Trophic analysis and fishing simulation of the biggest Amazonian catfish
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/30799 |
Resumo: | Currently, it is unanimous the fact that the ecosystem approach gives important insights to support fisheries stock assessment and management and healthy sustain aquatic ecosystems. This work aims at the quantification of energy flows at várzea (Amazon floodplain) and the simulation of increase in the fishing effort regarding the biggest predators, the catfish, and decrease of flooded forest cover. It was used the Ecopath with Ecosim software to build BAGRES model, which could allow inferences on ecosystem stability. Results showed that: i) BAGRES model has high overhead (69.7%) and Production/Respiration rate very close to 1, showing that this floodplain system is sufficiently mature and capable to support disturbance; ii) Finn’s cycling index for BAGRES (14.6%) is high when compared to other worldwide system; iii) increasing the effort of the catch of three species of Brachyplatystoma (catfish) have positive effects on biomass and consequently catch and landing of their main preys; iv) in the simulation of deforestation of Floodplain Forest (with no natural regeneration), all species are prejudiced (no exception), including Brachyplatystoma groups that do not use flooded environment. Therefore, the indirect consequence of the deforestation is more intense over fish stocks than increasing fishing effort. The BAGRES model results have important implications for the current policy-making for inland fishing in Brazil, currently mostly based on “defeso” (fishing restriction season), suggesting the necessity of incorporate the impacts which drive the deforestation in Amazon Floodplain |
id |
UFRN_a5a40ff17ace13ddf3e26c9b253f04a1 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/30799 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Angelini, RonaldoFabrè, Nídia NoemiSilva-JR, Urbano Lopes da2020-12-01T00:21:47Z2020-12-01T00:21:47Z2006-12ANGELINI, R.; FABRÉ, Nidia Noemi ; SILVA JÚNIOR, Urbano Lopes da. Trophic analysis and fishing simulation of the biggest Amazonian catfish. African Journal of Agricultural Research, v. 1, p. 151-158, 2006. Disponível em: https://academicjournals.org/journal/AJAR/article-abstract/993638D26432. Acesso em: 19 nov. 2020. https://doi.org/10.5897/AJAR.90007471991-637Xhttps://repositorio.ufrn.br/handle/123456789/3079910.5897/AJAR.9000747Academic JournalsAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessBrachyplatystoma spVárzea, Amazon floodplainFisheriesEcopath with EcosimTrophic analysis and fishing simulation of the biggest Amazonian catfishinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleCurrently, it is unanimous the fact that the ecosystem approach gives important insights to support fisheries stock assessment and management and healthy sustain aquatic ecosystems. This work aims at the quantification of energy flows at várzea (Amazon floodplain) and the simulation of increase in the fishing effort regarding the biggest predators, the catfish, and decrease of flooded forest cover. It was used the Ecopath with Ecosim software to build BAGRES model, which could allow inferences on ecosystem stability. Results showed that: i) BAGRES model has high overhead (69.7%) and Production/Respiration rate very close to 1, showing that this floodplain system is sufficiently mature and capable to support disturbance; ii) Finn’s cycling index for BAGRES (14.6%) is high when compared to other worldwide system; iii) increasing the effort of the catch of three species of Brachyplatystoma (catfish) have positive effects on biomass and consequently catch and landing of their main preys; iv) in the simulation of deforestation of Floodplain Forest (with no natural regeneration), all species are prejudiced (no exception), including Brachyplatystoma groups that do not use flooded environment. Therefore, the indirect consequence of the deforestation is more intense over fish stocks than increasing fishing effort. The BAGRES model results have important implications for the current policy-making for inland fishing in Brazil, currently mostly based on “defeso” (fishing restriction season), suggesting the necessity of incorporate the impacts which drive the deforestation in Amazon Floodplainengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALTrophicAnalysisFishing_ANGELINI_2006.pdfTrophicAnalysisFishing_ANGELINI_2006.pdfapplication/pdf353213https://repositorio.ufrn.br/bitstream/123456789/30799/1/TrophicAnalysisFishing_ANGELINI_2006.pdfd3f90f5eecbabc82ec21103b523d4001MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/30799/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30799/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTTrophicAnalysisFishing_ANGELINI_2006.pdf.txtTrophicAnalysisFishing_ANGELINI_2006.pdf.txtExtracted texttext/plain32401https://repositorio.ufrn.br/bitstream/123456789/30799/4/TrophicAnalysisFishing_ANGELINI_2006.pdf.txte2c9ce9013690446f9cdcca7e8ba0067MD54THUMBNAILTrophicAnalysisFishing_ANGELINI_2006.pdf.jpgTrophicAnalysisFishing_ANGELINI_2006.pdf.jpgGenerated Thumbnailimage/jpeg1996https://repositorio.ufrn.br/bitstream/123456789/30799/5/TrophicAnalysisFishing_ANGELINI_2006.pdf.jpgdad39973e0dfaf696dc6470ef9afeb61MD55123456789/307992020-12-06 05:06:45.14oai:https://repositorio.ufrn.br:123456789/30799Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-12-06T08:06:45Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Trophic analysis and fishing simulation of the biggest Amazonian catfish |
title |
Trophic analysis and fishing simulation of the biggest Amazonian catfish |
spellingShingle |
Trophic analysis and fishing simulation of the biggest Amazonian catfish Angelini, Ronaldo Brachyplatystoma sp Várzea, Amazon floodplain Fisheries Ecopath with Ecosim |
title_short |
Trophic analysis and fishing simulation of the biggest Amazonian catfish |
title_full |
Trophic analysis and fishing simulation of the biggest Amazonian catfish |
title_fullStr |
Trophic analysis and fishing simulation of the biggest Amazonian catfish |
title_full_unstemmed |
Trophic analysis and fishing simulation of the biggest Amazonian catfish |
title_sort |
Trophic analysis and fishing simulation of the biggest Amazonian catfish |
author |
Angelini, Ronaldo |
author_facet |
Angelini, Ronaldo Fabrè, Nídia Noemi Silva-JR, Urbano Lopes da |
author_role |
author |
author2 |
Fabrè, Nídia Noemi Silva-JR, Urbano Lopes da |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Angelini, Ronaldo Fabrè, Nídia Noemi Silva-JR, Urbano Lopes da |
dc.subject.por.fl_str_mv |
Brachyplatystoma sp Várzea, Amazon floodplain Fisheries Ecopath with Ecosim |
topic |
Brachyplatystoma sp Várzea, Amazon floodplain Fisheries Ecopath with Ecosim |
description |
Currently, it is unanimous the fact that the ecosystem approach gives important insights to support fisheries stock assessment and management and healthy sustain aquatic ecosystems. This work aims at the quantification of energy flows at várzea (Amazon floodplain) and the simulation of increase in the fishing effort regarding the biggest predators, the catfish, and decrease of flooded forest cover. It was used the Ecopath with Ecosim software to build BAGRES model, which could allow inferences on ecosystem stability. Results showed that: i) BAGRES model has high overhead (69.7%) and Production/Respiration rate very close to 1, showing that this floodplain system is sufficiently mature and capable to support disturbance; ii) Finn’s cycling index for BAGRES (14.6%) is high when compared to other worldwide system; iii) increasing the effort of the catch of three species of Brachyplatystoma (catfish) have positive effects on biomass and consequently catch and landing of their main preys; iv) in the simulation of deforestation of Floodplain Forest (with no natural regeneration), all species are prejudiced (no exception), including Brachyplatystoma groups that do not use flooded environment. Therefore, the indirect consequence of the deforestation is more intense over fish stocks than increasing fishing effort. The BAGRES model results have important implications for the current policy-making for inland fishing in Brazil, currently mostly based on “defeso” (fishing restriction season), suggesting the necessity of incorporate the impacts which drive the deforestation in Amazon Floodplain |
publishDate |
2006 |
dc.date.issued.fl_str_mv |
2006-12 |
dc.date.accessioned.fl_str_mv |
2020-12-01T00:21:47Z |
dc.date.available.fl_str_mv |
2020-12-01T00:21:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ANGELINI, R.; FABRÉ, Nidia Noemi ; SILVA JÚNIOR, Urbano Lopes da. Trophic analysis and fishing simulation of the biggest Amazonian catfish. African Journal of Agricultural Research, v. 1, p. 151-158, 2006. Disponível em: https://academicjournals.org/journal/AJAR/article-abstract/993638D26432. Acesso em: 19 nov. 2020. https://doi.org/10.5897/AJAR.9000747 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/30799 |
dc.identifier.issn.none.fl_str_mv |
1991-637X |
dc.identifier.doi.none.fl_str_mv |
10.5897/AJAR.9000747 |
identifier_str_mv |
ANGELINI, R.; FABRÉ, Nidia Noemi ; SILVA JÚNIOR, Urbano Lopes da. Trophic analysis and fishing simulation of the biggest Amazonian catfish. African Journal of Agricultural Research, v. 1, p. 151-158, 2006. Disponível em: https://academicjournals.org/journal/AJAR/article-abstract/993638D26432. Acesso em: 19 nov. 2020. https://doi.org/10.5897/AJAR.9000747 1991-637X 10.5897/AJAR.9000747 |
url |
https://repositorio.ufrn.br/handle/123456789/30799 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Academic Journals |
publisher.none.fl_str_mv |
Academic Journals |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/30799/1/TrophicAnalysisFishing_ANGELINI_2006.pdf https://repositorio.ufrn.br/bitstream/123456789/30799/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/30799/3/license.txt https://repositorio.ufrn.br/bitstream/123456789/30799/4/TrophicAnalysisFishing_ANGELINI_2006.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/30799/5/TrophicAnalysisFishing_ANGELINI_2006.pdf.jpg |
bitstream.checksum.fl_str_mv |
d3f90f5eecbabc82ec21103b523d4001 4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 e2c9ce9013690446f9cdcca7e8ba0067 dad39973e0dfaf696dc6470ef9afeb61 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832929735442432 |