Papel da proteína de reparo XPC na regulação das proteínas de reparo APE1, OGG1 e PARP-1 em células humanas e de camundongos

Detalhes bibliográficos
Autor(a) principal: Melo, Julliane Tamara Araújo de
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/12573
Resumo: studies using UV as a source of DNA damage. However, even though unrepaired UV-induced DNA damages are related to mutagenesis, cell death and tumorigenesis, they do not explain phenotypes such as neurodegeneration and internal tumors observed in patients with syndromes like Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS) that are associated with NER deficiency. Recent evidences point to a role of NER in the repair of 8-oxodG, a typical substrate of Base Excision Repair (BER). Since deficiencies in BER result in genomic instability, neurodegenerative diseases and cancer, it was investigated in this research the impact of XPC deficiency on BER functions in human cells. It was analyzed both the expression and the cellular localization of APE1, OGG1 e PARP-1, the mainly BER enzymes, in different NER-deficient human fibroblasts. The endogenous levels of these enzymes are reduced in XPC deficient cells. Surprisingly, XP-C fibroblasts were more resistant to oxidative agents than the other NER deficient fibroblasts, despite presenting the highest of 8-oxodG. Furthermore, subtle changes in the nuclear and mitochondrial localization of APE1 were detected in XP-C fibroblasts. To confirm the impact of XPC deficiency in the regulation of APE1 and OGG1 expression and activity, we constructed a XPC-complemented cell line. Although the XPC complementation was only partial, we found that XPC-complemented cells presented increased levels of OGG1 than XPC-deficient cells. The extracts from XPC-complemented cells also presented an elevated OGG1 enzimatic activity. However, it was not observed changes in APE1 expression and activity in the XPCcomplemented cells. In addition, we found that full-length APE1 (37 kDa) and OGG1- α are in the mitochondria of XPC-deficient fibroblasts and XPC-complemented fibroblasts before and after induction of oxidative stress. On the other hand, the expression of APE1 and PARP-1 are not altered in brain and liver of XPC knockout mice. However, XPC deficiency changed the APE1 localization in hypoccampus and hypothalamus. We also observed a physical interaction between XPC and APE1 proteins in human cells. In conclusion, the data suggest that XPC protein has a role in the regulation of OGG1 expression and activity in human cells and is involved mainly in the regulation of APE1 localization in mice. Aditionally, the response of NER deficient cells under oxidative stress may not be only associated to the NER deficiency per se, but it may include the new functions of NER enzymes in regulation of expression and cell localization of BER proteins
id UFRN_7ff56cf88e8b13783f33a4dffa43cc91
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/12573
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Melo, Julliane Tamara Araújo dehttp://lattes.cnpq.br/3504274193684794http://lattes.cnpq.br/1083882171718362Menck, Carlos Frederico Martinshttp://lattes.cnpq.br/8043136069525312Rocha, Hugo Alexandre de Oliveirahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799567J8&dataRevisao=nullSouza-pinto, Nadja Cristhina dehttp://lattes.cnpq.br/7088639503480810Lima, Lucymara Fassarela Agnez2014-12-17T14:03:36Z2014-09-052014-12-17T14:03:36Z2014-02-26MELO, Julliane Tamara Araújo de. Papel da proteína de reparo XPC na regulação das proteínas de reparo APE1, OGG1 e PARP-1 em células humanas e de camundongos. 2014. 319 f. Tese (Doutorado em Bioquímica; Biologia Molecular) - Universidade Federal do Rio Grande do Norte, Natal, 2014.https://repositorio.ufrn.br/jspui/handle/123456789/12573studies using UV as a source of DNA damage. However, even though unrepaired UV-induced DNA damages are related to mutagenesis, cell death and tumorigenesis, they do not explain phenotypes such as neurodegeneration and internal tumors observed in patients with syndromes like Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS) that are associated with NER deficiency. Recent evidences point to a role of NER in the repair of 8-oxodG, a typical substrate of Base Excision Repair (BER). Since deficiencies in BER result in genomic instability, neurodegenerative diseases and cancer, it was investigated in this research the impact of XPC deficiency on BER functions in human cells. It was analyzed both the expression and the cellular localization of APE1, OGG1 e PARP-1, the mainly BER enzymes, in different NER-deficient human fibroblasts. The endogenous levels of these enzymes are reduced in XPC deficient cells. Surprisingly, XP-C fibroblasts were more resistant to oxidative agents than the other NER deficient fibroblasts, despite presenting the highest of 8-oxodG. Furthermore, subtle changes in the nuclear and mitochondrial localization of APE1 were detected in XP-C fibroblasts. To confirm the impact of XPC deficiency in the regulation of APE1 and OGG1 expression and activity, we constructed a XPC-complemented cell line. Although the XPC complementation was only partial, we found that XPC-complemented cells presented increased levels of OGG1 than XPC-deficient cells. The extracts from XPC-complemented cells also presented an elevated OGG1 enzimatic activity. However, it was not observed changes in APE1 expression and activity in the XPCcomplemented cells. In addition, we found that full-length APE1 (37 kDa) and OGG1- α are in the mitochondria of XPC-deficient fibroblasts and XPC-complemented fibroblasts before and after induction of oxidative stress. On the other hand, the expression of APE1 and PARP-1 are not altered in brain and liver of XPC knockout mice. However, XPC deficiency changed the APE1 localization in hypoccampus and hypothalamus. We also observed a physical interaction between XPC and APE1 proteins in human cells. In conclusion, the data suggest that XPC protein has a role in the regulation of OGG1 expression and activity in human cells and is involved mainly in the regulation of APE1 localization in mice. Aditionally, the response of NER deficient cells under oxidative stress may not be only associated to the NER deficiency per se, but it may include the new functions of NER enzymes in regulation of expression and cell localization of BER proteinsA maior parte do nosso conhecimento sobre a via de Reparo de Excisão Nucleotídeos (NER) vem de estudos usando a luz ultravioleta (UV) como fonte de danos no DNA. Contudo, embora os danos no DNA causados pela luz UV sejam relacionados à ocorrência de mutagênese, morte celular e tumorigênese, eles não justificam fenótipos como neurodegeneração e tumorigênese observados em pacientes com síndromes como Xeroderma Pigmentosum (XP) e Síndrome de Cockayne (CS), as quais são associadas à deficiência na via NER. Adicionalmente, evidências mais recentes indicam o envolvimento da via NER no reparo de 8-oxodG, um substrato típico da via de Reparo por Excisão de Bases (BER). Uma vez que a deficiência na via BER resulta em instabilidade genômica, doenças neurodegenerativas e câncer, foi investigado neste trabalho o impacto da deficiência em XPC nas funções da via BER em células humanas. Foram realizadas análises da expressão e da localização celular de APE1, OGG1 e PARP-1, principais enzimas da via BER, em fibroblastos humanos deficientes na via NER. Os resultados demonstraram que os níveis endógenos de APE1, PARP-1 e OGG1 são reduzidos nos fibroblastos deficientes em XPC, os quais foram mais resistentes a diferentes tipos de agentes oxidantes e apresentaram níveis elevados de 8-oxodG quando comparados aos demais fibroblastos deficientes na via NER. Adicionalmente, alterações sutis na localização nuclear e mitocondrial de APE1 foram observadas nos fibroblastos deficientes em XPC. Para confirmar o impacto da deficiência de XPC na regulação da expressão e atividade de APE1 e OGG1, foi construída uma linhagem complementada com XPC. Embora a complementação tenha sido parcial, foi possível observar que os fibroblastos parcialmente complementados com XPC apresentaram níveis maiores de expressão de OGG1 quando comparados aos fibroblastos deficientes em XPC. Os extratos dos fibroblastos parcialmente complementados com XPC também apresentaram uma elevada atividade enzimática de OGG1. Contudo, não foram observadas mudanças na expressão e atividade de APE1 nos fibroblastos parcialmente complementados com XPC. Adicionalmente, foi possível verificar a presença da forma completa de APE1 (37 kDa) e de OGG1-α na mitocôndria dos fibroblastos deficientes em XPC e parcialmente complementados com XPC. Por outro lado, observou-se que a expressão de APE1 e PARP-1 não é alterada no cérebro e fígado de camundongos knockouts para XPC. Contudo, a deficiência em XPC resultou em mudanças na localização celular de APE1 no hipocampo e hipotálamo. Ainda, foi observada a ocorrência de uma interação física entre as proteínas XPC e APE1 em células humanas. Em conclusão, os dados sugerem que a proteína XPC possui um papel na regulação da expressão e da atividade de OGG1 em células humanas e está envolvida na regulação da localização celular de APE1 principalmente em camundongos. Adicionalmente, as respostas celulares dos fibroblastos deficientes na via NER ao estresse oxidativo podem não estar associadas à deficiência na via NER per se, mas podem incluir novas funções das enzimas da via NER na regulação da expressão e localização celular das proteínas da via BERConselho Nacional de Desenvolvimento Científico e Tecnológico2020-01-01application/pdfporUniversidade Federal do Rio Grande do NortePrograma de Pós-Graduação em BioquímicaUFRNBRBioquímica; Biologia MolecularNeurodegeneração. XPC. APE1. OGG1. PARP-1. RegulaçãoNeurodegeneration. XPC. APE1. OGG1. PARP-1. RegulationCNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICAPapel da proteína de reparo XPC na regulação das proteínas de reparo APE1, OGG1 e PARP-1 em células humanas e de camundongosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALJullianeTAM_TESE.pdfJullianeTAM_TESE.pdfapplication/pdf24902465https://repositorio.ufrn.br/bitstream/123456789/12573/1/JullianeTAM_TESE.pdf32824b29732d00b9db53dd15de615eb4MD51JullianeTAM_TESE_PARCIAL.pdfJullianeTAM_TESE_PARCIAL.pdfapplication/pdf7138229https://repositorio.ufrn.br/bitstream/123456789/12573/2/JullianeTAM_TESE_PARCIAL.pdfa06700fccf67cc2db086f62bf86db506MD52TEXTJullianeTAM_TESE.pdf.txtJullianeTAM_TESE.pdf.txtExtracted texttext/plain299402https://repositorio.ufrn.br/bitstream/123456789/12573/11/JullianeTAM_TESE.pdf.txt7e73ea020801d54455ae6db4dd25dec0MD511JullianeTAM_TESE_PARCIAL.pdf.txtJullianeTAM_TESE_PARCIAL.pdf.txtExtracted texttext/plain188020https://repositorio.ufrn.br/bitstream/123456789/12573/13/JullianeTAM_TESE_PARCIAL.pdf.txte5a35c7222789958a59add963b3a001cMD513THUMBNAILJullianeTAM_TESE.pdf.jpgJullianeTAM_TESE.pdf.jpgIM Thumbnailimage/jpeg3804https://repositorio.ufrn.br/bitstream/123456789/12573/12/JullianeTAM_TESE.pdf.jpg9045eaafc707c83ced1412136b85575fMD512JullianeTAM_TESE_PARCIAL.pdf.jpgJullianeTAM_TESE_PARCIAL.pdf.jpgIM Thumbnailimage/jpeg3804https://repositorio.ufrn.br/bitstream/123456789/12573/14/JullianeTAM_TESE_PARCIAL.pdf.jpg9045eaafc707c83ced1412136b85575fMD514123456789/125732024-03-19 01:04:26.203oai:https://repositorio.ufrn.br:123456789/12573Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2024-03-19T04:04:26Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.por.fl_str_mv Papel da proteína de reparo XPC na regulação das proteínas de reparo APE1, OGG1 e PARP-1 em células humanas e de camundongos
title Papel da proteína de reparo XPC na regulação das proteínas de reparo APE1, OGG1 e PARP-1 em células humanas e de camundongos
spellingShingle Papel da proteína de reparo XPC na regulação das proteínas de reparo APE1, OGG1 e PARP-1 em células humanas e de camundongos
Melo, Julliane Tamara Araújo de
Neurodegeneração. XPC. APE1. OGG1. PARP-1. Regulação
Neurodegeneration. XPC. APE1. OGG1. PARP-1. Regulation
CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA
title_short Papel da proteína de reparo XPC na regulação das proteínas de reparo APE1, OGG1 e PARP-1 em células humanas e de camundongos
title_full Papel da proteína de reparo XPC na regulação das proteínas de reparo APE1, OGG1 e PARP-1 em células humanas e de camundongos
title_fullStr Papel da proteína de reparo XPC na regulação das proteínas de reparo APE1, OGG1 e PARP-1 em células humanas e de camundongos
title_full_unstemmed Papel da proteína de reparo XPC na regulação das proteínas de reparo APE1, OGG1 e PARP-1 em células humanas e de camundongos
title_sort Papel da proteína de reparo XPC na regulação das proteínas de reparo APE1, OGG1 e PARP-1 em células humanas e de camundongos
author Melo, Julliane Tamara Araújo de
author_facet Melo, Julliane Tamara Araújo de
author_role author
dc.contributor.authorID.por.fl_str_mv
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/3504274193684794
dc.contributor.advisorID.por.fl_str_mv
dc.contributor.advisorLattes.por.fl_str_mv http://lattes.cnpq.br/1083882171718362
dc.contributor.referees1.pt_BR.fl_str_mv Menck, Carlos Frederico Martins
dc.contributor.referees1ID.por.fl_str_mv
dc.contributor.referees1Lattes.por.fl_str_mv http://lattes.cnpq.br/8043136069525312
dc.contributor.referees2.pt_BR.fl_str_mv Rocha, Hugo Alexandre de Oliveira
dc.contributor.referees2ID.por.fl_str_mv
dc.contributor.referees2Lattes.por.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799567J8&dataRevisao=null
dc.contributor.referees3.pt_BR.fl_str_mv Souza-pinto, Nadja Cristhina de
dc.contributor.referees3ID.por.fl_str_mv
dc.contributor.referees3Lattes.por.fl_str_mv http://lattes.cnpq.br/7088639503480810
dc.contributor.author.fl_str_mv Melo, Julliane Tamara Araújo de
dc.contributor.advisor1.fl_str_mv Lima, Lucymara Fassarela Agnez
contributor_str_mv Lima, Lucymara Fassarela Agnez
dc.subject.por.fl_str_mv Neurodegeneração. XPC. APE1. OGG1. PARP-1. Regulação
topic Neurodegeneração. XPC. APE1. OGG1. PARP-1. Regulação
Neurodegeneration. XPC. APE1. OGG1. PARP-1. Regulation
CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA
dc.subject.eng.fl_str_mv Neurodegeneration. XPC. APE1. OGG1. PARP-1. Regulation
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA
description studies using UV as a source of DNA damage. However, even though unrepaired UV-induced DNA damages are related to mutagenesis, cell death and tumorigenesis, they do not explain phenotypes such as neurodegeneration and internal tumors observed in patients with syndromes like Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS) that are associated with NER deficiency. Recent evidences point to a role of NER in the repair of 8-oxodG, a typical substrate of Base Excision Repair (BER). Since deficiencies in BER result in genomic instability, neurodegenerative diseases and cancer, it was investigated in this research the impact of XPC deficiency on BER functions in human cells. It was analyzed both the expression and the cellular localization of APE1, OGG1 e PARP-1, the mainly BER enzymes, in different NER-deficient human fibroblasts. The endogenous levels of these enzymes are reduced in XPC deficient cells. Surprisingly, XP-C fibroblasts were more resistant to oxidative agents than the other NER deficient fibroblasts, despite presenting the highest of 8-oxodG. Furthermore, subtle changes in the nuclear and mitochondrial localization of APE1 were detected in XP-C fibroblasts. To confirm the impact of XPC deficiency in the regulation of APE1 and OGG1 expression and activity, we constructed a XPC-complemented cell line. Although the XPC complementation was only partial, we found that XPC-complemented cells presented increased levels of OGG1 than XPC-deficient cells. The extracts from XPC-complemented cells also presented an elevated OGG1 enzimatic activity. However, it was not observed changes in APE1 expression and activity in the XPCcomplemented cells. In addition, we found that full-length APE1 (37 kDa) and OGG1- α are in the mitochondria of XPC-deficient fibroblasts and XPC-complemented fibroblasts before and after induction of oxidative stress. On the other hand, the expression of APE1 and PARP-1 are not altered in brain and liver of XPC knockout mice. However, XPC deficiency changed the APE1 localization in hypoccampus and hypothalamus. We also observed a physical interaction between XPC and APE1 proteins in human cells. In conclusion, the data suggest that XPC protein has a role in the regulation of OGG1 expression and activity in human cells and is involved mainly in the regulation of APE1 localization in mice. Aditionally, the response of NER deficient cells under oxidative stress may not be only associated to the NER deficiency per se, but it may include the new functions of NER enzymes in regulation of expression and cell localization of BER proteins
publishDate 2014
dc.date.accessioned.fl_str_mv 2014-12-17T14:03:36Z
dc.date.available.fl_str_mv 2014-09-05
2014-12-17T14:03:36Z
dc.date.issued.fl_str_mv 2014-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MELO, Julliane Tamara Araújo de. Papel da proteína de reparo XPC na regulação das proteínas de reparo APE1, OGG1 e PARP-1 em células humanas e de camundongos. 2014. 319 f. Tese (Doutorado em Bioquímica; Biologia Molecular) - Universidade Federal do Rio Grande do Norte, Natal, 2014.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/12573
identifier_str_mv MELO, Julliane Tamara Araújo de. Papel da proteína de reparo XPC na regulação das proteínas de reparo APE1, OGG1 e PARP-1 em células humanas e de camundongos. 2014. 319 f. Tese (Doutorado em Bioquímica; Biologia Molecular) - Universidade Federal do Rio Grande do Norte, Natal, 2014.
url https://repositorio.ufrn.br/jspui/handle/123456789/12573
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Bioquímica
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Bioquímica; Biologia Molecular
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/12573/1/JullianeTAM_TESE.pdf
https://repositorio.ufrn.br/bitstream/123456789/12573/2/JullianeTAM_TESE_PARCIAL.pdf
https://repositorio.ufrn.br/bitstream/123456789/12573/11/JullianeTAM_TESE.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/12573/13/JullianeTAM_TESE_PARCIAL.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/12573/12/JullianeTAM_TESE.pdf.jpg
https://repositorio.ufrn.br/bitstream/123456789/12573/14/JullianeTAM_TESE_PARCIAL.pdf.jpg
bitstream.checksum.fl_str_mv 32824b29732d00b9db53dd15de615eb4
a06700fccf67cc2db086f62bf86db506
7e73ea020801d54455ae6db4dd25dec0
e5a35c7222789958a59add963b3a001c
9045eaafc707c83ced1412136b85575f
9045eaafc707c83ced1412136b85575f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1802117720121016320