The coprime quantum chain

Detalhes bibliográficos
Autor(a) principal: Mussardo, G
Data de Publicação: 2017
Outros Autores: Giudici, G, Viti, Jacopo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/30328
Resumo: In this paper we introduce and study the coprime quantum chain, i.e. a strongly correlated quantum system defined in terms of the integer eigenvalues niof the occupation number operators at each site of a chain of length M. The ni’s take value in the interval [2,q]and may be regarded as Sz eigenvalues in the spin representation j = (q − 2)/2. The distinctive interaction of the model is based on the coprimality matrix Φ: for the ferromagnetic case, this matrix assigns lower energy to configurations where occupation numbers niand ni+1of neighbouring sites share a common divisor, while for the antiferromagnetic case it assigns a lower energy to configurations where niand ni+1are coprime. The coprime chain, both in the ferro and anti-ferromagnetic cases, may present an exponential number of ground states whose values can be exactly computed by means of graph theoretical tools. In the ferromagnetic case there are generally also frustration phenomena. A fine tuning of local operators may lift the exponential ground state degeneracy and, according to which operators are switched on, the system may be driven into dierent classes of universality, among which the Ising or Potts universality class. The paper also contains an appendix by Don Zagier on the exact eigenvalues and eigenvectors of the coprimality matrix in the limit →∞
id UFRN_a4bbac99450fd8fa904a9b4607a876c6
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/30328
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Mussardo, GGiudici, GViti, Jacopo2020-10-08T22:07:03Z2020-10-08T22:07:03Z2017-03-17MUSSARDO, G; GIUDICI, G; VITI, J. The coprime quantum chain. Journal Of Statistical Mechanics: Theory and Experiment, [S.L.], v. 2017, n. 3, p. 033104, 17 mar. 2017. Disponível em: https://iopscience.iop.org/article/10.1088/1742-5468/aa5bb4. Acesso em: 18 ago. 2020. http://dx.doi.org/10.1088/1742-5468/aa5bb4.20201742-5468https://repositorio.ufrn.br/handle/123456789/3032810.1088/1742-5468/aa5bb4IOP PublishingIntegrable spin chains and vertex modelsSpin chainsLadders and planesRigorous results in statistical mechanicsThe coprime quantum chaininfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn this paper we introduce and study the coprime quantum chain, i.e. a strongly correlated quantum system defined in terms of the integer eigenvalues niof the occupation number operators at each site of a chain of length M. The ni’s take value in the interval [2,q]and may be regarded as Sz eigenvalues in the spin representation j = (q − 2)/2. The distinctive interaction of the model is based on the coprimality matrix Φ: for the ferromagnetic case, this matrix assigns lower energy to configurations where occupation numbers niand ni+1of neighbouring sites share a common divisor, while for the antiferromagnetic case it assigns a lower energy to configurations where niand ni+1are coprime. The coprime chain, both in the ferro and anti-ferromagnetic cases, may present an exponential number of ground states whose values can be exactly computed by means of graph theoretical tools. In the ferromagnetic case there are generally also frustration phenomena. A fine tuning of local operators may lift the exponential ground state degeneracy and, according to which operators are switched on, the system may be driven into dierent classes of universality, among which the Ising or Potts universality class. The paper also contains an appendix by Don Zagier on the exact eigenvalues and eigenvectors of the coprimality matrix in the limit →∞engreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/30328/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30328/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTCoprimeQuantumChain_VITI_2017.pdf.txtCoprimeQuantumChain_VITI_2017.pdf.txtExtracted texttext/plain169550https://repositorio.ufrn.br/bitstream/123456789/30328/4/CoprimeQuantumChain_VITI_2017.pdf.txt6c3591604f112b533213cd0d127fab8aMD54THUMBNAILCoprimeQuantumChain_VITI_2017.pdf.jpgCoprimeQuantumChain_VITI_2017.pdf.jpgGenerated Thumbnailimage/jpeg1433https://repositorio.ufrn.br/bitstream/123456789/30328/5/CoprimeQuantumChain_VITI_2017.pdf.jpg58dac7d92e953511d4df7a90e9152b1fMD55123456789/303282022-10-20 16:32:23.837oai:https://repositorio.ufrn.br:123456789/30328Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-10-20T19:32:23Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv The coprime quantum chain
title The coprime quantum chain
spellingShingle The coprime quantum chain
Mussardo, G
Integrable spin chains and vertex models
Spin chains
Ladders and planes
Rigorous results in statistical mechanics
title_short The coprime quantum chain
title_full The coprime quantum chain
title_fullStr The coprime quantum chain
title_full_unstemmed The coprime quantum chain
title_sort The coprime quantum chain
author Mussardo, G
author_facet Mussardo, G
Giudici, G
Viti, Jacopo
author_role author
author2 Giudici, G
Viti, Jacopo
author2_role author
author
dc.contributor.author.fl_str_mv Mussardo, G
Giudici, G
Viti, Jacopo
dc.subject.por.fl_str_mv Integrable spin chains and vertex models
Spin chains
Ladders and planes
Rigorous results in statistical mechanics
topic Integrable spin chains and vertex models
Spin chains
Ladders and planes
Rigorous results in statistical mechanics
description In this paper we introduce and study the coprime quantum chain, i.e. a strongly correlated quantum system defined in terms of the integer eigenvalues niof the occupation number operators at each site of a chain of length M. The ni’s take value in the interval [2,q]and may be regarded as Sz eigenvalues in the spin representation j = (q − 2)/2. The distinctive interaction of the model is based on the coprimality matrix Φ: for the ferromagnetic case, this matrix assigns lower energy to configurations where occupation numbers niand ni+1of neighbouring sites share a common divisor, while for the antiferromagnetic case it assigns a lower energy to configurations where niand ni+1are coprime. The coprime chain, both in the ferro and anti-ferromagnetic cases, may present an exponential number of ground states whose values can be exactly computed by means of graph theoretical tools. In the ferromagnetic case there are generally also frustration phenomena. A fine tuning of local operators may lift the exponential ground state degeneracy and, according to which operators are switched on, the system may be driven into dierent classes of universality, among which the Ising or Potts universality class. The paper also contains an appendix by Don Zagier on the exact eigenvalues and eigenvectors of the coprimality matrix in the limit →∞
publishDate 2017
dc.date.issued.fl_str_mv 2017-03-17
dc.date.accessioned.fl_str_mv 2020-10-08T22:07:03Z
dc.date.available.fl_str_mv 2020-10-08T22:07:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv MUSSARDO, G; GIUDICI, G; VITI, J. The coprime quantum chain. Journal Of Statistical Mechanics: Theory and Experiment, [S.L.], v. 2017, n. 3, p. 033104, 17 mar. 2017. Disponível em: https://iopscience.iop.org/article/10.1088/1742-5468/aa5bb4. Acesso em: 18 ago. 2020. http://dx.doi.org/10.1088/1742-5468/aa5bb4.2020
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/30328
dc.identifier.issn.none.fl_str_mv 1742-5468
dc.identifier.doi.none.fl_str_mv 10.1088/1742-5468/aa5bb4
identifier_str_mv MUSSARDO, G; GIUDICI, G; VITI, J. The coprime quantum chain. Journal Of Statistical Mechanics: Theory and Experiment, [S.L.], v. 2017, n. 3, p. 033104, 17 mar. 2017. Disponível em: https://iopscience.iop.org/article/10.1088/1742-5468/aa5bb4. Acesso em: 18 ago. 2020. http://dx.doi.org/10.1088/1742-5468/aa5bb4.2020
1742-5468
10.1088/1742-5468/aa5bb4
url https://repositorio.ufrn.br/handle/123456789/30328
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/30328/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/30328/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/30328/4/CoprimeQuantumChain_VITI_2017.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/30328/5/CoprimeQuantumChain_VITI_2017.pdf.jpg
bitstream.checksum.fl_str_mv 4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
6c3591604f112b533213cd0d127fab8a
58dac7d92e953511d4df7a90e9152b1f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832755807092736