The coprime quantum chain
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/30328 |
Resumo: | In this paper we introduce and study the coprime quantum chain, i.e. a strongly correlated quantum system defined in terms of the integer eigenvalues niof the occupation number operators at each site of a chain of length M. The ni’s take value in the interval [2,q]and may be regarded as Sz eigenvalues in the spin representation j = (q − 2)/2. The distinctive interaction of the model is based on the coprimality matrix Φ: for the ferromagnetic case, this matrix assigns lower energy to configurations where occupation numbers niand ni+1of neighbouring sites share a common divisor, while for the antiferromagnetic case it assigns a lower energy to configurations where niand ni+1are coprime. The coprime chain, both in the ferro and anti-ferromagnetic cases, may present an exponential number of ground states whose values can be exactly computed by means of graph theoretical tools. In the ferromagnetic case there are generally also frustration phenomena. A fine tuning of local operators may lift the exponential ground state degeneracy and, according to which operators are switched on, the system may be driven into dierent classes of universality, among which the Ising or Potts universality class. The paper also contains an appendix by Don Zagier on the exact eigenvalues and eigenvectors of the coprimality matrix in the limit →∞ |
id |
UFRN_a4bbac99450fd8fa904a9b4607a876c6 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/30328 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Mussardo, GGiudici, GViti, Jacopo2020-10-08T22:07:03Z2020-10-08T22:07:03Z2017-03-17MUSSARDO, G; GIUDICI, G; VITI, J. The coprime quantum chain. Journal Of Statistical Mechanics: Theory and Experiment, [S.L.], v. 2017, n. 3, p. 033104, 17 mar. 2017. Disponível em: https://iopscience.iop.org/article/10.1088/1742-5468/aa5bb4. Acesso em: 18 ago. 2020. http://dx.doi.org/10.1088/1742-5468/aa5bb4.20201742-5468https://repositorio.ufrn.br/handle/123456789/3032810.1088/1742-5468/aa5bb4IOP PublishingIntegrable spin chains and vertex modelsSpin chainsLadders and planesRigorous results in statistical mechanicsThe coprime quantum chaininfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn this paper we introduce and study the coprime quantum chain, i.e. a strongly correlated quantum system defined in terms of the integer eigenvalues niof the occupation number operators at each site of a chain of length M. The ni’s take value in the interval [2,q]and may be regarded as Sz eigenvalues in the spin representation j = (q − 2)/2. The distinctive interaction of the model is based on the coprimality matrix Φ: for the ferromagnetic case, this matrix assigns lower energy to configurations where occupation numbers niand ni+1of neighbouring sites share a common divisor, while for the antiferromagnetic case it assigns a lower energy to configurations where niand ni+1are coprime. The coprime chain, both in the ferro and anti-ferromagnetic cases, may present an exponential number of ground states whose values can be exactly computed by means of graph theoretical tools. In the ferromagnetic case there are generally also frustration phenomena. A fine tuning of local operators may lift the exponential ground state degeneracy and, according to which operators are switched on, the system may be driven into dierent classes of universality, among which the Ising or Potts universality class. The paper also contains an appendix by Don Zagier on the exact eigenvalues and eigenvectors of the coprimality matrix in the limit →∞engreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/30328/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30328/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTCoprimeQuantumChain_VITI_2017.pdf.txtCoprimeQuantumChain_VITI_2017.pdf.txtExtracted texttext/plain169550https://repositorio.ufrn.br/bitstream/123456789/30328/4/CoprimeQuantumChain_VITI_2017.pdf.txt6c3591604f112b533213cd0d127fab8aMD54THUMBNAILCoprimeQuantumChain_VITI_2017.pdf.jpgCoprimeQuantumChain_VITI_2017.pdf.jpgGenerated Thumbnailimage/jpeg1433https://repositorio.ufrn.br/bitstream/123456789/30328/5/CoprimeQuantumChain_VITI_2017.pdf.jpg58dac7d92e953511d4df7a90e9152b1fMD55123456789/303282022-10-20 16:32:23.837oai:https://repositorio.ufrn.br:123456789/30328Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-10-20T19:32:23Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
The coprime quantum chain |
title |
The coprime quantum chain |
spellingShingle |
The coprime quantum chain Mussardo, G Integrable spin chains and vertex models Spin chains Ladders and planes Rigorous results in statistical mechanics |
title_short |
The coprime quantum chain |
title_full |
The coprime quantum chain |
title_fullStr |
The coprime quantum chain |
title_full_unstemmed |
The coprime quantum chain |
title_sort |
The coprime quantum chain |
author |
Mussardo, G |
author_facet |
Mussardo, G Giudici, G Viti, Jacopo |
author_role |
author |
author2 |
Giudici, G Viti, Jacopo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mussardo, G Giudici, G Viti, Jacopo |
dc.subject.por.fl_str_mv |
Integrable spin chains and vertex models Spin chains Ladders and planes Rigorous results in statistical mechanics |
topic |
Integrable spin chains and vertex models Spin chains Ladders and planes Rigorous results in statistical mechanics |
description |
In this paper we introduce and study the coprime quantum chain, i.e. a strongly correlated quantum system defined in terms of the integer eigenvalues niof the occupation number operators at each site of a chain of length M. The ni’s take value in the interval [2,q]and may be regarded as Sz eigenvalues in the spin representation j = (q − 2)/2. The distinctive interaction of the model is based on the coprimality matrix Φ: for the ferromagnetic case, this matrix assigns lower energy to configurations where occupation numbers niand ni+1of neighbouring sites share a common divisor, while for the antiferromagnetic case it assigns a lower energy to configurations where niand ni+1are coprime. The coprime chain, both in the ferro and anti-ferromagnetic cases, may present an exponential number of ground states whose values can be exactly computed by means of graph theoretical tools. In the ferromagnetic case there are generally also frustration phenomena. A fine tuning of local operators may lift the exponential ground state degeneracy and, according to which operators are switched on, the system may be driven into dierent classes of universality, among which the Ising or Potts universality class. The paper also contains an appendix by Don Zagier on the exact eigenvalues and eigenvectors of the coprimality matrix in the limit →∞ |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-03-17 |
dc.date.accessioned.fl_str_mv |
2020-10-08T22:07:03Z |
dc.date.available.fl_str_mv |
2020-10-08T22:07:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MUSSARDO, G; GIUDICI, G; VITI, J. The coprime quantum chain. Journal Of Statistical Mechanics: Theory and Experiment, [S.L.], v. 2017, n. 3, p. 033104, 17 mar. 2017. Disponível em: https://iopscience.iop.org/article/10.1088/1742-5468/aa5bb4. Acesso em: 18 ago. 2020. http://dx.doi.org/10.1088/1742-5468/aa5bb4.2020 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/30328 |
dc.identifier.issn.none.fl_str_mv |
1742-5468 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-5468/aa5bb4 |
identifier_str_mv |
MUSSARDO, G; GIUDICI, G; VITI, J. The coprime quantum chain. Journal Of Statistical Mechanics: Theory and Experiment, [S.L.], v. 2017, n. 3, p. 033104, 17 mar. 2017. Disponível em: https://iopscience.iop.org/article/10.1088/1742-5468/aa5bb4. Acesso em: 18 ago. 2020. http://dx.doi.org/10.1088/1742-5468/aa5bb4.2020 1742-5468 10.1088/1742-5468/aa5bb4 |
url |
https://repositorio.ufrn.br/handle/123456789/30328 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/30328/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/30328/3/license.txt https://repositorio.ufrn.br/bitstream/123456789/30328/4/CoprimeQuantumChain_VITI_2017.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/30328/5/CoprimeQuantumChain_VITI_2017.pdf.jpg |
bitstream.checksum.fl_str_mv |
4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 6c3591604f112b533213cd0d127fab8a 58dac7d92e953511d4df7a90e9152b1f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832755807092736 |