Unveiling phase transitions with machine learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/30141 |
Resumo: | The classification of phase transitions is a central and challenging task in condensed matter physics. Typically, it relies on the identification of order parameters and the analysis of singularities in the free energy and its derivatives. Here, we propose an alternative framework to identify quantum phase transitions, employing both unsupervised and supervised machine learning techniques. Using the axial next-nearest-neighbor Ising (ANNNI) model as a benchmark, we show how unsupervised learning can detect three phases (ferromagnetic, paramagnetic, and a cluster of the antiphase with the floating phase) as well as two distinct regions within the paramagnetic phase. Employing supervised learning we show that transfer learning becomes possible: a machine trained only with nearest-neighbor interactions can learn to identify a new type of phase occurring when next-nearest-neighbor interactions are introduced. All our results rely on few- and low-dimensional input data (up to twelve lattice sites), thus providing a computational friendly and general framework for the study of phase transitions in many-body systems |
id |
UFRN_91f77daaa0933685b6f606cf0335355c |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/30141 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Canabarro, Askery Alexandre Canabarro Barbosa daFanchini, Felipe FernandesMalvezzi, André LuizPereira, Rodrigo GonçalvesAraújo, Rafael Chaves Souto2020-09-21T22:44:14Z2020-09-21T22:44:14Z2019-07-22CANABARRO, Askery; FANCHINI, Felipe Fernandes; MALVEZZI, André Luiz; PEREIRA, Rodrigo; CHAVES, Rafael. Unveiling phase transitions with machine learning. Physical Review B, [s.l.], v. 100, n. 4, p. 045129, 22 jul. 2019. Disponível em: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.045129. Acesso em: 15 set. 2020. http://dx.doi.org/10.1103/physrevb.100.045129.2469-99502469-9969https://repositorio.ufrn.br/jspui/handle/123456789/3014110.1103/PhysRevB.100.045129American Physical SocietyCondensed matter physicsMany-body systemsUnveiling phase transitions with machine learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe classification of phase transitions is a central and challenging task in condensed matter physics. Typically, it relies on the identification of order parameters and the analysis of singularities in the free energy and its derivatives. Here, we propose an alternative framework to identify quantum phase transitions, employing both unsupervised and supervised machine learning techniques. Using the axial next-nearest-neighbor Ising (ANNNI) model as a benchmark, we show how unsupervised learning can detect three phases (ferromagnetic, paramagnetic, and a cluster of the antiphase with the floating phase) as well as two distinct regions within the paramagnetic phase. Employing supervised learning we show that transfer learning becomes possible: a machine trained only with nearest-neighbor interactions can learn to identify a new type of phase occurring when next-nearest-neighbor interactions are introduced. All our results rely on few- and low-dimensional input data (up to twelve lattice sites), thus providing a computational friendly and general framework for the study of phase transitions in many-body systemsengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessORIGINALUnveilingPhaseTransitions_ARAUJO_2019.pdfUnveilingPhaseTransitions_ARAUJO_2019.pdfArtigoapplication/pdf1510940https://repositorio.ufrn.br/bitstream/123456789/30141/1/UnveilingPhaseTransitions_ARAUJO_2019.pdf22c5995e40d90fd8a3f2248421907571MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30141/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52TEXTUnveilingPhaseTransitions_ARAUJO_2019.pdf.txtUnveilingPhaseTransitions_ARAUJO_2019.pdf.txtExtracted texttext/plain71854https://repositorio.ufrn.br/bitstream/123456789/30141/3/UnveilingPhaseTransitions_ARAUJO_2019.pdf.txt005a3e1b8471b431a3fbdc893976ef8dMD53THUMBNAILUnveilingPhaseTransitions_ARAUJO_2019.pdf.jpgUnveilingPhaseTransitions_ARAUJO_2019.pdf.jpgGenerated Thumbnailimage/jpeg1770https://repositorio.ufrn.br/bitstream/123456789/30141/4/UnveilingPhaseTransitions_ARAUJO_2019.pdf.jpg5c5080323e59a6498486c50d893df3d7MD54123456789/301412020-09-27 04:55:50.733oai:https://repositorio.ufrn.br:123456789/30141Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-09-27T07:55:50Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Unveiling phase transitions with machine learning |
title |
Unveiling phase transitions with machine learning |
spellingShingle |
Unveiling phase transitions with machine learning Canabarro, Askery Alexandre Canabarro Barbosa da Condensed matter physics Many-body systems |
title_short |
Unveiling phase transitions with machine learning |
title_full |
Unveiling phase transitions with machine learning |
title_fullStr |
Unveiling phase transitions with machine learning |
title_full_unstemmed |
Unveiling phase transitions with machine learning |
title_sort |
Unveiling phase transitions with machine learning |
author |
Canabarro, Askery Alexandre Canabarro Barbosa da |
author_facet |
Canabarro, Askery Alexandre Canabarro Barbosa da Fanchini, Felipe Fernandes Malvezzi, André Luiz Pereira, Rodrigo Gonçalves Araújo, Rafael Chaves Souto |
author_role |
author |
author2 |
Fanchini, Felipe Fernandes Malvezzi, André Luiz Pereira, Rodrigo Gonçalves Araújo, Rafael Chaves Souto |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Canabarro, Askery Alexandre Canabarro Barbosa da Fanchini, Felipe Fernandes Malvezzi, André Luiz Pereira, Rodrigo Gonçalves Araújo, Rafael Chaves Souto |
dc.subject.por.fl_str_mv |
Condensed matter physics Many-body systems |
topic |
Condensed matter physics Many-body systems |
description |
The classification of phase transitions is a central and challenging task in condensed matter physics. Typically, it relies on the identification of order parameters and the analysis of singularities in the free energy and its derivatives. Here, we propose an alternative framework to identify quantum phase transitions, employing both unsupervised and supervised machine learning techniques. Using the axial next-nearest-neighbor Ising (ANNNI) model as a benchmark, we show how unsupervised learning can detect three phases (ferromagnetic, paramagnetic, and a cluster of the antiphase with the floating phase) as well as two distinct regions within the paramagnetic phase. Employing supervised learning we show that transfer learning becomes possible: a machine trained only with nearest-neighbor interactions can learn to identify a new type of phase occurring when next-nearest-neighbor interactions are introduced. All our results rely on few- and low-dimensional input data (up to twelve lattice sites), thus providing a computational friendly and general framework for the study of phase transitions in many-body systems |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-07-22 |
dc.date.accessioned.fl_str_mv |
2020-09-21T22:44:14Z |
dc.date.available.fl_str_mv |
2020-09-21T22:44:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CANABARRO, Askery; FANCHINI, Felipe Fernandes; MALVEZZI, André Luiz; PEREIRA, Rodrigo; CHAVES, Rafael. Unveiling phase transitions with machine learning. Physical Review B, [s.l.], v. 100, n. 4, p. 045129, 22 jul. 2019. Disponível em: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.045129. Acesso em: 15 set. 2020. http://dx.doi.org/10.1103/physrevb.100.045129. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/30141 |
dc.identifier.issn.none.fl_str_mv |
2469-9950 2469-9969 |
dc.identifier.doi.none.fl_str_mv |
10.1103/PhysRevB.100.045129 |
identifier_str_mv |
CANABARRO, Askery; FANCHINI, Felipe Fernandes; MALVEZZI, André Luiz; PEREIRA, Rodrigo; CHAVES, Rafael. Unveiling phase transitions with machine learning. Physical Review B, [s.l.], v. 100, n. 4, p. 045129, 22 jul. 2019. Disponível em: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.045129. Acesso em: 15 set. 2020. http://dx.doi.org/10.1103/physrevb.100.045129. 2469-9950 2469-9969 10.1103/PhysRevB.100.045129 |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/30141 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/30141/1/UnveilingPhaseTransitions_ARAUJO_2019.pdf https://repositorio.ufrn.br/bitstream/123456789/30141/2/license.txt https://repositorio.ufrn.br/bitstream/123456789/30141/3/UnveilingPhaseTransitions_ARAUJO_2019.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/30141/4/UnveilingPhaseTransitions_ARAUJO_2019.pdf.jpg |
bitstream.checksum.fl_str_mv |
22c5995e40d90fd8a3f2248421907571 e9597aa2854d128fd968be5edc8a28d9 005a3e1b8471b431a3fbdc893976ef8d 5c5080323e59a6498486c50d893df3d7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832664989925376 |