A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/31577 |
Resumo: | This article presents the analysis of a hybrid, error correction-based, neural network model to predict the path loss for suburban areas at 800 MHz and 2600 MHz, obtained by combining empirical propagation models, ECC-33, Ericsson 9999, Okumura Hata, and 3GPP’s TR 36.942, with a feedforward Artificial Neural Network (ANN). The performance of the hybrid model was compared against regular versions of the empirical models and a simple neural network fed with input parameters commonly used in related works. Results were compared with data obtained by measurements performed in the vicinity of the Federal University of Rio Grande do Norte (UFRN), in the city of Natal, Brazil. In the end, the hybrid neural network obtained the lowest RMSE indexes, besides almost equalizing the distribution of simulated and experimental data, indicating greater similarity with measurements |
id |
UFRN_ab41c3f01a78d8d3764dfafd8766d294 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/31577 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
D´Assunção, Adaildo GomesCavalcanti, Bruno J.Cavalcante, Gustavo A.Mendonça, Laércio M. deCantanhede, Gabriel MouraOliveira, Marcelo M.M.de2021-02-19T20:19:58Z2021-02-19T20:19:58Z2017-09CAVALCANTI, Bruno J.; CAVALCANTE, Gustavo A.; MENDONÇA, Laércio M. de; CANTANHEDE, Gabriel M.; OLIVEIRA, Marcelo M.M. de; D’ASSUNÇÃO, Adaildo G.. A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE And LTE-A at 800 MHz and 2600 MHz. Journal of Microwaves, Optoelectronics And Electromagnetic Applications, [S.L.], v. 16, n. 3, p. 708-722, set. 2017. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300708&lng=en&tlng=en. Acesso em: 20 out. 2020. http://dx.doi.org/10.1590/2179-10742017v16i3925.2179-1074https://repositorio.ufrn.br/handle/123456789/3157710.1590/2179-10742017v16i3925ScieloAttribution-NonCommercial 3.0 Brazilhttp://creativecommons.org/licenses/by-nc/3.0/br/info:eu-repo/semantics/openAccessArtificial Neural Networks – ANNLong Term Evolution – LTELong Term Evolution Advanced – LTE-APropagation modelsPath lossA Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHzinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThis article presents the analysis of a hybrid, error correction-based, neural network model to predict the path loss for suburban areas at 800 MHz and 2600 MHz, obtained by combining empirical propagation models, ECC-33, Ericsson 9999, Okumura Hata, and 3GPP’s TR 36.942, with a feedforward Artificial Neural Network (ANN). The performance of the hybrid model was compared against regular versions of the empirical models and a simple neural network fed with input parameters commonly used in related works. Results were compared with data obtained by measurements performed in the vicinity of the Federal University of Rio Grande do Norte (UFRN), in the city of Natal, Brazil. In the end, the hybrid neural network obtained the lowest RMSE indexes, besides almost equalizing the distribution of simulated and experimental data, indicating greater similarity with measurementsengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8920https://repositorio.ufrn.br/bitstream/123456789/31577/2/license_rdf728dfda2fa81b274c619d08d1dfc1a03MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/31577/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53ORIGINALAHybridPathLoss_Assunção_2017.pdfAHybridPathLoss_Assunção_2017.pdfapplication/pdf1477913https://repositorio.ufrn.br/bitstream/123456789/31577/1/AHybridPathLoss_Assun%c3%a7%c3%a3o_2017.pdf93a8188aa2cabb5d5f0a955b16cee70eMD51TEXTAHybridPathLoss_Assunção_2017.pdf.txtAHybridPathLoss_Assunção_2017.pdf.txtExtracted texttext/plain41216https://repositorio.ufrn.br/bitstream/123456789/31577/4/AHybridPathLoss_Assun%c3%a7%c3%a3o_2017.pdf.txtc29ee8dcbcf5dea1bb878833fc815846MD54THUMBNAILAHybridPathLoss_Assunção_2017.pdf.jpgAHybridPathLoss_Assunção_2017.pdf.jpgGenerated Thumbnailimage/jpeg1673https://repositorio.ufrn.br/bitstream/123456789/31577/5/AHybridPathLoss_Assun%c3%a7%c3%a3o_2017.pdf.jpgfacd8c453b6e06bd31c469c58a93103eMD55123456789/315772021-02-21 05:31:52.449oai:https://repositorio.ufrn.br:123456789/31577Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-02-21T08:31:52Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz |
title |
A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz |
spellingShingle |
A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz D´Assunção, Adaildo Gomes Artificial Neural Networks – ANN Long Term Evolution – LTE Long Term Evolution Advanced – LTE-A Propagation models Path loss |
title_short |
A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz |
title_full |
A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz |
title_fullStr |
A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz |
title_full_unstemmed |
A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz |
title_sort |
A Hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz |
author |
D´Assunção, Adaildo Gomes |
author_facet |
D´Assunção, Adaildo Gomes Cavalcanti, Bruno J. Cavalcante, Gustavo A. Mendonça, Laércio M. de Cantanhede, Gabriel Moura Oliveira, Marcelo M.M.de |
author_role |
author |
author2 |
Cavalcanti, Bruno J. Cavalcante, Gustavo A. Mendonça, Laércio M. de Cantanhede, Gabriel Moura Oliveira, Marcelo M.M.de |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
D´Assunção, Adaildo Gomes Cavalcanti, Bruno J. Cavalcante, Gustavo A. Mendonça, Laércio M. de Cantanhede, Gabriel Moura Oliveira, Marcelo M.M.de |
dc.subject.por.fl_str_mv |
Artificial Neural Networks – ANN Long Term Evolution – LTE Long Term Evolution Advanced – LTE-A Propagation models Path loss |
topic |
Artificial Neural Networks – ANN Long Term Evolution – LTE Long Term Evolution Advanced – LTE-A Propagation models Path loss |
description |
This article presents the analysis of a hybrid, error correction-based, neural network model to predict the path loss for suburban areas at 800 MHz and 2600 MHz, obtained by combining empirical propagation models, ECC-33, Ericsson 9999, Okumura Hata, and 3GPP’s TR 36.942, with a feedforward Artificial Neural Network (ANN). The performance of the hybrid model was compared against regular versions of the empirical models and a simple neural network fed with input parameters commonly used in related works. Results were compared with data obtained by measurements performed in the vicinity of the Federal University of Rio Grande do Norte (UFRN), in the city of Natal, Brazil. In the end, the hybrid neural network obtained the lowest RMSE indexes, besides almost equalizing the distribution of simulated and experimental data, indicating greater similarity with measurements |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-09 |
dc.date.accessioned.fl_str_mv |
2021-02-19T20:19:58Z |
dc.date.available.fl_str_mv |
2021-02-19T20:19:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CAVALCANTI, Bruno J.; CAVALCANTE, Gustavo A.; MENDONÇA, Laércio M. de; CANTANHEDE, Gabriel M.; OLIVEIRA, Marcelo M.M. de; D’ASSUNÇÃO, Adaildo G.. A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE And LTE-A at 800 MHz and 2600 MHz. Journal of Microwaves, Optoelectronics And Electromagnetic Applications, [S.L.], v. 16, n. 3, p. 708-722, set. 2017. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300708&lng=en&tlng=en. Acesso em: 20 out. 2020. http://dx.doi.org/10.1590/2179-10742017v16i3925. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/31577 |
dc.identifier.issn.none.fl_str_mv |
2179-1074 |
dc.identifier.doi.none.fl_str_mv |
10.1590/2179-10742017v16i3925 |
identifier_str_mv |
CAVALCANTI, Bruno J.; CAVALCANTE, Gustavo A.; MENDONÇA, Laércio M. de; CANTANHEDE, Gabriel M.; OLIVEIRA, Marcelo M.M. de; D’ASSUNÇÃO, Adaildo G.. A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE And LTE-A at 800 MHz and 2600 MHz. Journal of Microwaves, Optoelectronics And Electromagnetic Applications, [S.L.], v. 16, n. 3, p. 708-722, set. 2017. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300708&lng=en&tlng=en. Acesso em: 20 out. 2020. http://dx.doi.org/10.1590/2179-10742017v16i3925. 2179-1074 10.1590/2179-10742017v16i3925 |
url |
https://repositorio.ufrn.br/handle/123456789/31577 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial 3.0 Brazil http://creativecommons.org/licenses/by-nc/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial 3.0 Brazil http://creativecommons.org/licenses/by-nc/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Scielo |
publisher.none.fl_str_mv |
Scielo |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/31577/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/31577/3/license.txt https://repositorio.ufrn.br/bitstream/123456789/31577/1/AHybridPathLoss_Assun%c3%a7%c3%a3o_2017.pdf https://repositorio.ufrn.br/bitstream/123456789/31577/4/AHybridPathLoss_Assun%c3%a7%c3%a3o_2017.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/31577/5/AHybridPathLoss_Assun%c3%a7%c3%a3o_2017.pdf.jpg |
bitstream.checksum.fl_str_mv |
728dfda2fa81b274c619d08d1dfc1a03 e9597aa2854d128fd968be5edc8a28d9 93a8188aa2cabb5d5f0a955b16cee70e c29ee8dcbcf5dea1bb878833fc815846 facd8c453b6e06bd31c469c58a93103e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1813891282124144640 |