Unveiling phase transitions with machine learning

Detalhes bibliográficos
Autor(a) principal: Canabarro, Askery Alexandre Canabarro Barbosa da
Data de Publicação: 2019
Outros Autores: Fanchini, Felipe Fernandes, Malvezzi, André Luiz, Pereira, Rodrigo Gonçalves, Araújo, Rafael Chaves Souto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/30141
Resumo: The classification of phase transitions is a central and challenging task in condensed matter physics. Typically, it relies on the identification of order parameters and the analysis of singularities in the free energy and its derivatives. Here, we propose an alternative framework to identify quantum phase transitions, employing both unsupervised and supervised machine learning techniques. Using the axial next-nearest-neighbor Ising (ANNNI) model as a benchmark, we show how unsupervised learning can detect three phases (ferromagnetic, paramagnetic, and a cluster of the antiphase with the floating phase) as well as two distinct regions within the paramagnetic phase. Employing supervised learning we show that transfer learning becomes possible: a machine trained only with nearest-neighbor interactions can learn to identify a new type of phase occurring when next-nearest-neighbor interactions are introduced. All our results rely on few- and low-dimensional input data (up to twelve lattice sites), thus providing a computational friendly and general framework for the study of phase transitions in many-body systems
id UFRN_91f77daaa0933685b6f606cf0335355c
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/30141
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Canabarro, Askery Alexandre Canabarro Barbosa daFanchini, Felipe FernandesMalvezzi, André LuizPereira, Rodrigo GonçalvesAraújo, Rafael Chaves Souto2020-09-21T22:44:14Z2020-09-21T22:44:14Z2019-07-22CANABARRO, Askery; FANCHINI, Felipe Fernandes; MALVEZZI, André Luiz; PEREIRA, Rodrigo; CHAVES, Rafael. Unveiling phase transitions with machine learning. Physical Review B, [s.l.], v. 100, n. 4, p. 045129, 22 jul. 2019. Disponível em: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.045129. Acesso em: 15 set. 2020. http://dx.doi.org/10.1103/physrevb.100.045129.2469-99502469-9969https://repositorio.ufrn.br/jspui/handle/123456789/3014110.1103/PhysRevB.100.045129American Physical SocietyCondensed matter physicsMany-body systemsUnveiling phase transitions with machine learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe classification of phase transitions is a central and challenging task in condensed matter physics. Typically, it relies on the identification of order parameters and the analysis of singularities in the free energy and its derivatives. Here, we propose an alternative framework to identify quantum phase transitions, employing both unsupervised and supervised machine learning techniques. Using the axial next-nearest-neighbor Ising (ANNNI) model as a benchmark, we show how unsupervised learning can detect three phases (ferromagnetic, paramagnetic, and a cluster of the antiphase with the floating phase) as well as two distinct regions within the paramagnetic phase. Employing supervised learning we show that transfer learning becomes possible: a machine trained only with nearest-neighbor interactions can learn to identify a new type of phase occurring when next-nearest-neighbor interactions are introduced. All our results rely on few- and low-dimensional input data (up to twelve lattice sites), thus providing a computational friendly and general framework for the study of phase transitions in many-body systemsengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessORIGINALUnveilingPhaseTransitions_ARAUJO_2019.pdfUnveilingPhaseTransitions_ARAUJO_2019.pdfArtigoapplication/pdf1510940https://repositorio.ufrn.br/bitstream/123456789/30141/1/UnveilingPhaseTransitions_ARAUJO_2019.pdf22c5995e40d90fd8a3f2248421907571MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30141/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52TEXTUnveilingPhaseTransitions_ARAUJO_2019.pdf.txtUnveilingPhaseTransitions_ARAUJO_2019.pdf.txtExtracted texttext/plain71854https://repositorio.ufrn.br/bitstream/123456789/30141/3/UnveilingPhaseTransitions_ARAUJO_2019.pdf.txt005a3e1b8471b431a3fbdc893976ef8dMD53THUMBNAILUnveilingPhaseTransitions_ARAUJO_2019.pdf.jpgUnveilingPhaseTransitions_ARAUJO_2019.pdf.jpgGenerated Thumbnailimage/jpeg1770https://repositorio.ufrn.br/bitstream/123456789/30141/4/UnveilingPhaseTransitions_ARAUJO_2019.pdf.jpg5c5080323e59a6498486c50d893df3d7MD54123456789/301412020-09-27 04:55:50.733oai:https://repositorio.ufrn.br:123456789/30141Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-09-27T07:55:50Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Unveiling phase transitions with machine learning
title Unveiling phase transitions with machine learning
spellingShingle Unveiling phase transitions with machine learning
Canabarro, Askery Alexandre Canabarro Barbosa da
Condensed matter physics
Many-body systems
title_short Unveiling phase transitions with machine learning
title_full Unveiling phase transitions with machine learning
title_fullStr Unveiling phase transitions with machine learning
title_full_unstemmed Unveiling phase transitions with machine learning
title_sort Unveiling phase transitions with machine learning
author Canabarro, Askery Alexandre Canabarro Barbosa da
author_facet Canabarro, Askery Alexandre Canabarro Barbosa da
Fanchini, Felipe Fernandes
Malvezzi, André Luiz
Pereira, Rodrigo Gonçalves
Araújo, Rafael Chaves Souto
author_role author
author2 Fanchini, Felipe Fernandes
Malvezzi, André Luiz
Pereira, Rodrigo Gonçalves
Araújo, Rafael Chaves Souto
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Canabarro, Askery Alexandre Canabarro Barbosa da
Fanchini, Felipe Fernandes
Malvezzi, André Luiz
Pereira, Rodrigo Gonçalves
Araújo, Rafael Chaves Souto
dc.subject.por.fl_str_mv Condensed matter physics
Many-body systems
topic Condensed matter physics
Many-body systems
description The classification of phase transitions is a central and challenging task in condensed matter physics. Typically, it relies on the identification of order parameters and the analysis of singularities in the free energy and its derivatives. Here, we propose an alternative framework to identify quantum phase transitions, employing both unsupervised and supervised machine learning techniques. Using the axial next-nearest-neighbor Ising (ANNNI) model as a benchmark, we show how unsupervised learning can detect three phases (ferromagnetic, paramagnetic, and a cluster of the antiphase with the floating phase) as well as two distinct regions within the paramagnetic phase. Employing supervised learning we show that transfer learning becomes possible: a machine trained only with nearest-neighbor interactions can learn to identify a new type of phase occurring when next-nearest-neighbor interactions are introduced. All our results rely on few- and low-dimensional input data (up to twelve lattice sites), thus providing a computational friendly and general framework for the study of phase transitions in many-body systems
publishDate 2019
dc.date.issued.fl_str_mv 2019-07-22
dc.date.accessioned.fl_str_mv 2020-09-21T22:44:14Z
dc.date.available.fl_str_mv 2020-09-21T22:44:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv CANABARRO, Askery; FANCHINI, Felipe Fernandes; MALVEZZI, André Luiz; PEREIRA, Rodrigo; CHAVES, Rafael. Unveiling phase transitions with machine learning. Physical Review B, [s.l.], v. 100, n. 4, p. 045129, 22 jul. 2019. Disponível em: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.045129. Acesso em: 15 set. 2020. http://dx.doi.org/10.1103/physrevb.100.045129.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/30141
dc.identifier.issn.none.fl_str_mv 2469-9950
2469-9969
dc.identifier.doi.none.fl_str_mv 10.1103/PhysRevB.100.045129
identifier_str_mv CANABARRO, Askery; FANCHINI, Felipe Fernandes; MALVEZZI, André Luiz; PEREIRA, Rodrigo; CHAVES, Rafael. Unveiling phase transitions with machine learning. Physical Review B, [s.l.], v. 100, n. 4, p. 045129, 22 jul. 2019. Disponível em: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.045129. Acesso em: 15 set. 2020. http://dx.doi.org/10.1103/physrevb.100.045129.
2469-9950
2469-9969
10.1103/PhysRevB.100.045129
url https://repositorio.ufrn.br/jspui/handle/123456789/30141
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/30141/1/UnveilingPhaseTransitions_ARAUJO_2019.pdf
https://repositorio.ufrn.br/bitstream/123456789/30141/2/license.txt
https://repositorio.ufrn.br/bitstream/123456789/30141/3/UnveilingPhaseTransitions_ARAUJO_2019.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/30141/4/UnveilingPhaseTransitions_ARAUJO_2019.pdf.jpg
bitstream.checksum.fl_str_mv 22c5995e40d90fd8a3f2248421907571
e9597aa2854d128fd968be5edc8a28d9
005a3e1b8471b431a3fbdc893976ef8d
5c5080323e59a6498486c50d893df3d7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832664989925376