A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz

Detalhes bibliográficos
Autor(a) principal: D´Assunção, Adaildo Gomes
Data de Publicação: 2017
Outros Autores: Cavalcanti, Bruno J., Cavalcante, Gustavo A., Mendonça, Laércio M. de, Cantanhede, Gabriel Moura, Oliveira, Marcelo M.M.de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/31577
Resumo: This article presents the analysis of a hybrid, error correction-based, neural network model to predict the path loss for suburban areas at 800 MHz and 2600 MHz, obtained by combining empirical propagation models, ECC-33, Ericsson 9999, Okumura Hata, and 3GPP’s TR 36.942, with a feedforward Artificial Neural Network (ANN). The performance of the hybrid model was compared against regular versions of the empirical models and a simple neural network fed with input parameters commonly used in related works. Results were compared with data obtained by measurements performed in the vicinity of the Federal University of Rio Grande do Norte (UFRN), in the city of Natal, Brazil. In the end, the hybrid neural network obtained the lowest RMSE indexes, besides almost equalizing the distribution of simulated and experimental data, indicating greater similarity with measurements
id UFRN_ab41c3f01a78d8d3764dfafd8766d294
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/31577
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling D´Assunção, Adaildo GomesCavalcanti, Bruno J.Cavalcante, Gustavo A.Mendonça, Laércio M. deCantanhede, Gabriel MouraOliveira, Marcelo M.M.de2021-02-19T20:19:58Z2021-02-19T20:19:58Z2017-09CAVALCANTI, Bruno J.; CAVALCANTE, Gustavo A.; MENDONÇA, Laércio M. de; CANTANHEDE, Gabriel M.; OLIVEIRA, Marcelo M.M. de; D’ASSUNÇÃO, Adaildo G.. A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE And LTE-A at 800 MHz and 2600 MHz. Journal of Microwaves, Optoelectronics And Electromagnetic Applications, [S.L.], v. 16, n. 3, p. 708-722, set. 2017. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300708&lng=en&tlng=en. Acesso em: 20 out. 2020. http://dx.doi.org/10.1590/2179-10742017v16i3925.2179-1074https://repositorio.ufrn.br/handle/123456789/3157710.1590/2179-10742017v16i3925ScieloAttribution-NonCommercial 3.0 Brazilhttp://creativecommons.org/licenses/by-nc/3.0/br/info:eu-repo/semantics/openAccessArtificial Neural Networks – ANNLong Term Evolution – LTELong Term Evolution Advanced – LTE-APropagation modelsPath lossA Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHzinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThis article presents the analysis of a hybrid, error correction-based, neural network model to predict the path loss for suburban areas at 800 MHz and 2600 MHz, obtained by combining empirical propagation models, ECC-33, Ericsson 9999, Okumura Hata, and 3GPP’s TR 36.942, with a feedforward Artificial Neural Network (ANN). The performance of the hybrid model was compared against regular versions of the empirical models and a simple neural network fed with input parameters commonly used in related works. Results were compared with data obtained by measurements performed in the vicinity of the Federal University of Rio Grande do Norte (UFRN), in the city of Natal, Brazil. In the end, the hybrid neural network obtained the lowest RMSE indexes, besides almost equalizing the distribution of simulated and experimental data, indicating greater similarity with measurementsengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8920https://repositorio.ufrn.br/bitstream/123456789/31577/2/license_rdf728dfda2fa81b274c619d08d1dfc1a03MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/31577/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53ORIGINALAHybridPathLoss_Assunção_2017.pdfAHybridPathLoss_Assunção_2017.pdfapplication/pdf1477913https://repositorio.ufrn.br/bitstream/123456789/31577/1/AHybridPathLoss_Assun%c3%a7%c3%a3o_2017.pdf93a8188aa2cabb5d5f0a955b16cee70eMD51TEXTAHybridPathLoss_Assunção_2017.pdf.txtAHybridPathLoss_Assunção_2017.pdf.txtExtracted texttext/plain41216https://repositorio.ufrn.br/bitstream/123456789/31577/4/AHybridPathLoss_Assun%c3%a7%c3%a3o_2017.pdf.txtc29ee8dcbcf5dea1bb878833fc815846MD54THUMBNAILAHybridPathLoss_Assunção_2017.pdf.jpgAHybridPathLoss_Assunção_2017.pdf.jpgGenerated Thumbnailimage/jpeg1673https://repositorio.ufrn.br/bitstream/123456789/31577/5/AHybridPathLoss_Assun%c3%a7%c3%a3o_2017.pdf.jpgfacd8c453b6e06bd31c469c58a93103eMD55123456789/315772021-02-21 05:31:52.449oai:https://repositorio.ufrn.br:123456789/31577Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-02-21T08:31:52Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz
title A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz
spellingShingle A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz
D´Assunção, Adaildo Gomes
Artificial Neural Networks – ANN
Long Term Evolution – LTE
Long Term Evolution Advanced – LTE-A
Propagation models
Path loss
title_short A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz
title_full A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz
title_fullStr A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz
title_full_unstemmed A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz
title_sort A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz
author D´Assunção, Adaildo Gomes
author_facet D´Assunção, Adaildo Gomes
Cavalcanti, Bruno J.
Cavalcante, Gustavo A.
Mendonça, Laércio M. de
Cantanhede, Gabriel Moura
Oliveira, Marcelo M.M.de
author_role author
author2 Cavalcanti, Bruno J.
Cavalcante, Gustavo A.
Mendonça, Laércio M. de
Cantanhede, Gabriel Moura
Oliveira, Marcelo M.M.de
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv D´Assunção, Adaildo Gomes
Cavalcanti, Bruno J.
Cavalcante, Gustavo A.
Mendonça, Laércio M. de
Cantanhede, Gabriel Moura
Oliveira, Marcelo M.M.de
dc.subject.por.fl_str_mv Artificial Neural Networks – ANN
Long Term Evolution – LTE
Long Term Evolution Advanced – LTE-A
Propagation models
Path loss
topic Artificial Neural Networks – ANN
Long Term Evolution – LTE
Long Term Evolution Advanced – LTE-A
Propagation models
Path loss
description This article presents the analysis of a hybrid, error correction-based, neural network model to predict the path loss for suburban areas at 800 MHz and 2600 MHz, obtained by combining empirical propagation models, ECC-33, Ericsson 9999, Okumura Hata, and 3GPP’s TR 36.942, with a feedforward Artificial Neural Network (ANN). The performance of the hybrid model was compared against regular versions of the empirical models and a simple neural network fed with input parameters commonly used in related works. Results were compared with data obtained by measurements performed in the vicinity of the Federal University of Rio Grande do Norte (UFRN), in the city of Natal, Brazil. In the end, the hybrid neural network obtained the lowest RMSE indexes, besides almost equalizing the distribution of simulated and experimental data, indicating greater similarity with measurements
publishDate 2017
dc.date.issued.fl_str_mv 2017-09
dc.date.accessioned.fl_str_mv 2021-02-19T20:19:58Z
dc.date.available.fl_str_mv 2021-02-19T20:19:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv CAVALCANTI, Bruno J.; CAVALCANTE, Gustavo A.; MENDONÇA, Laércio M. de; CANTANHEDE, Gabriel M.; OLIVEIRA, Marcelo M.M. de; D’ASSUNÇÃO, Adaildo G.. A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE And LTE-A at 800 MHz and 2600 MHz. Journal of Microwaves, Optoelectronics And Electromagnetic Applications, [S.L.], v. 16, n. 3, p. 708-722, set. 2017. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300708&lng=en&tlng=en. Acesso em: 20 out. 2020. http://dx.doi.org/10.1590/2179-10742017v16i3925.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/31577
dc.identifier.issn.none.fl_str_mv 2179-1074
dc.identifier.doi.none.fl_str_mv 10.1590/2179-10742017v16i3925
identifier_str_mv CAVALCANTI, Bruno J.; CAVALCANTE, Gustavo A.; MENDONÇA, Laércio M. de; CANTANHEDE, Gabriel M.; OLIVEIRA, Marcelo M.M. de; D’ASSUNÇÃO, Adaildo G.. A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE And LTE-A at 800 MHz and 2600 MHz. Journal of Microwaves, Optoelectronics And Electromagnetic Applications, [S.L.], v. 16, n. 3, p. 708-722, set. 2017. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300708&lng=en&tlng=en. Acesso em: 20 out. 2020. http://dx.doi.org/10.1590/2179-10742017v16i3925.
2179-1074
10.1590/2179-10742017v16i3925
url https://repositorio.ufrn.br/handle/123456789/31577
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial 3.0 Brazil
http://creativecommons.org/licenses/by-nc/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial 3.0 Brazil
http://creativecommons.org/licenses/by-nc/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Scielo
publisher.none.fl_str_mv Scielo
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/31577/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/31577/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/31577/1/AHybridPathLoss_Assun%c3%a7%c3%a3o_2017.pdf
https://repositorio.ufrn.br/bitstream/123456789/31577/4/AHybridPathLoss_Assun%c3%a7%c3%a3o_2017.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/31577/5/AHybridPathLoss_Assun%c3%a7%c3%a3o_2017.pdf.jpg
bitstream.checksum.fl_str_mv 728dfda2fa81b274c619d08d1dfc1a03
e9597aa2854d128fd968be5edc8a28d9
93a8188aa2cabb5d5f0a955b16cee70e
c29ee8dcbcf5dea1bb878833fc815846
facd8c453b6e06bd31c469c58a93103e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1813891282124144640