Clustering dark energy and halo abundances

Detalhes bibliográficos
Autor(a) principal: Batista, Ronaldo Carlotto
Data de Publicação: 2017
Outros Autores: Marra, Valério
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/30828
Resumo: Within the standard paradigm, dark energy is taken as a homogeneous fluid that drives the accelerated expansion of the universe and does not contribute to the mass of collapsed objects such as galaxies and galaxy clusters. The abundance of galaxy clusters—measured through a variety of channels—has been extensively used to constrain the normalization of the power spectrum: it is an important probe as it allows us to test if the standard ΛCDM model can indeed accurately describe the evolution of structures across billions of years. It is then quite significant that the Planck satellite has detected, via the Sunyaev-Zel'dovich effect, less clusters than expected according to the primary CMB anisotropies. One of the simplest generalizations that could reconcile these observations is to consider models in which dark energy is allowed to cluster, i.e., allowing its sound speed to vary. In this case, however, the standard methods to compute the abundance of galaxy clusters need to be adapted to account for the contributions of dark energy. In particular, we examine the case of clustering dark energy—a dark energy fluid with negligible sound speed—with a redshift-dependent equation of state. We carefully study how the halo mass function is modified in this scenario, highlighting corrections that have not been considered before in the literature. We address modifications in the growth function, collapse threshold, virialization densities and also changes in the comoving scale of collapse and mass function normalization. Our results show that clustering dark energy can impact halo abundances at the level of 10%–30%, depending on the halo mass, and that cluster counts are modified by about 30% at a redshift of unity
id UFRN_83e2a25418dace60b47b77360f1967d3
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/30828
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Batista, Ronaldo CarlottoMarra, Valério2020-12-04T20:00:48Z2020-12-04T20:00:48Z2017-11-27BATISTA, Ronaldo C.; MARRA, Valerio. Clustering dark energy and halo abundances. Journal of Cosmology and Astroparticle Physics, [S.L.], v. 2017, n. 11, p. 048-048, 27 nov. 2017. Disponível em: https://iopscience.iop.org/article/10.1088/1475-7516/2017/11/048. Acesso em: 02 out. 2020. http://dx.doi.org/10.1088/1475-7516/2017/11/048.1475-7516https://repositorio.ufrn.br/handle/123456789/3082810.1088/1475-7516/2017/11/048IOP PublishingCluster countsDark energy theoryGalaxy clustersClustering dark energy and halo abundancesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleWithin the standard paradigm, dark energy is taken as a homogeneous fluid that drives the accelerated expansion of the universe and does not contribute to the mass of collapsed objects such as galaxies and galaxy clusters. The abundance of galaxy clusters—measured through a variety of channels—has been extensively used to constrain the normalization of the power spectrum: it is an important probe as it allows us to test if the standard ΛCDM model can indeed accurately describe the evolution of structures across billions of years. It is then quite significant that the Planck satellite has detected, via the Sunyaev-Zel'dovich effect, less clusters than expected according to the primary CMB anisotropies. One of the simplest generalizations that could reconcile these observations is to consider models in which dark energy is allowed to cluster, i.e., allowing its sound speed to vary. In this case, however, the standard methods to compute the abundance of galaxy clusters need to be adapted to account for the contributions of dark energy. In particular, we examine the case of clustering dark energy—a dark energy fluid with negligible sound speed—with a redshift-dependent equation of state. We carefully study how the halo mass function is modified in this scenario, highlighting corrections that have not been considered before in the literature. We address modifications in the growth function, collapse threshold, virialization densities and also changes in the comoving scale of collapse and mass function normalization. Our results show that clustering dark energy can impact halo abundances at the level of 10%–30%, depending on the halo mass, and that cluster counts are modified by about 30% at a redshift of unityengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/30828/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30828/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTClusteringDarkEnergy_BATISTA_2017.pdf.txtClusteringDarkEnergy_BATISTA_2017.pdf.txtExtracted texttext/plain48035https://repositorio.ufrn.br/bitstream/123456789/30828/4/ClusteringDarkEnergy_BATISTA_2017.pdf.txt18c3b1e84b5698ce80c3401321a7d621MD54THUMBNAILClusteringDarkEnergy_BATISTA_2017.pdf.jpgClusteringDarkEnergy_BATISTA_2017.pdf.jpgGenerated Thumbnailimage/jpeg1137https://repositorio.ufrn.br/bitstream/123456789/30828/5/ClusteringDarkEnergy_BATISTA_2017.pdf.jpgeda60937f745e3bcb5a31309d84281bcMD55123456789/308282022-10-19 18:17:50.13oai:https://repositorio.ufrn.br:123456789/30828Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-10-19T21:17:50Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Clustering dark energy and halo abundances
title Clustering dark energy and halo abundances
spellingShingle Clustering dark energy and halo abundances
Batista, Ronaldo Carlotto
Cluster counts
Dark energy theory
Galaxy clusters
title_short Clustering dark energy and halo abundances
title_full Clustering dark energy and halo abundances
title_fullStr Clustering dark energy and halo abundances
title_full_unstemmed Clustering dark energy and halo abundances
title_sort Clustering dark energy and halo abundances
author Batista, Ronaldo Carlotto
author_facet Batista, Ronaldo Carlotto
Marra, Valério
author_role author
author2 Marra, Valério
author2_role author
dc.contributor.author.fl_str_mv Batista, Ronaldo Carlotto
Marra, Valério
dc.subject.por.fl_str_mv Cluster counts
Dark energy theory
Galaxy clusters
topic Cluster counts
Dark energy theory
Galaxy clusters
description Within the standard paradigm, dark energy is taken as a homogeneous fluid that drives the accelerated expansion of the universe and does not contribute to the mass of collapsed objects such as galaxies and galaxy clusters. The abundance of galaxy clusters—measured through a variety of channels—has been extensively used to constrain the normalization of the power spectrum: it is an important probe as it allows us to test if the standard ΛCDM model can indeed accurately describe the evolution of structures across billions of years. It is then quite significant that the Planck satellite has detected, via the Sunyaev-Zel'dovich effect, less clusters than expected according to the primary CMB anisotropies. One of the simplest generalizations that could reconcile these observations is to consider models in which dark energy is allowed to cluster, i.e., allowing its sound speed to vary. In this case, however, the standard methods to compute the abundance of galaxy clusters need to be adapted to account for the contributions of dark energy. In particular, we examine the case of clustering dark energy—a dark energy fluid with negligible sound speed—with a redshift-dependent equation of state. We carefully study how the halo mass function is modified in this scenario, highlighting corrections that have not been considered before in the literature. We address modifications in the growth function, collapse threshold, virialization densities and also changes in the comoving scale of collapse and mass function normalization. Our results show that clustering dark energy can impact halo abundances at the level of 10%–30%, depending on the halo mass, and that cluster counts are modified by about 30% at a redshift of unity
publishDate 2017
dc.date.issued.fl_str_mv 2017-11-27
dc.date.accessioned.fl_str_mv 2020-12-04T20:00:48Z
dc.date.available.fl_str_mv 2020-12-04T20:00:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv BATISTA, Ronaldo C.; MARRA, Valerio. Clustering dark energy and halo abundances. Journal of Cosmology and Astroparticle Physics, [S.L.], v. 2017, n. 11, p. 048-048, 27 nov. 2017. Disponível em: https://iopscience.iop.org/article/10.1088/1475-7516/2017/11/048. Acesso em: 02 out. 2020. http://dx.doi.org/10.1088/1475-7516/2017/11/048.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/30828
dc.identifier.issn.none.fl_str_mv 1475-7516
dc.identifier.doi.none.fl_str_mv 10.1088/1475-7516/2017/11/048
identifier_str_mv BATISTA, Ronaldo C.; MARRA, Valerio. Clustering dark energy and halo abundances. Journal of Cosmology and Astroparticle Physics, [S.L.], v. 2017, n. 11, p. 048-048, 27 nov. 2017. Disponível em: https://iopscience.iop.org/article/10.1088/1475-7516/2017/11/048. Acesso em: 02 out. 2020. http://dx.doi.org/10.1088/1475-7516/2017/11/048.
1475-7516
10.1088/1475-7516/2017/11/048
url https://repositorio.ufrn.br/handle/123456789/30828
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/30828/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/30828/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/30828/4/ClusteringDarkEnergy_BATISTA_2017.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/30828/5/ClusteringDarkEnergy_BATISTA_2017.pdf.jpg
bitstream.checksum.fl_str_mv 4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
18c3b1e84b5698ce80c3401321a7d621
eda60937f745e3bcb5a31309d84281bc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1802117548037111808