Parallel Repairing 3D Fuzzy Images into Well-Composed Images

Detalhes bibliográficos
Autor(a) principal: Germano, Rafael Lucena
Data de Publicação: 2018
Tipo de documento: Trabalho de conclusão de curso
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/34194
Resumo: This work presents a parallelized version in Compute Unified Device Architecture of the algorithm presented in (SIQUEIRA et al., 2008) for repairing images into well-composed ones, as well as a comparison between heuristics to obtain the well-composed image which minimizes the difference between the generated well-composed image and the original image. The algorithm is based on successively changing the points from one object to another until the image becomes well-composed. Well-composed images are images on which the intersection of the voxels of an object with its complement forms a topological surface. Such images enjoy very useful properties which reduce the processing time of algorithms, such as thinning and surface extraction algorithms. Lastly, the performance of the parallel and sequential versions are compared and an analysis of the produced well-composed images is done.
id UFRN_a5bee4ef1c36fdade315325897d58111
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/34194
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Germano, Rafael LucenaGomes, Rafael BeserraSantos, Selan Rodrigues dosCarvanlho, Bruno Motta de2018-07-04T11:28:19Z2021-09-20T11:46:53Z2018-07-04T11:28:19Z2021-09-20T11:46:53Z201820170008297GERMANO, Rafael Lucena. Parallel Repairing 3D Fuzzy Images into Well-Composed Images. 2018. 52 f. TCC (Graduação) - Curso de Ciência da Computação, Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, 2018.https://repositorio.ufrn.br/handle/123456789/34194Universidade Federal do Rio Grande do NorteUFRNBrasilCiência da Computaçãowell-composednessParallel Repairing 3D Fuzzy Images into Well-Composed Imagesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisThis work presents a parallelized version in Compute Unified Device Architecture of the algorithm presented in (SIQUEIRA et al., 2008) for repairing images into well-composed ones, as well as a comparison between heuristics to obtain the well-composed image which minimizes the difference between the generated well-composed image and the original image. The algorithm is based on successively changing the points from one object to another until the image becomes well-composed. Well-composed images are images on which the intersection of the voxels of an object with its complement forms a topological surface. Such images enjoy very useful properties which reduce the processing time of algorithms, such as thinning and surface extraction algorithms. Lastly, the performance of the parallel and sequential versions are compared and an analysis of the produced well-composed images is done.info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTParallelRepairing_Germano_2018.pdf.pdf.txtExtracted texttext/plain71294https://repositorio.ufrn.br/bitstream/123456789/34194/1/ParallelRepairing_Germano_2018.pdf.pdf.txtb33b6df4b0780969687384e6f11d7964MD51ORIGINALParallelRepairing_Germano_2018.pdf.pdfMonografiaapplication/pdf441285https://repositorio.ufrn.br/bitstream/123456789/34194/2/ParallelRepairing_Germano_2018.pdf.pdfbf63a4d291156c0f56414c316831ff5dMD52LICENSElicense.txttext/plain756https://repositorio.ufrn.br/bitstream/123456789/34194/3/license.txta80a9cda2756d355b388cc443c3d8a43MD53123456789/341942021-09-20 08:46:53.067oai:https://repositorio.ufrn.br:123456789/34194PGNlbnRlcj48c3Ryb25nPlVOSVZFUlNJREFERSBGRURFUkFMIERPIFJJTyBHUkFOREUgRE8gTk9SVEU8L3N0cm9uZz48L2NlbnRlcj4KPGNlbnRlcj48c3Ryb25nPkJJQkxJT1RFQ0EgRElHSVRBTCBERSBNT05PR1JBRklBUzwvc3Ryb25nPjwvY2VudGVyPgoKPGNlbnRlcj5UZXJtbyBkZSBBdXRvcml6YcOnw6NvIHBhcmEgZGlzcG9uaWJpbGl6YcOnw6NvIGRlIE1vbm9ncmFmaWFzIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbyBuYSBCaWJsaW90ZWNhIERpZ2l0YWwgZGUgTW9ub2dyYWZpYXMgKEJETSk8L2NlbnRlcj4KCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBkYSBtb25vZ3JhZmlhLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIFJpbyBHcmFuZGUgZG8gTm9ydGUgKFVGUk4pIGEgZGlzcG9uaWJpbGl6YXIgYXRyYXbDqXMgZGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIE1vbm9ncmFmaWFzIGRhIFVGUk4sIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgZGUgYWNvcmRvIGNvbSBhIExlaSBuwrAgOTYxMC85OCwgbyB0ZXh0byBpbnRlZ3JhbCBkYSBvYnJhIHN1Ym1ldGlkYSBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCBhIHTDrXR1bG8gZGUgZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrWZpY2EgYnJhc2lsZWlyYSwgYSBwYXJ0aXIgZGEgZGF0YSBkZXN0YSBzdWJtaXNzw6NvLiAKRepositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-09-20T11:46:53Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pr_BR.fl_str_mv Parallel Repairing 3D Fuzzy Images into Well-Composed Images
title Parallel Repairing 3D Fuzzy Images into Well-Composed Images
spellingShingle Parallel Repairing 3D Fuzzy Images into Well-Composed Images
Germano, Rafael Lucena
well-composedness
title_short Parallel Repairing 3D Fuzzy Images into Well-Composed Images
title_full Parallel Repairing 3D Fuzzy Images into Well-Composed Images
title_fullStr Parallel Repairing 3D Fuzzy Images into Well-Composed Images
title_full_unstemmed Parallel Repairing 3D Fuzzy Images into Well-Composed Images
title_sort Parallel Repairing 3D Fuzzy Images into Well-Composed Images
author Germano, Rafael Lucena
author_facet Germano, Rafael Lucena
author_role author
dc.contributor.referees1.none.fl_str_mv Gomes, Rafael Beserra
dc.contributor.referees2.none.fl_str_mv Santos, Selan Rodrigues dos
dc.contributor.author.fl_str_mv Germano, Rafael Lucena
dc.contributor.advisor1.fl_str_mv Carvanlho, Bruno Motta de
contributor_str_mv Carvanlho, Bruno Motta de
dc.subject.pr_BR.fl_str_mv well-composedness
topic well-composedness
description This work presents a parallelized version in Compute Unified Device Architecture of the algorithm presented in (SIQUEIRA et al., 2008) for repairing images into well-composed ones, as well as a comparison between heuristics to obtain the well-composed image which minimizes the difference between the generated well-composed image and the original image. The algorithm is based on successively changing the points from one object to another until the image becomes well-composed. Well-composed images are images on which the intersection of the voxels of an object with its complement forms a topological surface. Such images enjoy very useful properties which reduce the processing time of algorithms, such as thinning and surface extraction algorithms. Lastly, the performance of the parallel and sequential versions are compared and an analysis of the produced well-composed images is done.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-07-04T11:28:19Z
2021-09-20T11:46:53Z
dc.date.available.fl_str_mv 2018-07-04T11:28:19Z
2021-09-20T11:46:53Z
dc.date.issued.fl_str_mv 2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.pr_BR.fl_str_mv 20170008297
dc.identifier.citation.fl_str_mv GERMANO, Rafael Lucena. Parallel Repairing 3D Fuzzy Images into Well-Composed Images. 2018. 52 f. TCC (Graduação) - Curso de Ciência da Computação, Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, 2018.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/34194
identifier_str_mv 20170008297
GERMANO, Rafael Lucena. Parallel Repairing 3D Fuzzy Images into Well-Composed Images. 2018. 52 f. TCC (Graduação) - Curso de Ciência da Computação, Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, 2018.
url https://repositorio.ufrn.br/handle/123456789/34194
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Ciência da Computação
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/34194/1/ParallelRepairing_Germano_2018.pdf.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/34194/2/ParallelRepairing_Germano_2018.pdf.pdf
https://repositorio.ufrn.br/bitstream/123456789/34194/3/license.txt
bitstream.checksum.fl_str_mv b33b6df4b0780969687384e6f11d7964
bf63a4d291156c0f56414c316831ff5d
a80a9cda2756d355b388cc443c3d8a43
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832764968501248