Analysis of pulsatile flow in arteriovenous fistula through numerical simulation

Detalhes bibliográficos
Autor(a) principal: Santos, Willyam Brito de Almeida
Data de Publicação: 2018
Outros Autores: Rangel, Jonhattan Ferreira, Fernandes, Valquíria Bomfim, Lima, Luiz Henrique Pinheiro, Costa, Thércio Henrique de Carvalho, Bessa, Kleiber Lima de
Tipo de documento: Trabalho de conclusão de curso
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/43066
Resumo: This work aim to analyze the hemodynamic factors in the flow within an Arteriovenous Fistula (AVF) using a flow field calculated by numerical simulation as a visualization technique. The geometrical model is virtually reconstructed from a computed tomography scan. The considerations made are of Newtonian fluid, laminar and incompressible flow and pulsatile flow. Primary and secondary flows are observed in the velocity field along the AVF. In the artery, the velocity profile is typical of a laminar flow. In the anastomosis and distal regions, axial and radial recirculations are observed. The maximum velocity calculated along the AVF is 1.38 m/s. The maximum wall shear stress is of 49 Pa and shows no uniformity, varying according to velocity. The presence of recirculations allows blood formed elements to collide excessively against the endothelial wall. At regions with wall shear stress above 35 Pa, the endothelial cells can suffer damage and myointimal hyperplasia may form.
id UFRN_83f6dd863d86210862399cfeaa5a7dd8
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/43066
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Santos, Willyam Brito de AlmeidaRangel, Jonhattan FerreiraFernandes, Valquíria BomfimLima, Luiz Henrique PinheiroCosta, Thércio Henrique de CarvalhoBessa, Kleiber Lima deBessa, Kleiber Lima deTapia, Gabriel Ivan MedinaCosta, Thercio Henrique de CarvalhoBessa, Kleiber Lima de2018-07-10T13:30:09Z2021-10-05T16:02:25Z2018-07-10T13:30:09Z2021-10-05T16:02:25Z2018-06-282016008498BASSIOUNY, H.S. et al. Anastomotic intimal hyperplasia: mechanical injury or flow induced. Journal of Vascular Surgery, Chicago, v. 15, p. 708-716, 1992. BESSA, K.L. Análise comparativa de fluxo em fístula arteriovenosa. 2004. 169 f. Dissertação (Mestrado em Engenharia Mecânica) – Escola Politécnica da Universidade de São Paulo, São Paulo, 2004. BESSA, K.L.; ORTIZ, J.P. Flow visualization in arteriovenous fistula and aneurysm using computational fluid dynamics. Journal of Visualization, Tokyo, v. 12, p. 95-107, 2009. CARROL, G.T. et al. Realistic temporal variations of shear stress modulate MMP-2 and MCP-1 expression in arteriovenous vascular access. Cellular and Molecular Bioengineering, New York, v. 2, p. 591-605, 2011. CARROL, G.T. et al. Wall shear stresses remain elevated in mature arteriovenous fistulas: a case study. Journal of Biomechanical Engineering, New York, v. 133, 2011. FRY, D.L. Acute vascular endotelial changes associated with increased blood velocity gradientes. Circulation Research, Baltimore, v. 22, p. 165-197, 1968. GIDDENS, D. P.; ZARINS, C. K.; GLAGOV, S. The role of fluid mechanics in the localization and detection of atherosclerosis. Journal of Biomechanical Engineering, New York, v. 115, p. 588-594, 1993. GILL, S. et al. Multi-disciplinary vascular access care and access outcomes in people starting hemodialysis therapy. Clinical Journal of the American Society of Nephrology: CJASN, Washington, v. 12, p. 1-9, 2017. Acesso em: 02 out. 2017. doi: 10.2215/CJN.03430317. LINARDI, F. et al. Acesso vascular para hemodiálise: Avaliação do tipo e local anatômico em 23 unidades de diálise distribuídas em sete estados brasilieiros. Revista do Colégio Brasileiro de Cirurgiões, Rio de Janeiro, v. 30, p. 183-193, 2003. LOK, C.E. Fistula First Initiative: Advantages and Pitfalls. Clinical Journal of the American Society of Nephrology, Washington, v. xxx, p. 1043-1053, 2017. Disponível em: <cjasn.asnjournals.org/content/2/5/1043.logn>. Acesso em: 02 out. 2017. doi: 10.2215/CJN.01080307. PERRAULT, L.P. et al. Effects of the occlusion devices for minimally invasive coronary artery bypass surgery on coronary endothelial function of atherosclerosis arteries., The Heart Surgery Forum, Virginia, v. 3, p. 287-292, 2000. RUBANYI, G.M. The role of endothelium in cardiovascular homeostasis. Journal of cardiovascular pharmacology, New York, v. 22, p. S1-S14, 1993. SIGOVAN, M. et al. Vascular remodeling in autogenous arterio-venous fistulas by MRI and CFD. Annals of Biomedical Engineering, New York, v. 41, p. 657-668, 2013. SIVANESAN, S.; HOW, T.V.; BAKRAN, A. Sites of stenosis in AV fistulae for haemodialysis access. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Assocciation – European Renal Association, Oxford, v. 14, p. 118-120, 1999.https://repositorio.ufrn.br/handle/123456789/43066This work aim to analyze the hemodynamic factors in the flow within an Arteriovenous Fistula (AVF) using a flow field calculated by numerical simulation as a visualization technique. The geometrical model is virtually reconstructed from a computed tomography scan. The considerations made are of Newtonian fluid, laminar and incompressible flow and pulsatile flow. Primary and secondary flows are observed in the velocity field along the AVF. In the artery, the velocity profile is typical of a laminar flow. In the anastomosis and distal regions, axial and radial recirculations are observed. The maximum velocity calculated along the AVF is 1.38 m/s. The maximum wall shear stress is of 49 Pa and shows no uniformity, varying according to velocity. The presence of recirculations allows blood formed elements to collide excessively against the endothelial wall. At regions with wall shear stress above 35 Pa, the endothelial cells can suffer damage and myointimal hyperplasia may form.This work aim to analyze the hemodynamic factors in the flow within an Arteriovenous Fistula (AVF) using a flow field calculated by numerical simulation as a visualization technique. The geometrical model is virtually reconstructed from a computed tomography scan. The considerations made are of Newtonian fluid, laminar and incompressible flow and pulsatile flow. Primary and secondary flows are observed in the velocity field along the AVF. In the artery, the velocity profile is typical of a laminar flow. In the anastomosis and distal regions, axial and radial recirculations are observed. The maximum velocity calculated along the AVF is 1.38 m/s. The maximum wall shear stress is of 49 Pa and shows no uniformity, varying according to velocity. The presence of recirculations allows blood formed elements to collide excessively against the endothelial wall. At regions with wall shear stress above 35 Pa, the endothelial cells can suffer damage and myointimal hyperplasia may form.Universidade Federal do Rio Grande do NorteUFRNBrasilEngenharia MecânicaArteriovenous fistulaShear stressNumerical simulationIntimal hyperplasiaAnalysis of pulsatile flow in arteriovenous fistula through numerical simulationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTTCC_Artigo.pdf.txtExtracted texttext/plain21183https://repositorio.ufrn.br/bitstream/123456789/43066/1/TCC_Artigo.pdf.txt46bd367c5d27ae69114529339000eb09MD51ORIGINALTCC_Artigo.pdfArtigoapplication/pdf1633008https://repositorio.ufrn.br/bitstream/123456789/43066/2/TCC_Artigo.pdfcc83a4c96340af6c01bab4b75fdbb606MD52LICENSElicense.txttext/plain756https://repositorio.ufrn.br/bitstream/123456789/43066/3/license.txta80a9cda2756d355b388cc443c3d8a43MD53123456789/430662021-10-05 13:02:25.645oai:https://repositorio.ufrn.br:123456789/43066PGNlbnRlcj48c3Ryb25nPlVOSVZFUlNJREFERSBGRURFUkFMIERPIFJJTyBHUkFOREUgRE8gTk9SVEU8L3N0cm9uZz48L2NlbnRlcj4KPGNlbnRlcj48c3Ryb25nPkJJQkxJT1RFQ0EgRElHSVRBTCBERSBNT05PR1JBRklBUzwvc3Ryb25nPjwvY2VudGVyPgoKPGNlbnRlcj5UZXJtbyBkZSBBdXRvcml6YcOnw6NvIHBhcmEgZGlzcG9uaWJpbGl6YcOnw6NvIGRlIE1vbm9ncmFmaWFzIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbyBuYSBCaWJsaW90ZWNhIERpZ2l0YWwgZGUgTW9ub2dyYWZpYXMgKEJETSk8L2NlbnRlcj4KCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBkYSBtb25vZ3JhZmlhLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIFJpbyBHcmFuZGUgZG8gTm9ydGUgKFVGUk4pIGEgZGlzcG9uaWJpbGl6YXIgYXRyYXbDqXMgZGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIE1vbm9ncmFmaWFzIGRhIFVGUk4sIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgZGUgYWNvcmRvIGNvbSBhIExlaSBuwrAgOTYxMC85OCwgbyB0ZXh0byBpbnRlZ3JhbCBkYSBvYnJhIHN1Ym1ldGlkYSBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCBhIHTDrXR1bG8gZGUgZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrWZpY2EgYnJhc2lsZWlyYSwgYSBwYXJ0aXIgZGEgZGF0YSBkZXN0YSBzdWJtaXNzw6NvLiAKRepositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-10-05T16:02:25Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pr_BR.fl_str_mv Analysis of pulsatile flow in arteriovenous fistula through numerical simulation
title Analysis of pulsatile flow in arteriovenous fistula through numerical simulation
spellingShingle Analysis of pulsatile flow in arteriovenous fistula through numerical simulation
Santos, Willyam Brito de Almeida
Arteriovenous fistula
Shear stress
Numerical simulation
Intimal hyperplasia
title_short Analysis of pulsatile flow in arteriovenous fistula through numerical simulation
title_full Analysis of pulsatile flow in arteriovenous fistula through numerical simulation
title_fullStr Analysis of pulsatile flow in arteriovenous fistula through numerical simulation
title_full_unstemmed Analysis of pulsatile flow in arteriovenous fistula through numerical simulation
title_sort Analysis of pulsatile flow in arteriovenous fistula through numerical simulation
author Santos, Willyam Brito de Almeida
author_facet Santos, Willyam Brito de Almeida
Rangel, Jonhattan Ferreira
Fernandes, Valquíria Bomfim
Lima, Luiz Henrique Pinheiro
Costa, Thércio Henrique de Carvalho
Bessa, Kleiber Lima de
author_role author
author2 Rangel, Jonhattan Ferreira
Fernandes, Valquíria Bomfim
Lima, Luiz Henrique Pinheiro
Costa, Thércio Henrique de Carvalho
Bessa, Kleiber Lima de
author2_role author
author
author
author
author
dc.contributor.referees1.none.fl_str_mv Bessa, Kleiber Lima de
dc.contributor.referees2.none.fl_str_mv Tapia, Gabriel Ivan Medina
dc.contributor.referees3.none.fl_str_mv Costa, Thercio Henrique de Carvalho
dc.contributor.author.fl_str_mv Santos, Willyam Brito de Almeida
Rangel, Jonhattan Ferreira
Fernandes, Valquíria Bomfim
Lima, Luiz Henrique Pinheiro
Costa, Thércio Henrique de Carvalho
Bessa, Kleiber Lima de
dc.contributor.advisor1.fl_str_mv Bessa, Kleiber Lima de
contributor_str_mv Bessa, Kleiber Lima de
dc.subject.pr_BR.fl_str_mv Arteriovenous fistula
Shear stress
Numerical simulation
Intimal hyperplasia
topic Arteriovenous fistula
Shear stress
Numerical simulation
Intimal hyperplasia
description This work aim to analyze the hemodynamic factors in the flow within an Arteriovenous Fistula (AVF) using a flow field calculated by numerical simulation as a visualization technique. The geometrical model is virtually reconstructed from a computed tomography scan. The considerations made are of Newtonian fluid, laminar and incompressible flow and pulsatile flow. Primary and secondary flows are observed in the velocity field along the AVF. In the artery, the velocity profile is typical of a laminar flow. In the anastomosis and distal regions, axial and radial recirculations are observed. The maximum velocity calculated along the AVF is 1.38 m/s. The maximum wall shear stress is of 49 Pa and shows no uniformity, varying according to velocity. The presence of recirculations allows blood formed elements to collide excessively against the endothelial wall. At regions with wall shear stress above 35 Pa, the endothelial cells can suffer damage and myointimal hyperplasia may form.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-07-10T13:30:09Z
2021-10-05T16:02:25Z
dc.date.available.fl_str_mv 2018-07-10T13:30:09Z
2021-10-05T16:02:25Z
dc.date.issued.fl_str_mv 2018-06-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.pr_BR.fl_str_mv 2016008498
dc.identifier.citation.fl_str_mv BASSIOUNY, H.S. et al. Anastomotic intimal hyperplasia: mechanical injury or flow induced. Journal of Vascular Surgery, Chicago, v. 15, p. 708-716, 1992. BESSA, K.L. Análise comparativa de fluxo em fístula arteriovenosa. 2004. 169 f. Dissertação (Mestrado em Engenharia Mecânica) – Escola Politécnica da Universidade de São Paulo, São Paulo, 2004. BESSA, K.L.; ORTIZ, J.P. Flow visualization in arteriovenous fistula and aneurysm using computational fluid dynamics. Journal of Visualization, Tokyo, v. 12, p. 95-107, 2009. CARROL, G.T. et al. Realistic temporal variations of shear stress modulate MMP-2 and MCP-1 expression in arteriovenous vascular access. Cellular and Molecular Bioengineering, New York, v. 2, p. 591-605, 2011. CARROL, G.T. et al. Wall shear stresses remain elevated in mature arteriovenous fistulas: a case study. Journal of Biomechanical Engineering, New York, v. 133, 2011. FRY, D.L. Acute vascular endotelial changes associated with increased blood velocity gradientes. Circulation Research, Baltimore, v. 22, p. 165-197, 1968. GIDDENS, D. P.; ZARINS, C. K.; GLAGOV, S. The role of fluid mechanics in the localization and detection of atherosclerosis. Journal of Biomechanical Engineering, New York, v. 115, p. 588-594, 1993. GILL, S. et al. Multi-disciplinary vascular access care and access outcomes in people starting hemodialysis therapy. Clinical Journal of the American Society of Nephrology: CJASN, Washington, v. 12, p. 1-9, 2017. Acesso em: 02 out. 2017. doi: 10.2215/CJN.03430317. LINARDI, F. et al. Acesso vascular para hemodiálise: Avaliação do tipo e local anatômico em 23 unidades de diálise distribuídas em sete estados brasilieiros. Revista do Colégio Brasileiro de Cirurgiões, Rio de Janeiro, v. 30, p. 183-193, 2003. LOK, C.E. Fistula First Initiative: Advantages and Pitfalls. Clinical Journal of the American Society of Nephrology, Washington, v. xxx, p. 1043-1053, 2017. Disponível em: <cjasn.asnjournals.org/content/2/5/1043.logn>. Acesso em: 02 out. 2017. doi: 10.2215/CJN.01080307. PERRAULT, L.P. et al. Effects of the occlusion devices for minimally invasive coronary artery bypass surgery on coronary endothelial function of atherosclerosis arteries., The Heart Surgery Forum, Virginia, v. 3, p. 287-292, 2000. RUBANYI, G.M. The role of endothelium in cardiovascular homeostasis. Journal of cardiovascular pharmacology, New York, v. 22, p. S1-S14, 1993. SIGOVAN, M. et al. Vascular remodeling in autogenous arterio-venous fistulas by MRI and CFD. Annals of Biomedical Engineering, New York, v. 41, p. 657-668, 2013. SIVANESAN, S.; HOW, T.V.; BAKRAN, A. Sites of stenosis in AV fistulae for haemodialysis access. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Assocciation – European Renal Association, Oxford, v. 14, p. 118-120, 1999.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/43066
identifier_str_mv 2016008498
BASSIOUNY, H.S. et al. Anastomotic intimal hyperplasia: mechanical injury or flow induced. Journal of Vascular Surgery, Chicago, v. 15, p. 708-716, 1992. BESSA, K.L. Análise comparativa de fluxo em fístula arteriovenosa. 2004. 169 f. Dissertação (Mestrado em Engenharia Mecânica) – Escola Politécnica da Universidade de São Paulo, São Paulo, 2004. BESSA, K.L.; ORTIZ, J.P. Flow visualization in arteriovenous fistula and aneurysm using computational fluid dynamics. Journal of Visualization, Tokyo, v. 12, p. 95-107, 2009. CARROL, G.T. et al. Realistic temporal variations of shear stress modulate MMP-2 and MCP-1 expression in arteriovenous vascular access. Cellular and Molecular Bioengineering, New York, v. 2, p. 591-605, 2011. CARROL, G.T. et al. Wall shear stresses remain elevated in mature arteriovenous fistulas: a case study. Journal of Biomechanical Engineering, New York, v. 133, 2011. FRY, D.L. Acute vascular endotelial changes associated with increased blood velocity gradientes. Circulation Research, Baltimore, v. 22, p. 165-197, 1968. GIDDENS, D. P.; ZARINS, C. K.; GLAGOV, S. The role of fluid mechanics in the localization and detection of atherosclerosis. Journal of Biomechanical Engineering, New York, v. 115, p. 588-594, 1993. GILL, S. et al. Multi-disciplinary vascular access care and access outcomes in people starting hemodialysis therapy. Clinical Journal of the American Society of Nephrology: CJASN, Washington, v. 12, p. 1-9, 2017. Acesso em: 02 out. 2017. doi: 10.2215/CJN.03430317. LINARDI, F. et al. Acesso vascular para hemodiálise: Avaliação do tipo e local anatômico em 23 unidades de diálise distribuídas em sete estados brasilieiros. Revista do Colégio Brasileiro de Cirurgiões, Rio de Janeiro, v. 30, p. 183-193, 2003. LOK, C.E. Fistula First Initiative: Advantages and Pitfalls. Clinical Journal of the American Society of Nephrology, Washington, v. xxx, p. 1043-1053, 2017. Disponível em: <cjasn.asnjournals.org/content/2/5/1043.logn>. Acesso em: 02 out. 2017. doi: 10.2215/CJN.01080307. PERRAULT, L.P. et al. Effects of the occlusion devices for minimally invasive coronary artery bypass surgery on coronary endothelial function of atherosclerosis arteries., The Heart Surgery Forum, Virginia, v. 3, p. 287-292, 2000. RUBANYI, G.M. The role of endothelium in cardiovascular homeostasis. Journal of cardiovascular pharmacology, New York, v. 22, p. S1-S14, 1993. SIGOVAN, M. et al. Vascular remodeling in autogenous arterio-venous fistulas by MRI and CFD. Annals of Biomedical Engineering, New York, v. 41, p. 657-668, 2013. SIVANESAN, S.; HOW, T.V.; BAKRAN, A. Sites of stenosis in AV fistulae for haemodialysis access. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Assocciation – European Renal Association, Oxford, v. 14, p. 118-120, 1999.
url https://repositorio.ufrn.br/handle/123456789/43066
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Engenharia Mecânica
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/43066/1/TCC_Artigo.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/43066/2/TCC_Artigo.pdf
https://repositorio.ufrn.br/bitstream/123456789/43066/3/license.txt
bitstream.checksum.fl_str_mv 46bd367c5d27ae69114529339000eb09
cc83a4c96340af6c01bab4b75fdbb606
a80a9cda2756d355b388cc443c3d8a43
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1802117782800695296