Trophic analysis and fishing simulation of the biggest Amazonian catfish

Detalhes bibliográficos
Autor(a) principal: Angelini, Ronaldo
Data de Publicação: 2006
Outros Autores: Fabrè, Nídia Noemi, Silva-JR, Urbano Lopes da
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/30799
Resumo: Currently, it is unanimous the fact that the ecosystem approach gives important insights to support fisheries stock assessment and management and healthy sustain aquatic ecosystems. This work aims at the quantification of energy flows at várzea (Amazon floodplain) and the simulation of increase in the fishing effort regarding the biggest predators, the catfish, and decrease of flooded forest cover. It was used the Ecopath with Ecosim software to build BAGRES model, which could allow inferences on ecosystem stability. Results showed that: i) BAGRES model has high overhead (69.7%) and Production/Respiration rate very close to 1, showing that this floodplain system is sufficiently mature and capable to support disturbance; ii) Finn’s cycling index for BAGRES (14.6%) is high when compared to other worldwide system; iii) increasing the effort of the catch of three species of Brachyplatystoma (catfish) have positive effects on biomass and consequently catch and landing of their main preys; iv) in the simulation of deforestation of Floodplain Forest (with no natural regeneration), all species are prejudiced (no exception), including Brachyplatystoma groups that do not use flooded environment. Therefore, the indirect consequence of the deforestation is more intense over fish stocks than increasing fishing effort. The BAGRES model results have important implications for the current policy-making for inland fishing in Brazil, currently mostly based on “defeso” (fishing restriction season), suggesting the necessity of incorporate the impacts which drive the deforestation in Amazon Floodplain
id UFRN_a5a40ff17ace13ddf3e26c9b253f04a1
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/30799
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Angelini, RonaldoFabrè, Nídia NoemiSilva-JR, Urbano Lopes da2020-12-01T00:21:47Z2020-12-01T00:21:47Z2006-12ANGELINI, R.; FABRÉ, Nidia Noemi ; SILVA JÚNIOR, Urbano Lopes da. Trophic analysis and fishing simulation of the biggest Amazonian catfish. African Journal of Agricultural Research, v. 1, p. 151-158, 2006. Disponível em: https://academicjournals.org/journal/AJAR/article-abstract/993638D26432. Acesso em: 19 nov. 2020. https://doi.org/10.5897/AJAR.90007471991-637Xhttps://repositorio.ufrn.br/handle/123456789/3079910.5897/AJAR.9000747Academic JournalsAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessBrachyplatystoma spVárzea, Amazon floodplainFisheriesEcopath with EcosimTrophic analysis and fishing simulation of the biggest Amazonian catfishinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleCurrently, it is unanimous the fact that the ecosystem approach gives important insights to support fisheries stock assessment and management and healthy sustain aquatic ecosystems. This work aims at the quantification of energy flows at várzea (Amazon floodplain) and the simulation of increase in the fishing effort regarding the biggest predators, the catfish, and decrease of flooded forest cover. It was used the Ecopath with Ecosim software to build BAGRES model, which could allow inferences on ecosystem stability. Results showed that: i) BAGRES model has high overhead (69.7%) and Production/Respiration rate very close to 1, showing that this floodplain system is sufficiently mature and capable to support disturbance; ii) Finn’s cycling index for BAGRES (14.6%) is high when compared to other worldwide system; iii) increasing the effort of the catch of three species of Brachyplatystoma (catfish) have positive effects on biomass and consequently catch and landing of their main preys; iv) in the simulation of deforestation of Floodplain Forest (with no natural regeneration), all species are prejudiced (no exception), including Brachyplatystoma groups that do not use flooded environment. Therefore, the indirect consequence of the deforestation is more intense over fish stocks than increasing fishing effort. The BAGRES model results have important implications for the current policy-making for inland fishing in Brazil, currently mostly based on “defeso” (fishing restriction season), suggesting the necessity of incorporate the impacts which drive the deforestation in Amazon Floodplainengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALTrophicAnalysisFishing_ANGELINI_2006.pdfTrophicAnalysisFishing_ANGELINI_2006.pdfapplication/pdf353213https://repositorio.ufrn.br/bitstream/123456789/30799/1/TrophicAnalysisFishing_ANGELINI_2006.pdfd3f90f5eecbabc82ec21103b523d4001MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/30799/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30799/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTTrophicAnalysisFishing_ANGELINI_2006.pdf.txtTrophicAnalysisFishing_ANGELINI_2006.pdf.txtExtracted texttext/plain32401https://repositorio.ufrn.br/bitstream/123456789/30799/4/TrophicAnalysisFishing_ANGELINI_2006.pdf.txte2c9ce9013690446f9cdcca7e8ba0067MD54THUMBNAILTrophicAnalysisFishing_ANGELINI_2006.pdf.jpgTrophicAnalysisFishing_ANGELINI_2006.pdf.jpgGenerated Thumbnailimage/jpeg1996https://repositorio.ufrn.br/bitstream/123456789/30799/5/TrophicAnalysisFishing_ANGELINI_2006.pdf.jpgdad39973e0dfaf696dc6470ef9afeb61MD55123456789/307992020-12-06 05:06:45.14oai:https://repositorio.ufrn.br:123456789/30799Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-12-06T08:06:45Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Trophic analysis and fishing simulation of the biggest Amazonian catfish
title Trophic analysis and fishing simulation of the biggest Amazonian catfish
spellingShingle Trophic analysis and fishing simulation of the biggest Amazonian catfish
Angelini, Ronaldo
Brachyplatystoma sp
Várzea, Amazon floodplain
Fisheries
Ecopath with Ecosim
title_short Trophic analysis and fishing simulation of the biggest Amazonian catfish
title_full Trophic analysis and fishing simulation of the biggest Amazonian catfish
title_fullStr Trophic analysis and fishing simulation of the biggest Amazonian catfish
title_full_unstemmed Trophic analysis and fishing simulation of the biggest Amazonian catfish
title_sort Trophic analysis and fishing simulation of the biggest Amazonian catfish
author Angelini, Ronaldo
author_facet Angelini, Ronaldo
Fabrè, Nídia Noemi
Silva-JR, Urbano Lopes da
author_role author
author2 Fabrè, Nídia Noemi
Silva-JR, Urbano Lopes da
author2_role author
author
dc.contributor.author.fl_str_mv Angelini, Ronaldo
Fabrè, Nídia Noemi
Silva-JR, Urbano Lopes da
dc.subject.por.fl_str_mv Brachyplatystoma sp
Várzea, Amazon floodplain
Fisheries
Ecopath with Ecosim
topic Brachyplatystoma sp
Várzea, Amazon floodplain
Fisheries
Ecopath with Ecosim
description Currently, it is unanimous the fact that the ecosystem approach gives important insights to support fisheries stock assessment and management and healthy sustain aquatic ecosystems. This work aims at the quantification of energy flows at várzea (Amazon floodplain) and the simulation of increase in the fishing effort regarding the biggest predators, the catfish, and decrease of flooded forest cover. It was used the Ecopath with Ecosim software to build BAGRES model, which could allow inferences on ecosystem stability. Results showed that: i) BAGRES model has high overhead (69.7%) and Production/Respiration rate very close to 1, showing that this floodplain system is sufficiently mature and capable to support disturbance; ii) Finn’s cycling index for BAGRES (14.6%) is high when compared to other worldwide system; iii) increasing the effort of the catch of three species of Brachyplatystoma (catfish) have positive effects on biomass and consequently catch and landing of their main preys; iv) in the simulation of deforestation of Floodplain Forest (with no natural regeneration), all species are prejudiced (no exception), including Brachyplatystoma groups that do not use flooded environment. Therefore, the indirect consequence of the deforestation is more intense over fish stocks than increasing fishing effort. The BAGRES model results have important implications for the current policy-making for inland fishing in Brazil, currently mostly based on “defeso” (fishing restriction season), suggesting the necessity of incorporate the impacts which drive the deforestation in Amazon Floodplain
publishDate 2006
dc.date.issued.fl_str_mv 2006-12
dc.date.accessioned.fl_str_mv 2020-12-01T00:21:47Z
dc.date.available.fl_str_mv 2020-12-01T00:21:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv ANGELINI, R.; FABRÉ, Nidia Noemi ; SILVA JÚNIOR, Urbano Lopes da. Trophic analysis and fishing simulation of the biggest Amazonian catfish. African Journal of Agricultural Research, v. 1, p. 151-158, 2006. Disponível em: https://academicjournals.org/journal/AJAR/article-abstract/993638D26432. Acesso em: 19 nov. 2020. https://doi.org/10.5897/AJAR.9000747
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/30799
dc.identifier.issn.none.fl_str_mv 1991-637X
dc.identifier.doi.none.fl_str_mv 10.5897/AJAR.9000747
identifier_str_mv ANGELINI, R.; FABRÉ, Nidia Noemi ; SILVA JÚNIOR, Urbano Lopes da. Trophic analysis and fishing simulation of the biggest Amazonian catfish. African Journal of Agricultural Research, v. 1, p. 151-158, 2006. Disponível em: https://academicjournals.org/journal/AJAR/article-abstract/993638D26432. Acesso em: 19 nov. 2020. https://doi.org/10.5897/AJAR.9000747
1991-637X
10.5897/AJAR.9000747
url https://repositorio.ufrn.br/handle/123456789/30799
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Academic Journals
publisher.none.fl_str_mv Academic Journals
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/30799/1/TrophicAnalysisFishing_ANGELINI_2006.pdf
https://repositorio.ufrn.br/bitstream/123456789/30799/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/30799/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/30799/4/TrophicAnalysisFishing_ANGELINI_2006.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/30799/5/TrophicAnalysisFishing_ANGELINI_2006.pdf.jpg
bitstream.checksum.fl_str_mv d3f90f5eecbabc82ec21103b523d4001
4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
e2c9ce9013690446f9cdcca7e8ba0067
dad39973e0dfaf696dc6470ef9afeb61
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832929735442432