasiperiodicDielectric_bezerra_2017.pdf.txtExtracted texttext/plain35879https://repositorio.ufrn.br/bitstream/123456789/29478/4/LightPropagationInQuasiperiodicDielectric_bezerra_2017.pdf.txt5298f71b70289db09e44b6b9f9b0a078MD54THUMBNAILLightPropagationInQuasiperiodicDielectric_bezerra_2017.pdf.jpgLightPropagationInQuasiperiodicDielectric_bezerra_2017.pdf.jpgGenerated Thumbnailimage/jpeg1760https://repositorio.ufrn.br/bitstream/123456789/29478/5/LightPropagationInQuasiperiodicDielectric_bezerra_2017.pdf.jpg99a63497e9aecd1f6c9be8e7fecba320MD55123456789/294782020-07-12 04:49:35.522oai:https://repositorio.ufrn.br:123456789/29478Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-07-12T07:49:35Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Light propagation in quasiperiodic dielectric multilayers separated by graphene
title Light propagation in quasiperiodic dielectric multilayers separated by graphene
spellingShingle Light propagation in quasiperiodic dielectric multilayers separated by graphene
Costa, Carlos H.
Quasiperiodic dielectric
title_short Light propagation in quasiperiodic dielectric multilayers separated by graphene
title_full Light propagation in quasiperiodic dielectric multilayers separated by graphene
title_fullStr Light propagation in quasiperiodic dielectric multilayers separated by graphene
title_full_unstemmed Light propagation in quasiperiodic dielectric multilayers separated by graphene
title_sort Light propagation in quasiperiodic dielectric multilayers separated by graphene
author Costa, Carlos H.
author_facet Costa, Carlos H.
Pereira, Luiz Felipe Cavalcanti
Bezerra, Claudionor Gomes
author_role author
author2 Pereira, Luiz Felipe Cavalcanti
Bezerra, Claudionor Gomes
author2_role author
author
dc.contributor.author.fl_str_mv Costa, Carlos H.
Pereira, Luiz Felipe Cavalcanti
Bezerra, Claudionor Gomes
dc.subject.por.fl_str_mv Quasiperiodic dielectric
topic Quasiperiodic dielectric
description The study of photonic crystals, artificial materials whose dielectric properties can be tailored according to the stacking of its constituents, remains an attractive research area. In this article we have employed a transfer matrix treatment to study the propagation of light waves in Fibonacci quasiperiodic dielectric multilayers with graphene embedded. We calculated their dispersion and transmission spectra in order to investigate the effects of the graphene monolayers and quasiperiodic disorder on the system physical behavior. The quasiperiodic dielectric multilayer is composed of two building blocks, silicon dioxide (building block A=SiO 2) and titanium dioxide (building block B=TiO2). Our numerical results show that the presence of graphene monolayers reduces the transmissivity on the whole range of frequency and induces a transmission gap in the low frequency region. Regarding the polarization of the light wave, we found that the transmission coefficient is higher for the transverse magnetic (TM) case than for the transverse electric (TE) one. We also conclude from our numerical results that the graphene induced photonic band gaps (GIPBGs) do not depend on the polarization (TE or TM) of the light wave nor on the Fibonacci generation index n. Moreover, the GIPBGs are omnidirectional photonic band gaps, therefore light cannot propagate in these structures for frequencies lower than a certain value, whatever the incidence angle. Finally, a plot of the transmission spectra versus chemical potential shows that one can, in principle, adjust the width of the photonic band gap by tuning the chemical potential via a gate voltage
publishDate 2017
dc.date.issued.fl_str_mv 2017-09-08
dc.date.accessioned.fl_str_mv 2020-07-07T14:42:12Z
dc.date.available.fl_str_mv 2020-07-07T14:42:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv COSTA, C. H.; PEREIRA, L. F. C.; BEZERRA, C. G.. Light propagation in quasiperiodic dielectric multilayers separated by graphene. Physical Review B, v. 96, p. 125412, 2017. Disponível em: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.125412. Acesso em: 06 jun. 2020. https://doi.org/10.1103/PhysRevB.96.125412
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/29478
dc.identifier.issn.none.fl_str_mv 2469-9950
dc.identifier.doi.none.fl_str_mv 10.1103/PhysRevB.96.125412
identifier_str_mv COSTA, C. H.; PEREIRA, L. F. C.; BEZERRA, C. G.. Light propagation in quasiperiodic dielectric multilayers separated by graphene. Physical Review B, v. 96, p. 125412, 2017. Disponível em: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.125412. Acesso em: 06 jun. 2020. https://doi.org/10.1103/PhysRevB.96.125412
2469-9950
10.1103/PhysRevB.96.125412
url https://repositorio.ufrn.br/jspui/handle/123456789/29478
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/29478/1/LightPropagationInQuasiperiodicDielectric_bezerra_2017.pdf
https://repositorio.ufrn.br/bitstream/123456789/29478/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/29478/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/29478/4/LightPropagationInQuasiperiodicDielectric_bezerra_2017.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/29478/5/LightPropagationInQuasiperiodicDielectric_bezerra_2017.pdf.jpg
bitstream.checksum.fl_str_mv d2280543d5a066bb5e8340ef3f3edc32
4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
5298f71b70289db09e44b6b9f9b0a078
99a63497e9aecd1f6c9be8e7fecba320
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1802117520156524544