Recurrent neural network modeling applied to expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/45192 |
Resumo: | Nonlinear autoregressive networks with external input (NARX) and multilayer perceptron (MLP) has been used to predict the activity and protein content for flow-through, washing and elution steps during expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis. Bed expansion as well as the influence of particulatecontaining feedstock study showed a stable bed operation without significant impact on the yield as well as purification factor when the cells were fed to the column. Also, NARXs showed a better performance to predict the chitosanolytic activity as well as total protein than MLPs |
id |
UFRN_7c30e709df8a5461de92270bc6437ba6 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/45192 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Souza, Domingos Fabiano de SantanaPadilha, Carlos Eduardo de AraújoPadilha, Carlos Alberto de AraújoOliveira, Jackson Araújo deMacedo, Gorete Ribeiro deSantos, Everaldo Silvino dos2021-12-06T18:18:18Z2021-12-06T18:18:18Z2017-01PADILHA, Carlos Eduardo de Araújo; PADILHA, Carlos Alberto de Araújo; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Recurrent neural network modeling applied to expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis. Chemical Engineering Research And Design, [S.L.], v. 117, p. 24-33, jan. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.cherd.2016.09.022. Disponível em: https://www.sciencedirect.com/science/article/pii/S0263876216303070?via%3Dihub. Acesso em: 05 nov. 2021.0263-8762https://repositorio.ufrn.br/handle/123456789/4519210.1016/j.cherd.2016.09.022ElsevierAdsorptionDownstream processingEnzyme activityChitosanasesModelingNARXRecurrent neural network modeling applied to expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleNonlinear autoregressive networks with external input (NARX) and multilayer perceptron (MLP) has been used to predict the activity and protein content for flow-through, washing and elution steps during expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis. Bed expansion as well as the influence of particulatecontaining feedstock study showed a stable bed operation without significant impact on the yield as well as purification factor when the cells were fed to the column. Also, NARXs showed a better performance to predict the chitosanolytic activity as well as total protein than MLPsengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/45192/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/45192/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/451922023-02-01 17:22:09.458oai:https://repositorio.ufrn.br:123456789/45192Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-02-01T20:22:09Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Recurrent neural network modeling applied to expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis |
title |
Recurrent neural network modeling applied to expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis |
spellingShingle |
Recurrent neural network modeling applied to expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis Souza, Domingos Fabiano de Santana Adsorption Downstream processing Enzyme activity Chitosanases Modeling NARX |
title_short |
Recurrent neural network modeling applied to expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis |
title_full |
Recurrent neural network modeling applied to expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis |
title_fullStr |
Recurrent neural network modeling applied to expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis |
title_full_unstemmed |
Recurrent neural network modeling applied to expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis |
title_sort |
Recurrent neural network modeling applied to expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis |
author |
Souza, Domingos Fabiano de Santana |
author_facet |
Souza, Domingos Fabiano de Santana Padilha, Carlos Eduardo de Araújo Padilha, Carlos Alberto de Araújo Oliveira, Jackson Araújo de Macedo, Gorete Ribeiro de Santos, Everaldo Silvino dos |
author_role |
author |
author2 |
Padilha, Carlos Eduardo de Araújo Padilha, Carlos Alberto de Araújo Oliveira, Jackson Araújo de Macedo, Gorete Ribeiro de Santos, Everaldo Silvino dos |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Souza, Domingos Fabiano de Santana Padilha, Carlos Eduardo de Araújo Padilha, Carlos Alberto de Araújo Oliveira, Jackson Araújo de Macedo, Gorete Ribeiro de Santos, Everaldo Silvino dos |
dc.subject.por.fl_str_mv |
Adsorption Downstream processing Enzyme activity Chitosanases Modeling NARX |
topic |
Adsorption Downstream processing Enzyme activity Chitosanases Modeling NARX |
description |
Nonlinear autoregressive networks with external input (NARX) and multilayer perceptron (MLP) has been used to predict the activity and protein content for flow-through, washing and elution steps during expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis. Bed expansion as well as the influence of particulatecontaining feedstock study showed a stable bed operation without significant impact on the yield as well as purification factor when the cells were fed to the column. Also, NARXs showed a better performance to predict the chitosanolytic activity as well as total protein than MLPs |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-01 |
dc.date.accessioned.fl_str_mv |
2021-12-06T18:18:18Z |
dc.date.available.fl_str_mv |
2021-12-06T18:18:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PADILHA, Carlos Eduardo de Araújo; PADILHA, Carlos Alberto de Araújo; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Recurrent neural network modeling applied to expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis. Chemical Engineering Research And Design, [S.L.], v. 117, p. 24-33, jan. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.cherd.2016.09.022. Disponível em: https://www.sciencedirect.com/science/article/pii/S0263876216303070?via%3Dihub. Acesso em: 05 nov. 2021. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/45192 |
dc.identifier.issn.none.fl_str_mv |
0263-8762 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.cherd.2016.09.022 |
identifier_str_mv |
PADILHA, Carlos Eduardo de Araújo; PADILHA, Carlos Alberto de Araújo; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Recurrent neural network modeling applied to expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis. Chemical Engineering Research And Design, [S.L.], v. 117, p. 24-33, jan. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.cherd.2016.09.022. Disponível em: https://www.sciencedirect.com/science/article/pii/S0263876216303070?via%3Dihub. Acesso em: 05 nov. 2021. 0263-8762 10.1016/j.cherd.2016.09.022 |
url |
https://repositorio.ufrn.br/handle/123456789/45192 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/45192/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/45192/3/license.txt |
bitstream.checksum.fl_str_mv |
4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832775336820736 |