Parallel Repairing 3D Fuzzy Images into Well-Composed Images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/34194 |
Resumo: | This work presents a parallelized version in Compute Unified Device Architecture of the algorithm presented in (SIQUEIRA et al., 2008) for repairing images into well-composed ones, as well as a comparison between heuristics to obtain the well-composed image which minimizes the difference between the generated well-composed image and the original image. The algorithm is based on successively changing the points from one object to another until the image becomes well-composed. Well-composed images are images on which the intersection of the voxels of an object with its complement forms a topological surface. Such images enjoy very useful properties which reduce the processing time of algorithms, such as thinning and surface extraction algorithms. Lastly, the performance of the parallel and sequential versions are compared and an analysis of the produced well-composed images is done. |
id |
UFRN_a5bee4ef1c36fdade315325897d58111 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/34194 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Germano, Rafael LucenaGomes, Rafael BeserraSantos, Selan Rodrigues dosCarvanlho, Bruno Motta de2018-07-04T11:28:19Z2021-09-20T11:46:53Z2018-07-04T11:28:19Z2021-09-20T11:46:53Z201820170008297GERMANO, Rafael Lucena. Parallel Repairing 3D Fuzzy Images into Well-Composed Images. 2018. 52 f. TCC (Graduação) - Curso de Ciência da Computação, Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, 2018.https://repositorio.ufrn.br/handle/123456789/34194Universidade Federal do Rio Grande do NorteUFRNBrasilCiência da Computaçãowell-composednessParallel Repairing 3D Fuzzy Images into Well-Composed Imagesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisThis work presents a parallelized version in Compute Unified Device Architecture of the algorithm presented in (SIQUEIRA et al., 2008) for repairing images into well-composed ones, as well as a comparison between heuristics to obtain the well-composed image which minimizes the difference between the generated well-composed image and the original image. The algorithm is based on successively changing the points from one object to another until the image becomes well-composed. Well-composed images are images on which the intersection of the voxels of an object with its complement forms a topological surface. Such images enjoy very useful properties which reduce the processing time of algorithms, such as thinning and surface extraction algorithms. Lastly, the performance of the parallel and sequential versions are compared and an analysis of the produced well-composed images is done.info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTParallelRepairing_Germano_2018.pdf.pdf.txtExtracted texttext/plain71294https://repositorio.ufrn.br/bitstream/123456789/34194/1/ParallelRepairing_Germano_2018.pdf.pdf.txtb33b6df4b0780969687384e6f11d7964MD51ORIGINALParallelRepairing_Germano_2018.pdf.pdfMonografiaapplication/pdf441285https://repositorio.ufrn.br/bitstream/123456789/34194/2/ParallelRepairing_Germano_2018.pdf.pdfbf63a4d291156c0f56414c316831ff5dMD52LICENSElicense.txttext/plain756https://repositorio.ufrn.br/bitstream/123456789/34194/3/license.txta80a9cda2756d355b388cc443c3d8a43MD53123456789/341942021-09-20 08:46:53.067oai:https://repositorio.ufrn.br:123456789/34194PGNlbnRlcj48c3Ryb25nPlVOSVZFUlNJREFERSBGRURFUkFMIERPIFJJTyBHUkFOREUgRE8gTk9SVEU8L3N0cm9uZz48L2NlbnRlcj4KPGNlbnRlcj48c3Ryb25nPkJJQkxJT1RFQ0EgRElHSVRBTCBERSBNT05PR1JBRklBUzwvc3Ryb25nPjwvY2VudGVyPgoKPGNlbnRlcj5UZXJtbyBkZSBBdXRvcml6YcOnw6NvIHBhcmEgZGlzcG9uaWJpbGl6YcOnw6NvIGRlIE1vbm9ncmFmaWFzIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbyBuYSBCaWJsaW90ZWNhIERpZ2l0YWwgZGUgTW9ub2dyYWZpYXMgKEJETSk8L2NlbnRlcj4KCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBkYSBtb25vZ3JhZmlhLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIFJpbyBHcmFuZGUgZG8gTm9ydGUgKFVGUk4pIGEgZGlzcG9uaWJpbGl6YXIgYXRyYXbDqXMgZGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIE1vbm9ncmFmaWFzIGRhIFVGUk4sIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgZGUgYWNvcmRvIGNvbSBhIExlaSBuwrAgOTYxMC85OCwgbyB0ZXh0byBpbnRlZ3JhbCBkYSBvYnJhIHN1Ym1ldGlkYSBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCBhIHTDrXR1bG8gZGUgZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrWZpY2EgYnJhc2lsZWlyYSwgYSBwYXJ0aXIgZGEgZGF0YSBkZXN0YSBzdWJtaXNzw6NvLiAKRepositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-09-20T11:46:53Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pr_BR.fl_str_mv |
Parallel Repairing 3D Fuzzy Images into Well-Composed Images |
title |
Parallel Repairing 3D Fuzzy Images into Well-Composed Images |
spellingShingle |
Parallel Repairing 3D Fuzzy Images into Well-Composed Images Germano, Rafael Lucena well-composedness |
title_short |
Parallel Repairing 3D Fuzzy Images into Well-Composed Images |
title_full |
Parallel Repairing 3D Fuzzy Images into Well-Composed Images |
title_fullStr |
Parallel Repairing 3D Fuzzy Images into Well-Composed Images |
title_full_unstemmed |
Parallel Repairing 3D Fuzzy Images into Well-Composed Images |
title_sort |
Parallel Repairing 3D Fuzzy Images into Well-Composed Images |
author |
Germano, Rafael Lucena |
author_facet |
Germano, Rafael Lucena |
author_role |
author |
dc.contributor.referees1.none.fl_str_mv |
Gomes, Rafael Beserra |
dc.contributor.referees2.none.fl_str_mv |
Santos, Selan Rodrigues dos |
dc.contributor.author.fl_str_mv |
Germano, Rafael Lucena |
dc.contributor.advisor1.fl_str_mv |
Carvanlho, Bruno Motta de |
contributor_str_mv |
Carvanlho, Bruno Motta de |
dc.subject.pr_BR.fl_str_mv |
well-composedness |
topic |
well-composedness |
description |
This work presents a parallelized version in Compute Unified Device Architecture of the algorithm presented in (SIQUEIRA et al., 2008) for repairing images into well-composed ones, as well as a comparison between heuristics to obtain the well-composed image which minimizes the difference between the generated well-composed image and the original image. The algorithm is based on successively changing the points from one object to another until the image becomes well-composed. Well-composed images are images on which the intersection of the voxels of an object with its complement forms a topological surface. Such images enjoy very useful properties which reduce the processing time of algorithms, such as thinning and surface extraction algorithms. Lastly, the performance of the parallel and sequential versions are compared and an analysis of the produced well-composed images is done. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-07-04T11:28:19Z 2021-09-20T11:46:53Z |
dc.date.available.fl_str_mv |
2018-07-04T11:28:19Z 2021-09-20T11:46:53Z |
dc.date.issued.fl_str_mv |
2018 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.pr_BR.fl_str_mv |
20170008297 |
dc.identifier.citation.fl_str_mv |
GERMANO, Rafael Lucena. Parallel Repairing 3D Fuzzy Images into Well-Composed Images. 2018. 52 f. TCC (Graduação) - Curso de Ciência da Computação, Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, 2018. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/34194 |
identifier_str_mv |
20170008297 GERMANO, Rafael Lucena. Parallel Repairing 3D Fuzzy Images into Well-Composed Images. 2018. 52 f. TCC (Graduação) - Curso de Ciência da Computação, Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, 2018. |
url |
https://repositorio.ufrn.br/handle/123456789/34194 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.publisher.initials.fl_str_mv |
UFRN |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Ciência da Computação |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/34194/1/ParallelRepairing_Germano_2018.pdf.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/34194/2/ParallelRepairing_Germano_2018.pdf.pdf https://repositorio.ufrn.br/bitstream/123456789/34194/3/license.txt |
bitstream.checksum.fl_str_mv |
b33b6df4b0780969687384e6f11d7964 bf63a4d291156c0f56414c316831ff5d a80a9cda2756d355b388cc443c3d8a43 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832764968501248 |