Prospecting technologies for photovoltaic solar energy: overview of its technical‐commercial viability

Detalhes bibliográficos
Autor(a) principal: Sampaio, Priscila Gonçalves Vasconcelos
Data de Publicação: 2019
Outros Autores: González, Mário Orestes Aguirre, Vasconcelos, Rafael Monteiro, Santos, Marllen Aylla Teixeira, Vdal, Priscila da Cunha Jácome, Pereira, Jonathan Paulo Pinheiro, Santi, Éverton
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/30631
Resumo: There are many technologies that may emerge and eventually disappear over the years. This fact makes the monitoring of technological trends as well as the anticipation of the direction of technological change paramount. This article aims to carry out the prospection of technologies, focusing on its technical‐commercial viability, for solar photovoltaic energy. The research method had a qualititative‐quantitative approach with application of the Delphi technique. In the conduction of the Delphi technique, seven steps were followed, ranging from the selection of the specialists to the considerations of their opinions regarding the future of nine photovoltaic technologies. The results of the research indicate that in 2020, the cells monocrystalline, multicrystalline, and amorphous silicon; cadmium telluride; indium/copper selenide, indium, and gallium diselenide; and multicompound III‐V cells will have technical and commercial viability and that dye‐sensitized silicon nanowire and carbon nanostructure‐based cells will not be viable. For the year 2025, monocrystalline and multicrystalline silicon cells and those of multicompounds III‐V will still be technically and commercially viable. Silicon nanowire; amorphous silicon; cadmium telluride; indium/copper, selenium, and gallium diselenide dye‐sensitized cells; and organic photovoltaic cells, including those based on carbon nanostructure, may be viable. This study is important, because the technological prospecting of the photovoltaic cells determines the possible trajectories of these cells, in a way that helps the companies of the sector to anticipate the strategic scenarios, thus facilitating the decision making process
id UFRN_8d108a4000ceee5f27df269794132bfe
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/30631
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Sampaio, Priscila Gonçalves VasconcelosGonzález, Mário Orestes AguirreVasconcelos, Rafael MonteiroSantos, Marllen Aylla TeixeiraVdal, Priscila da Cunha JácomePereira, Jonathan Paulo PinheiroSanti, Éverton2020-11-23T14:38:35Z2020-11-23T14:38:35Z2019-11-11SAMPAIO, Priscila Gonçalves Vasconcelos; GONZÁLEZ, Mário Orestes Aguirre; VASCONCELOS, Rafael Monteiro de; SANTOS, Marllen Aylla Teixeira dos; VIDAL, Priscila da Cunha Jácome; PEREIRA, Jonathan Paulo Pinheiro; SANTI, Everton. Prospecting technologies for photovoltaic solar energy: overview of its technical⠰commercial viability. International Journal Of Energy Research, [S.L.], v. 44, n. 2, p. 651-668, 11 nov. 2019. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/er.4957. Acesso em: 08 set. 2020. http://dx.doi.org/10.1002/er.4957.0363-907X1099-114Xhttps://repositorio.ufrn.br/handle/123456789/3063110.1002/er.4957WileyAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessTechnical‐commercial viabilityTechnological prospectingDelphi techniquePhotovoltaic solar energyProspecting technologies for photovoltaic solar energy: overview of its technical‐commercial viabilityinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThere are many technologies that may emerge and eventually disappear over the years. This fact makes the monitoring of technological trends as well as the anticipation of the direction of technological change paramount. This article aims to carry out the prospection of technologies, focusing on its technical‐commercial viability, for solar photovoltaic energy. The research method had a qualititative‐quantitative approach with application of the Delphi technique. In the conduction of the Delphi technique, seven steps were followed, ranging from the selection of the specialists to the considerations of their opinions regarding the future of nine photovoltaic technologies. The results of the research indicate that in 2020, the cells monocrystalline, multicrystalline, and amorphous silicon; cadmium telluride; indium/copper selenide, indium, and gallium diselenide; and multicompound III‐V cells will have technical and commercial viability and that dye‐sensitized silicon nanowire and carbon nanostructure‐based cells will not be viable. For the year 2025, monocrystalline and multicrystalline silicon cells and those of multicompounds III‐V will still be technically and commercially viable. Silicon nanowire; amorphous silicon; cadmium telluride; indium/copper, selenium, and gallium diselenide dye‐sensitized cells; and organic photovoltaic cells, including those based on carbon nanostructure, may be viable. This study is important, because the technological prospecting of the photovoltaic cells determines the possible trajectories of these cells, in a way that helps the companies of the sector to anticipate the strategic scenarios, thus facilitating the decision making processengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/30631/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30631/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTProspectingTechnologies_SANTI_2019.pdf.txtProspectingTechnologies_SANTI_2019.pdf.txtExtracted texttext/plain80487https://repositorio.ufrn.br/bitstream/123456789/30631/4/ProspectingTechnologies_SANTI_2019.pdf.txtb36eaca15d3ab24ffcd396e964f9a68bMD54THUMBNAILProspectingTechnologies_SANTI_2019.pdf.jpgProspectingTechnologies_SANTI_2019.pdf.jpgGenerated Thumbnailimage/jpeg1817https://repositorio.ufrn.br/bitstream/123456789/30631/5/ProspectingTechnologies_SANTI_2019.pdf.jpgb26a444288b04a386937a960dd1a738cMD55123456789/306312022-05-25 15:44:57.412oai:https://repositorio.ufrn.br:123456789/30631Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-05-25T18:44:57Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Prospecting technologies for photovoltaic solar energy: overview of its technical‐commercial viability
title Prospecting technologies for photovoltaic solar energy: overview of its technical‐commercial viability
spellingShingle Prospecting technologies for photovoltaic solar energy: overview of its technical‐commercial viability
Sampaio, Priscila Gonçalves Vasconcelos
Technical‐commercial viability
Technological prospecting
Delphi technique
Photovoltaic solar energy
title_short Prospecting technologies for photovoltaic solar energy: overview of its technical‐commercial viability
title_full Prospecting technologies for photovoltaic solar energy: overview of its technical‐commercial viability
title_fullStr Prospecting technologies for photovoltaic solar energy: overview of its technical‐commercial viability
title_full_unstemmed Prospecting technologies for photovoltaic solar energy: overview of its technical‐commercial viability
title_sort Prospecting technologies for photovoltaic solar energy: overview of its technical‐commercial viability
author Sampaio, Priscila Gonçalves Vasconcelos
author_facet Sampaio, Priscila Gonçalves Vasconcelos
González, Mário Orestes Aguirre
Vasconcelos, Rafael Monteiro
Santos, Marllen Aylla Teixeira
Vdal, Priscila da Cunha Jácome
Pereira, Jonathan Paulo Pinheiro
Santi, Éverton
author_role author
author2 González, Mário Orestes Aguirre
Vasconcelos, Rafael Monteiro
Santos, Marllen Aylla Teixeira
Vdal, Priscila da Cunha Jácome
Pereira, Jonathan Paulo Pinheiro
Santi, Éverton
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Sampaio, Priscila Gonçalves Vasconcelos
González, Mário Orestes Aguirre
Vasconcelos, Rafael Monteiro
Santos, Marllen Aylla Teixeira
Vdal, Priscila da Cunha Jácome
Pereira, Jonathan Paulo Pinheiro
Santi, Éverton
dc.subject.por.fl_str_mv Technical‐commercial viability
Technological prospecting
Delphi technique
Photovoltaic solar energy
topic Technical‐commercial viability
Technological prospecting
Delphi technique
Photovoltaic solar energy
description There are many technologies that may emerge and eventually disappear over the years. This fact makes the monitoring of technological trends as well as the anticipation of the direction of technological change paramount. This article aims to carry out the prospection of technologies, focusing on its technical‐commercial viability, for solar photovoltaic energy. The research method had a qualititative‐quantitative approach with application of the Delphi technique. In the conduction of the Delphi technique, seven steps were followed, ranging from the selection of the specialists to the considerations of their opinions regarding the future of nine photovoltaic technologies. The results of the research indicate that in 2020, the cells monocrystalline, multicrystalline, and amorphous silicon; cadmium telluride; indium/copper selenide, indium, and gallium diselenide; and multicompound III‐V cells will have technical and commercial viability and that dye‐sensitized silicon nanowire and carbon nanostructure‐based cells will not be viable. For the year 2025, monocrystalline and multicrystalline silicon cells and those of multicompounds III‐V will still be technically and commercially viable. Silicon nanowire; amorphous silicon; cadmium telluride; indium/copper, selenium, and gallium diselenide dye‐sensitized cells; and organic photovoltaic cells, including those based on carbon nanostructure, may be viable. This study is important, because the technological prospecting of the photovoltaic cells determines the possible trajectories of these cells, in a way that helps the companies of the sector to anticipate the strategic scenarios, thus facilitating the decision making process
publishDate 2019
dc.date.issued.fl_str_mv 2019-11-11
dc.date.accessioned.fl_str_mv 2020-11-23T14:38:35Z
dc.date.available.fl_str_mv 2020-11-23T14:38:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv SAMPAIO, Priscila Gonçalves Vasconcelos; GONZÁLEZ, Mário Orestes Aguirre; VASCONCELOS, Rafael Monteiro de; SANTOS, Marllen Aylla Teixeira dos; VIDAL, Priscila da Cunha Jácome; PEREIRA, Jonathan Paulo Pinheiro; SANTI, Everton. Prospecting technologies for photovoltaic solar energy: overview of its technical⠰commercial viability. International Journal Of Energy Research, [S.L.], v. 44, n. 2, p. 651-668, 11 nov. 2019. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/er.4957. Acesso em: 08 set. 2020. http://dx.doi.org/10.1002/er.4957.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/30631
dc.identifier.issn.none.fl_str_mv 0363-907X
1099-114X
dc.identifier.doi.none.fl_str_mv 10.1002/er.4957
identifier_str_mv SAMPAIO, Priscila Gonçalves Vasconcelos; GONZÁLEZ, Mário Orestes Aguirre; VASCONCELOS, Rafael Monteiro de; SANTOS, Marllen Aylla Teixeira dos; VIDAL, Priscila da Cunha Jácome; PEREIRA, Jonathan Paulo Pinheiro; SANTI, Everton. Prospecting technologies for photovoltaic solar energy: overview of its technical⠰commercial viability. International Journal Of Energy Research, [S.L.], v. 44, n. 2, p. 651-668, 11 nov. 2019. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/er.4957. Acesso em: 08 set. 2020. http://dx.doi.org/10.1002/er.4957.
0363-907X
1099-114X
10.1002/er.4957
url https://repositorio.ufrn.br/handle/123456789/30631
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/30631/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/30631/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/30631/4/ProspectingTechnologies_SANTI_2019.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/30631/5/ProspectingTechnologies_SANTI_2019.pdf.jpg
bitstream.checksum.fl_str_mv 4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
b36eaca15d3ab24ffcd396e964f9a68b
b26a444288b04a386937a960dd1a738c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1802117572633559040