On the boundary conditions of avoidance memory reconsolidation: An attractor network perspective
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/28960 |
Resumo: | The reconsolidation and extinction of aversive memories and their boundary conditions have been extensively studied. Knowing their network mechanisms may lead to the development of better strategies for the treatment of fear and anxiety-related disorders. In 2011, Osan et al. developed a computational model for exploring such phenomena based on attractor dynamics, Hebbian plasticity and synaptic degradation induced by prediction error. This model was able to explain, in a single formalism, experimental findings regarding the freezing behavior of rodents submitted to contextual fear conditioning. In 2017, through the study of inhibitory avoidance in rats, Radiske et al. showed that the previous knowledge of a context as non-aversive is a boundary condition for the reconsolidation of the shock memory subsequently experienced in that context. In the present work, by adapting the model of Osan et al. (2011) to simulate the experimental protocols of Radiske et al. (2017), we show that such boundary condition is compatible with the dynamics of an attractor network that supports synaptic labilization common to reconsolidation and extinction. Additionally, by varying parameters such as the levels of protein synthesis and degradation, we predict behavioral outcomes, and thus boundary conditions that can be tested experimentally. |
id |
UFRN_97802418f5a2b5ed276262b898268d03 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/28960 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Santiago, Rodrigo M. M.Tort, Adriano Bretanha Lopes2020-05-12T17:21:20Z2020-05-12T17:21:20Z2020-04-18SANTIAGO, R. M. M.; TORT, A. B. L. On the boundary conditions of avoidance memory reconsolidation: An attractor network perspective. Neural Netw., [S. l.], v. 127, p. 96‐109, abr. 2020.https://repositorio.ufrn.br/jspui/handle/123456789/2896010.1016/j.neunet.2020.04.013Attractor networkinhibitory avoidanceboundary conditionsynaptic plasticityOn the boundary conditions of avoidance memory reconsolidation: An attractor network perspectiveinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe reconsolidation and extinction of aversive memories and their boundary conditions have been extensively studied. Knowing their network mechanisms may lead to the development of better strategies for the treatment of fear and anxiety-related disorders. In 2011, Osan et al. developed a computational model for exploring such phenomena based on attractor dynamics, Hebbian plasticity and synaptic degradation induced by prediction error. This model was able to explain, in a single formalism, experimental findings regarding the freezing behavior of rodents submitted to contextual fear conditioning. In 2017, through the study of inhibitory avoidance in rats, Radiske et al. showed that the previous knowledge of a context as non-aversive is a boundary condition for the reconsolidation of the shock memory subsequently experienced in that context. In the present work, by adapting the model of Osan et al. (2011) to simulate the experimental protocols of Radiske et al. (2017), we show that such boundary condition is compatible with the dynamics of an attractor network that supports synaptic labilization common to reconsolidation and extinction. Additionally, by varying parameters such as the levels of protein synthesis and degradation, we predict behavioral outcomes, and thus boundary conditions that can be tested experimentally.engreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessORIGINALAdrianoTort_ICe_2020_On the boundary.pdfAdrianoTort_ICe_2020_On the boundary.pdfAdrianoTort_ICe_2020_On the boundaryapplication/pdf2737844https://repositorio.ufrn.br/bitstream/123456789/28960/1/AdrianoTort_ICe_2020_On%20the%20boundary.pdf5ebed88e0c9861cb223c6997ba26d408MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/28960/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52TEXTAdrianoTort_ICe_2020_On the boundary.pdf.txtAdrianoTort_ICe_2020_On the boundary.pdf.txtExtracted texttext/plain88119https://repositorio.ufrn.br/bitstream/123456789/28960/3/AdrianoTort_ICe_2020_On%20the%20boundary.pdf.txt7a1c0de3c16445d6103bf2e2c529dea6MD53THUMBNAILAdrianoTort_ICe_2020_On the boundary.pdf.jpgAdrianoTort_ICe_2020_On the boundary.pdf.jpgGenerated Thumbnailimage/jpeg1760https://repositorio.ufrn.br/bitstream/123456789/28960/4/AdrianoTort_ICe_2020_On%20the%20boundary.pdf.jpg1cd66706d579088168d1f0b13a6c3254MD54123456789/289602021-07-08 10:48:09.467oai:https://repositorio.ufrn.br:123456789/28960Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-08T13:48:09Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
On the boundary conditions of avoidance memory reconsolidation: An attractor network perspective |
title |
On the boundary conditions of avoidance memory reconsolidation: An attractor network perspective |
spellingShingle |
On the boundary conditions of avoidance memory reconsolidation: An attractor network perspective Santiago, Rodrigo M. M. Attractor network inhibitory avoidance boundary condition synaptic plasticity |
title_short |
On the boundary conditions of avoidance memory reconsolidation: An attractor network perspective |
title_full |
On the boundary conditions of avoidance memory reconsolidation: An attractor network perspective |
title_fullStr |
On the boundary conditions of avoidance memory reconsolidation: An attractor network perspective |
title_full_unstemmed |
On the boundary conditions of avoidance memory reconsolidation: An attractor network perspective |
title_sort |
On the boundary conditions of avoidance memory reconsolidation: An attractor network perspective |
author |
Santiago, Rodrigo M. M. |
author_facet |
Santiago, Rodrigo M. M. Tort, Adriano Bretanha Lopes |
author_role |
author |
author2 |
Tort, Adriano Bretanha Lopes |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Santiago, Rodrigo M. M. Tort, Adriano Bretanha Lopes |
dc.subject.por.fl_str_mv |
Attractor network inhibitory avoidance boundary condition synaptic plasticity |
topic |
Attractor network inhibitory avoidance boundary condition synaptic plasticity |
description |
The reconsolidation and extinction of aversive memories and their boundary conditions have been extensively studied. Knowing their network mechanisms may lead to the development of better strategies for the treatment of fear and anxiety-related disorders. In 2011, Osan et al. developed a computational model for exploring such phenomena based on attractor dynamics, Hebbian plasticity and synaptic degradation induced by prediction error. This model was able to explain, in a single formalism, experimental findings regarding the freezing behavior of rodents submitted to contextual fear conditioning. In 2017, through the study of inhibitory avoidance in rats, Radiske et al. showed that the previous knowledge of a context as non-aversive is a boundary condition for the reconsolidation of the shock memory subsequently experienced in that context. In the present work, by adapting the model of Osan et al. (2011) to simulate the experimental protocols of Radiske et al. (2017), we show that such boundary condition is compatible with the dynamics of an attractor network that supports synaptic labilization common to reconsolidation and extinction. Additionally, by varying parameters such as the levels of protein synthesis and degradation, we predict behavioral outcomes, and thus boundary conditions that can be tested experimentally. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-05-12T17:21:20Z |
dc.date.available.fl_str_mv |
2020-05-12T17:21:20Z |
dc.date.issued.fl_str_mv |
2020-04-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTIAGO, R. M. M.; TORT, A. B. L. On the boundary conditions of avoidance memory reconsolidation: An attractor network perspective. Neural Netw., [S. l.], v. 127, p. 96‐109, abr. 2020. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/28960 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.neunet.2020.04.013 |
identifier_str_mv |
SANTIAGO, R. M. M.; TORT, A. B. L. On the boundary conditions of avoidance memory reconsolidation: An attractor network perspective. Neural Netw., [S. l.], v. 127, p. 96‐109, abr. 2020. 10.1016/j.neunet.2020.04.013 |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/28960 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/28960/1/AdrianoTort_ICe_2020_On%20the%20boundary.pdf https://repositorio.ufrn.br/bitstream/123456789/28960/2/license.txt https://repositorio.ufrn.br/bitstream/123456789/28960/3/AdrianoTort_ICe_2020_On%20the%20boundary.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/28960/4/AdrianoTort_ICe_2020_On%20the%20boundary.pdf.jpg |
bitstream.checksum.fl_str_mv |
5ebed88e0c9861cb223c6997ba26d408 e9597aa2854d128fd968be5edc8a28d9 7a1c0de3c16445d6103bf2e2c529dea6 1cd66706d579088168d1f0b13a6c3254 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832789017591808 |