Avaliação das ligas Al-5%Cu e Al-4%Cu-1%Ni tratadas por refusão à laser para aplicação em manufatura aditiva

Detalhes bibliográficos
Autor(a) principal: Schon, Aline Ferreira
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/49477
Resumo: O processamento de metais e ligas via Manufatura Aditiva (MA) tem recebido especial atenção nos últimos anos devido à possibilidade de obter peças com geometrias complexas, de forma rápida e com o mínimo de desperdícios da matéria prima. As ligas à base de alumínio são potenciais candidatas para estes processos, no entanto, atualmente são poucas as ligas candidatas à base de Al para uso na MA como Al12%Si e sistema Al-10%Si-xMg. Isso ocorre, pois, tais ligas são suscetíveis à formação de poros, trincas, distorções e rugosidade, que prejudicam as aplicações de alto desempenho. A adição de Ni em ligas do sistema Al-Cu possibilita a melhora das propriedades mecânicas a altas temperaturas e favorece a redução do intervalo de solidificação, o que resulta em uma diminuição da quantidade de trincas a quente e porosidade no material final. Dado o contexto, a presente pesquisa investiga as alterações microestruturais e a dureza de ligas Al-5,0%Cu e Al-4,0%Cu-1,0%Ni processadas via solidificação rápida por centrifugação e tratadas por Refusão Superficial à Laser (RSL), a fim de reproduzir condições de processamento similares à MA (altas taxas de resfriamento 103 - 108 K/s). A fim de entender o efeito do Ni no intervalo de solidificação, na fração de intermetálicos e nas temperaturas e transformações de fase, foram realizadas simulações e cálculos termodinâmicos via software Thermo-calc. Técnicas de caracterização como microscopia óptica (MO), microscopia eletrônica de varredura (MEV) e difração de raios-X (DRX) foram utilizadas, além das análises térmicas por Calorimetria Exploratória Diferencial (DSC) e microdureza Vickers. As simulações revelaram uma redução do intervalo de solidificação de aproximadamente 22% na liga Al-4,0%Cu-1,0%Ni, e consequentemente, uma diminuição na porosidade das poças refundidas à Laser. A microestrutura das amostras solidificadas rapidamente é caracterizada por uma matriz dendrítica rica em α-Al, circundado por uma mistura eutética α-Al, Al2Cu e Al7Cu4Ni. Nas poças refundidas ocorreu uma transição do crescimento de epitaxial (base da poça) para equiaxial (centro da poça) com um significativo refino microestrutural em torno de 92% (de λ1=7,63 - 7,41 µm para λ1=0,681 - 0,609 µm), que favoreceu um aumento de cerca de 82-90% (Al-5%Cu: de 58,4 HV para 106,9 HV / Al-4%Cu-1%Ni: de 60,5 HV para 117 HV) da microdureza nas microestruturas tratadas à Laser.
id UFRN_aa0df85193dd838f0fa0ee74e5687535
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/49477
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Schon, Aline Ferreirahttp://lattes.cnpq.br/9679035582368092http://lattes.cnpq.br/4377238190630005Peres, Maurício Mhirdauihttp://lattes.cnpq.br/3068024292581677Costa, Thiago Antônio Paixão de SousaSilva, Bismarck Luiz2022-10-05T19:53:12Z2022-10-05T19:53:12Z2022-08-01SCHON, Aline Ferreira. Avaliação das ligas Al-5%Cu e Al-4%Cu-1%Ni tratadas por refusão à laser para aplicação em manufatura aditiva. 2022. 94f. Dissertação (Mestrado em Ciência e Engenharia de Materiais) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2022.https://repositorio.ufrn.br/handle/123456789/49477O processamento de metais e ligas via Manufatura Aditiva (MA) tem recebido especial atenção nos últimos anos devido à possibilidade de obter peças com geometrias complexas, de forma rápida e com o mínimo de desperdícios da matéria prima. As ligas à base de alumínio são potenciais candidatas para estes processos, no entanto, atualmente são poucas as ligas candidatas à base de Al para uso na MA como Al12%Si e sistema Al-10%Si-xMg. Isso ocorre, pois, tais ligas são suscetíveis à formação de poros, trincas, distorções e rugosidade, que prejudicam as aplicações de alto desempenho. A adição de Ni em ligas do sistema Al-Cu possibilita a melhora das propriedades mecânicas a altas temperaturas e favorece a redução do intervalo de solidificação, o que resulta em uma diminuição da quantidade de trincas a quente e porosidade no material final. Dado o contexto, a presente pesquisa investiga as alterações microestruturais e a dureza de ligas Al-5,0%Cu e Al-4,0%Cu-1,0%Ni processadas via solidificação rápida por centrifugação e tratadas por Refusão Superficial à Laser (RSL), a fim de reproduzir condições de processamento similares à MA (altas taxas de resfriamento 103 - 108 K/s). A fim de entender o efeito do Ni no intervalo de solidificação, na fração de intermetálicos e nas temperaturas e transformações de fase, foram realizadas simulações e cálculos termodinâmicos via software Thermo-calc. Técnicas de caracterização como microscopia óptica (MO), microscopia eletrônica de varredura (MEV) e difração de raios-X (DRX) foram utilizadas, além das análises térmicas por Calorimetria Exploratória Diferencial (DSC) e microdureza Vickers. As simulações revelaram uma redução do intervalo de solidificação de aproximadamente 22% na liga Al-4,0%Cu-1,0%Ni, e consequentemente, uma diminuição na porosidade das poças refundidas à Laser. A microestrutura das amostras solidificadas rapidamente é caracterizada por uma matriz dendrítica rica em α-Al, circundado por uma mistura eutética α-Al, Al2Cu e Al7Cu4Ni. Nas poças refundidas ocorreu uma transição do crescimento de epitaxial (base da poça) para equiaxial (centro da poça) com um significativo refino microestrutural em torno de 92% (de λ1=7,63 - 7,41 µm para λ1=0,681 - 0,609 µm), que favoreceu um aumento de cerca de 82-90% (Al-5%Cu: de 58,4 HV para 106,9 HV / Al-4%Cu-1%Ni: de 60,5 HV para 117 HV) da microdureza nas microestruturas tratadas à Laser.The processing of metals and alloys via Additive Manufacturing (AM) has received special attention in recent years due to the possibility of obtaining parts with complex geometries, quickly and with minimal waste of raw material. Aluminum-based alloys are potential candidates for these processes, however, currently there are few candidates Al-based alloys for use in AM, such as Al-12wt.%Si and Al-10wt.%Si-xMg system. This occurs because such alloys are susceptible to the formation of pores, cracks, distortions and roughness, which impair high performance applications. The addition of Ni in Al-Cu alloys system makes it possible to improve the mechanical properties at high temperatures and favors the reduction of the solidification interval, which results in a decrease in the amount of hot cracks and porosity in the final material. Given the context, the present research investigates the microstructural changes and the hardness of Al-5wt.%Cu and Al-4wt.%Cu-1wt.%Ni alloys processed by rapid solidification (centrifugation) and treated Laser surface remelting (LSR), in order to reproduce similar AM process conditions (high cooling rates 103 -108 K/s). In order to understand the effect of Ni on the solidification interval, fraction of intermetallics and on temperatures and phase transformations, simulations and thermodynamic calculations were carried out by Thermo-calc software. Characterization techniques such as optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used, in addition to thermal analysis by Differential Scanning Calorimetry (DSC) and Vickers microhardness. The simulations revealed a reduction of the solidification interval of approximately 22% in the Al-4.0wt.%Cu-1.0wt.%Ni alloy, and consequently, a decrease in the porosity of the Laser remelted pools. The microstructure of the rapidly solidified samples is characterized by a α-Al dendritic matrix, surrounded by a eutectic mixture α-Al, Al2Cu and Al7Cu4Ni. In the remelted pools, there was a transition from epitaxial (pool base) to equiaxed (pool center) growth with a significant microstructural refinement around 92% (from λ1=7.63 - 7.41 µm to λ1=0.681 - 0.609µm), which favored an increase of about 82-90% (Al-5wt.%Cu: from 58.4 HV to 106.9 HV / Al-4wt.%Cu-1wt.%Ni: from 60.5 HV to 117 HV) of the microhardness in the microstructures Laser treated.Universidade Federal do Rio Grande do NortePROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E ENGENHARIA DE MATERIAISUFRNBrasilCNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICAEngenharia de materiaisSolidificação rápidaRefusão superficial à laserLigas Al-Cu-NiAvaliação das ligas Al-5%Cu e Al-4%Cu-1%Ni tratadas por refusão à laser para aplicação em manufatura aditivainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALAvaliacaoligasAl5_Schon_2022.pdfapplication/pdf4323746https://repositorio.ufrn.br/bitstream/123456789/49477/1/AvaliacaoligasAl5_Schon_2022.pdf4811a384a597d2407c51d3399a32788bMD51123456789/494772022-10-05 16:54:20.44oai:https://repositorio.ufrn.br:123456789/49477Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-10-05T19:54:20Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Avaliação das ligas Al-5%Cu e Al-4%Cu-1%Ni tratadas por refusão à laser para aplicação em manufatura aditiva
title Avaliação das ligas Al-5%Cu e Al-4%Cu-1%Ni tratadas por refusão à laser para aplicação em manufatura aditiva
spellingShingle Avaliação das ligas Al-5%Cu e Al-4%Cu-1%Ni tratadas por refusão à laser para aplicação em manufatura aditiva
Schon, Aline Ferreira
CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
Engenharia de materiais
Solidificação rápida
Refusão superficial à laser
Ligas Al-Cu-Ni
title_short Avaliação das ligas Al-5%Cu e Al-4%Cu-1%Ni tratadas por refusão à laser para aplicação em manufatura aditiva
title_full Avaliação das ligas Al-5%Cu e Al-4%Cu-1%Ni tratadas por refusão à laser para aplicação em manufatura aditiva
title_fullStr Avaliação das ligas Al-5%Cu e Al-4%Cu-1%Ni tratadas por refusão à laser para aplicação em manufatura aditiva
title_full_unstemmed Avaliação das ligas Al-5%Cu e Al-4%Cu-1%Ni tratadas por refusão à laser para aplicação em manufatura aditiva
title_sort Avaliação das ligas Al-5%Cu e Al-4%Cu-1%Ni tratadas por refusão à laser para aplicação em manufatura aditiva
author Schon, Aline Ferreira
author_facet Schon, Aline Ferreira
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9679035582368092
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4377238190630005
dc.contributor.referees1.none.fl_str_mv Peres, Maurício Mhirdaui
dc.contributor.referees1Lattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3068024292581677
dc.contributor.referees2.none.fl_str_mv Costa, Thiago Antônio Paixão de Sousa
dc.contributor.author.fl_str_mv Schon, Aline Ferreira
dc.contributor.advisor1.fl_str_mv Silva, Bismarck Luiz
contributor_str_mv Silva, Bismarck Luiz
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
topic CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
Engenharia de materiais
Solidificação rápida
Refusão superficial à laser
Ligas Al-Cu-Ni
dc.subject.por.fl_str_mv Engenharia de materiais
Solidificação rápida
Refusão superficial à laser
Ligas Al-Cu-Ni
description O processamento de metais e ligas via Manufatura Aditiva (MA) tem recebido especial atenção nos últimos anos devido à possibilidade de obter peças com geometrias complexas, de forma rápida e com o mínimo de desperdícios da matéria prima. As ligas à base de alumínio são potenciais candidatas para estes processos, no entanto, atualmente são poucas as ligas candidatas à base de Al para uso na MA como Al12%Si e sistema Al-10%Si-xMg. Isso ocorre, pois, tais ligas são suscetíveis à formação de poros, trincas, distorções e rugosidade, que prejudicam as aplicações de alto desempenho. A adição de Ni em ligas do sistema Al-Cu possibilita a melhora das propriedades mecânicas a altas temperaturas e favorece a redução do intervalo de solidificação, o que resulta em uma diminuição da quantidade de trincas a quente e porosidade no material final. Dado o contexto, a presente pesquisa investiga as alterações microestruturais e a dureza de ligas Al-5,0%Cu e Al-4,0%Cu-1,0%Ni processadas via solidificação rápida por centrifugação e tratadas por Refusão Superficial à Laser (RSL), a fim de reproduzir condições de processamento similares à MA (altas taxas de resfriamento 103 - 108 K/s). A fim de entender o efeito do Ni no intervalo de solidificação, na fração de intermetálicos e nas temperaturas e transformações de fase, foram realizadas simulações e cálculos termodinâmicos via software Thermo-calc. Técnicas de caracterização como microscopia óptica (MO), microscopia eletrônica de varredura (MEV) e difração de raios-X (DRX) foram utilizadas, além das análises térmicas por Calorimetria Exploratória Diferencial (DSC) e microdureza Vickers. As simulações revelaram uma redução do intervalo de solidificação de aproximadamente 22% na liga Al-4,0%Cu-1,0%Ni, e consequentemente, uma diminuição na porosidade das poças refundidas à Laser. A microestrutura das amostras solidificadas rapidamente é caracterizada por uma matriz dendrítica rica em α-Al, circundado por uma mistura eutética α-Al, Al2Cu e Al7Cu4Ni. Nas poças refundidas ocorreu uma transição do crescimento de epitaxial (base da poça) para equiaxial (centro da poça) com um significativo refino microestrutural em torno de 92% (de λ1=7,63 - 7,41 µm para λ1=0,681 - 0,609 µm), que favoreceu um aumento de cerca de 82-90% (Al-5%Cu: de 58,4 HV para 106,9 HV / Al-4%Cu-1%Ni: de 60,5 HV para 117 HV) da microdureza nas microestruturas tratadas à Laser.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-10-05T19:53:12Z
dc.date.available.fl_str_mv 2022-10-05T19:53:12Z
dc.date.issued.fl_str_mv 2022-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SCHON, Aline Ferreira. Avaliação das ligas Al-5%Cu e Al-4%Cu-1%Ni tratadas por refusão à laser para aplicação em manufatura aditiva. 2022. 94f. Dissertação (Mestrado em Ciência e Engenharia de Materiais) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/49477
identifier_str_mv SCHON, Aline Ferreira. Avaliação das ligas Al-5%Cu e Al-4%Cu-1%Ni tratadas por refusão à laser para aplicação em manufatura aditiva. 2022. 94f. Dissertação (Mestrado em Ciência e Engenharia de Materiais) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2022.
url https://repositorio.ufrn.br/handle/123456789/49477
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E ENGENHARIA DE MATERIAIS
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/49477/1/AvaliacaoligasAl5_Schon_2022.pdf
bitstream.checksum.fl_str_mv 4811a384a597d2407c51d3399a32788b
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832651642601472