Extração do óleo e caracterização dos resíduos da borra de petróleo para fins de reuso
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/15746 |
Resumo: | The petroleum industry, in consequence of an intense activity of exploration and production, is responsible by great part of the generation of residues, which are considered toxic and pollutants to the environment. Among these, the oil sludge is found produced during the production, transportation and refine phases. This work had the purpose to develop a process to recovery the oil present in oil sludge, in order to use the recovered oil as fuel or return it to the refining plant. From the preliminary tests, were identified the most important independent variables, like: temperature, contact time, solvents and acid volumes. Initially, a series of parameters to characterize the oil sludge was determined to characterize its. A special extractor was projected to work with oily waste. Two experimental designs were applied: fractional factorial and Doehlert. The tests were carried out in batch process to the conditions of the experimental designs applied. The efficiency obtained in the oil extraction process was 70%, in average. Oil sludge is composed of 36,2% of oil, 16,8% of ash, 40% of water and 7% of volatile constituents. However, the statistical analysis showed that the quadratic model was not well fitted to the process with a relative low determination coefficient (60,6%). This occurred due to the complexity of the oil sludge. To obtain a model able to represent the experiments, the mathematical model was used, the so called artificial neural networks (RNA), which was generated, initially, with 2, 4, 5, 6, 7 and 8 neurons in the hidden layer, 64 experimental results and 10000 presentations (interactions). Lesser dispersions were verified between the experimental and calculated values using 4 neurons, regarding the proportion of experimental points and estimated parameters. The analysis of the average deviations of the test divided by the respective training showed up that 2150 presentations resulted in the best value parameters. For the new model, the determination coefficient was 87,5%, which is quite satisfactory for the studied system |
id |
UFRN_805da3c7154c1c682571cce988fe9f98 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/15746 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Guimarães, Adriana Karla Virgolinohttp://lattes.cnpq.br/8363421913783538http://lattes.cnpq.br/2621516646153655Teixeira, Antônio Carlos Silva Costahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727586J6Melo, Josette Lourdes de Sousahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787094H6Pacheco Filho, José Geraldo de Andradehttp://lattes.cnpq.br/6315186407922891Chiavone Filho, Osvaldo2014-12-17T15:01:14Z2008-11-102014-12-17T15:01:14Z2008-07-27GUIMARÃES, Adriana Karla Virgolino. Extração do óleo e caracterização dos resíduos da borra de petróleo para fins de reuso. 2008. 157 f. Dissertação (Mestrado em Pesquisa e Desenvolvimento de Tecnologias Regionais) - Universidade Federal do Rio Grande do Norte, Natal, 2008.https://repositorio.ufrn.br/jspui/handle/123456789/15746The petroleum industry, in consequence of an intense activity of exploration and production, is responsible by great part of the generation of residues, which are considered toxic and pollutants to the environment. Among these, the oil sludge is found produced during the production, transportation and refine phases. This work had the purpose to develop a process to recovery the oil present in oil sludge, in order to use the recovered oil as fuel or return it to the refining plant. From the preliminary tests, were identified the most important independent variables, like: temperature, contact time, solvents and acid volumes. Initially, a series of parameters to characterize the oil sludge was determined to characterize its. A special extractor was projected to work with oily waste. Two experimental designs were applied: fractional factorial and Doehlert. The tests were carried out in batch process to the conditions of the experimental designs applied. The efficiency obtained in the oil extraction process was 70%, in average. Oil sludge is composed of 36,2% of oil, 16,8% of ash, 40% of water and 7% of volatile constituents. However, the statistical analysis showed that the quadratic model was not well fitted to the process with a relative low determination coefficient (60,6%). This occurred due to the complexity of the oil sludge. To obtain a model able to represent the experiments, the mathematical model was used, the so called artificial neural networks (RNA), which was generated, initially, with 2, 4, 5, 6, 7 and 8 neurons in the hidden layer, 64 experimental results and 10000 presentations (interactions). Lesser dispersions were verified between the experimental and calculated values using 4 neurons, regarding the proportion of experimental points and estimated parameters. The analysis of the average deviations of the test divided by the respective training showed up that 2150 presentations resulted in the best value parameters. For the new model, the determination coefficient was 87,5%, which is quite satisfactory for the studied systemA indústria de petróleo, em decorrência de uma intensa atividade de exploração e produção, é responsável por grande parte da geração de resíduos, os quais são considerados tóxicos e poluentes ao meio ambiente. Dentre estes, encontra-se a borra oleosa formada durante as etapas de produção, transporte e refino de petróleo. Este trabalho teve como propósito recuperar o óleo presente na borra oleosa por processo de extração, a fim de que este pudesse ser utilizado como combustível ou retornar em alguma corrente do processo de refino. A partir dos ensaios preliminares foram selecionadas as variáveis independentes que exercem maior influência no processo de extração, são elas: temperatura, volume de solvente, volume de ácido e tempo de extração. Inicialmente, determinou-se uma série de parâmetros para caracterizar a borra oleosa. Posteriormente, projetou-se um extrator para operar com a borra de petróleo. Foram aplicados dois planejamentos experimentais: fatorial fracionado e Doehlert. Os ensaios foram realizados em processo batelada, de acordo com as condições dos planejamentos experimentais aplicados. Através dos parâmetros de caracterização constatou-se que o resíduo oleoso é constituído predominantemente de material orgânico (36,2% de óleo), 16,8% de cinzas, 40% de água e 7% de compostos voláteis. A eficiência média do processo de extração foi de 70%. Entretanto, a análise estatística mostrou que o modelo quadrático não se ajustou bem ao processo, indicando um baixo coeficiente de determinação (60,6%). Isto ocorreu devido à complexidade do material estudado. Para obter um modelo que melhor se ajustasse aos resultados obtidos experimentalmente, utilizou-se a ferramenta da modelagem matemática, redes neurais artificiais (RNA), a qual foi gerada, inicialmente, com 2, 4, 5, 6, 7 e 8 neurônios na camada oculta, 64 dados experimentais e 10000 apresentações (interações), verificando-se menores dispersões entre os valores experimentais e calculados para o número de 4 neurônios. Com base na análise dos desvios médios do teste e treinamento evidenciou-se que o número de 2150 apresentações foi o melhor valor considerando a proporção de pontos experimentais e parâmetros estimados. Para o novo modelo, o coeficiente de determinação foi de 87,5%, mostrando-se bastante satisfatórioapplication/pdfporUniversidade Federal do Rio Grande do NortePrograma de Pós-Graduação em Engenharia QuímicaUFRNBRPesquisa e Desenvolvimento de Tecnologias RegionaisBorra oleosaResíduo industrialExtraçãoHexanoDoehlertRNAOil sludgeIndustrial wasteExtractionHexaneDoehlertRNACNPQ::ENGENHARIAS::ENGENHARIA QUIMICAExtração do óleo e caracterização dos resíduos da borra de petróleo para fins de reusoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALAdrianaKVG.pdfapplication/pdf2228086https://repositorio.ufrn.br/bitstream/123456789/15746/1/AdrianaKVG.pdf5a5ddc6253972ac4ee82c43ae0f08d6cMD51TEXTAdrianaKVG.pdf.txtAdrianaKVG.pdf.txtExtracted texttext/plain290286https://repositorio.ufrn.br/bitstream/123456789/15746/6/AdrianaKVG.pdf.txt80447a856e27ebaba2b768682094a57dMD56THUMBNAILAdrianaKVG.pdf.jpgAdrianaKVG.pdf.jpgIM Thumbnailimage/jpeg4317https://repositorio.ufrn.br/bitstream/123456789/15746/7/AdrianaKVG.pdf.jpgb6fa016f55e6d8c65bc1265ed281d7a8MD57123456789/157462017-11-02 02:54:20.861oai:https://repositorio.ufrn.br:123456789/15746Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2017-11-02T05:54:20Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.por.fl_str_mv |
Extração do óleo e caracterização dos resíduos da borra de petróleo para fins de reuso |
title |
Extração do óleo e caracterização dos resíduos da borra de petróleo para fins de reuso |
spellingShingle |
Extração do óleo e caracterização dos resíduos da borra de petróleo para fins de reuso Guimarães, Adriana Karla Virgolino Borra oleosa Resíduo industrial Extração Hexano Doehlert RNA Oil sludge Industrial waste Extraction Hexane Doehlert RNA CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
title_short |
Extração do óleo e caracterização dos resíduos da borra de petróleo para fins de reuso |
title_full |
Extração do óleo e caracterização dos resíduos da borra de petróleo para fins de reuso |
title_fullStr |
Extração do óleo e caracterização dos resíduos da borra de petróleo para fins de reuso |
title_full_unstemmed |
Extração do óleo e caracterização dos resíduos da borra de petróleo para fins de reuso |
title_sort |
Extração do óleo e caracterização dos resíduos da borra de petróleo para fins de reuso |
author |
Guimarães, Adriana Karla Virgolino |
author_facet |
Guimarães, Adriana Karla Virgolino |
author_role |
author |
dc.contributor.authorID.por.fl_str_mv |
|
dc.contributor.authorLattes.por.fl_str_mv |
http://lattes.cnpq.br/8363421913783538 |
dc.contributor.advisorID.por.fl_str_mv |
|
dc.contributor.advisorLattes.por.fl_str_mv |
http://lattes.cnpq.br/2621516646153655 |
dc.contributor.advisor-co1ID.por.fl_str_mv |
|
dc.contributor.referees1.pt_BR.fl_str_mv |
Melo, Josette Lourdes de Sousa |
dc.contributor.referees1ID.por.fl_str_mv |
|
dc.contributor.referees1Lattes.por.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787094H6 |
dc.contributor.referees2.pt_BR.fl_str_mv |
Pacheco Filho, José Geraldo de Andrade |
dc.contributor.referees2ID.por.fl_str_mv |
|
dc.contributor.referees2Lattes.por.fl_str_mv |
http://lattes.cnpq.br/6315186407922891 |
dc.contributor.author.fl_str_mv |
Guimarães, Adriana Karla Virgolino |
dc.contributor.advisor-co1.fl_str_mv |
Teixeira, Antônio Carlos Silva Costa |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727586J6 |
dc.contributor.advisor1.fl_str_mv |
Chiavone Filho, Osvaldo |
contributor_str_mv |
Teixeira, Antônio Carlos Silva Costa Chiavone Filho, Osvaldo |
dc.subject.por.fl_str_mv |
Borra oleosa Resíduo industrial Extração Hexano Doehlert RNA |
topic |
Borra oleosa Resíduo industrial Extração Hexano Doehlert RNA Oil sludge Industrial waste Extraction Hexane Doehlert RNA CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
dc.subject.eng.fl_str_mv |
Oil sludge Industrial waste Extraction Hexane Doehlert RNA |
dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
description |
The petroleum industry, in consequence of an intense activity of exploration and production, is responsible by great part of the generation of residues, which are considered toxic and pollutants to the environment. Among these, the oil sludge is found produced during the production, transportation and refine phases. This work had the purpose to develop a process to recovery the oil present in oil sludge, in order to use the recovered oil as fuel or return it to the refining plant. From the preliminary tests, were identified the most important independent variables, like: temperature, contact time, solvents and acid volumes. Initially, a series of parameters to characterize the oil sludge was determined to characterize its. A special extractor was projected to work with oily waste. Two experimental designs were applied: fractional factorial and Doehlert. The tests were carried out in batch process to the conditions of the experimental designs applied. The efficiency obtained in the oil extraction process was 70%, in average. Oil sludge is composed of 36,2% of oil, 16,8% of ash, 40% of water and 7% of volatile constituents. However, the statistical analysis showed that the quadratic model was not well fitted to the process with a relative low determination coefficient (60,6%). This occurred due to the complexity of the oil sludge. To obtain a model able to represent the experiments, the mathematical model was used, the so called artificial neural networks (RNA), which was generated, initially, with 2, 4, 5, 6, 7 and 8 neurons in the hidden layer, 64 experimental results and 10000 presentations (interactions). Lesser dispersions were verified between the experimental and calculated values using 4 neurons, regarding the proportion of experimental points and estimated parameters. The analysis of the average deviations of the test divided by the respective training showed up that 2150 presentations resulted in the best value parameters. For the new model, the determination coefficient was 87,5%, which is quite satisfactory for the studied system |
publishDate |
2008 |
dc.date.available.fl_str_mv |
2008-11-10 2014-12-17T15:01:14Z |
dc.date.issued.fl_str_mv |
2008-07-27 |
dc.date.accessioned.fl_str_mv |
2014-12-17T15:01:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GUIMARÃES, Adriana Karla Virgolino. Extração do óleo e caracterização dos resíduos da borra de petróleo para fins de reuso. 2008. 157 f. Dissertação (Mestrado em Pesquisa e Desenvolvimento de Tecnologias Regionais) - Universidade Federal do Rio Grande do Norte, Natal, 2008. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/15746 |
identifier_str_mv |
GUIMARÃES, Adriana Karla Virgolino. Extração do óleo e caracterização dos resíduos da borra de petróleo para fins de reuso. 2008. 157 f. Dissertação (Mestrado em Pesquisa e Desenvolvimento de Tecnologias Regionais) - Universidade Federal do Rio Grande do Norte, Natal, 2008. |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/15746 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Química |
dc.publisher.initials.fl_str_mv |
UFRN |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Pesquisa e Desenvolvimento de Tecnologias Regionais |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/15746/1/AdrianaKVG.pdf https://repositorio.ufrn.br/bitstream/123456789/15746/6/AdrianaKVG.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/15746/7/AdrianaKVG.pdf.jpg |
bitstream.checksum.fl_str_mv |
5a5ddc6253972ac4ee82c43ae0f08d6c 80447a856e27ebaba2b768682094a57d b6fa016f55e6d8c65bc1265ed281d7a8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814833072873406464 |