Sharp rejection and wide stopband microstrip lowpass filters using complementary split ring resonators
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/45292 |
Resumo: | Chebyshev microstrip lowpass filters with improved performance, achieved by means of circular complementary split ring resonators (CSRR), are presented. CSRR particles exhibit frequency rejection bandwidths in the vicinity of their resonant frequencies that can be used to meliorate both selectivity and stopband in microstrip lowpass filters. Two configurations have been used: a stepped-impedance model and a configuration using open-circuited stubs. Microstrip filters having 5, 7 and 9 poles were designed and fabricated. Selectivity values up to 86 dB/GHz and suppression levels reaching 60 dB in the stopband were obtained. The filters have cutoff frequency around 2 GHz and rejection band up to 10 GHz. The insertion of the designed CSRR resonators in the ground plane of the filters removes all the transmission spurious observed in the analyzed frequency band. No considerable variation in the passband group delay is observed in the CSRR-based lowpass filters. A comparison is made among the filters designed in this and other referenced works, considering their number of poles and size. The measured results are in good agreement with the simulated ones. The presented filters can be candidates for applications using the VHF, UHF and L bands, being also very effective in the rejection of the S and C bands. Applications that demand the rejection of the first half of the X band can also use the filters detailed in this paper |
id |
UFRN_c76853dc05af5348e45de5fda5171b93 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/45292 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Costa, I. F.Campos, Antonio Luiz Pereira de SiqueiraGomes Neto, Alfredo2021-12-09T14:25:59Z2021-12-09T14:25:59Z2018-03COSTA, I. F.; CAMPOS, A. L. P. S.; GOMES NETO, Alfrêdo. Sharp Rejection and Wide Stopband Microstrip Lowpass Filters using Complementary Split Ring Resonators. JOURNAL OF MICROWAVES, OPTOELECTRONICS AND ELECTROMAGNETIC APPLICATIONS, v. 17, p. 134-143, 2018. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742018000100134&lng=en&tlng=en. Acesso em: 30 out. 2020. https://doi.org/10.1590/2179-10742018v17i111012179-1074https://repositorio.ufrn.br/handle/123456789/4529210.1590/2179-10742018v17i11101Sociedade Brasileira de Microondas e OptoeletrônicaAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessMicrostrip filtersSelectivityComplementary split ring resonatorsMicrowaveSharp rejection and wide stopband microstrip lowpass filters using complementary split ring resonatorsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleChebyshev microstrip lowpass filters with improved performance, achieved by means of circular complementary split ring resonators (CSRR), are presented. CSRR particles exhibit frequency rejection bandwidths in the vicinity of their resonant frequencies that can be used to meliorate both selectivity and stopband in microstrip lowpass filters. Two configurations have been used: a stepped-impedance model and a configuration using open-circuited stubs. Microstrip filters having 5, 7 and 9 poles were designed and fabricated. Selectivity values up to 86 dB/GHz and suppression levels reaching 60 dB in the stopband were obtained. The filters have cutoff frequency around 2 GHz and rejection band up to 10 GHz. The insertion of the designed CSRR resonators in the ground plane of the filters removes all the transmission spurious observed in the analyzed frequency band. No considerable variation in the passband group delay is observed in the CSRR-based lowpass filters. A comparison is made among the filters designed in this and other referenced works, considering their number of poles and size. The measured results are in good agreement with the simulated ones. The presented filters can be candidates for applications using the VHF, UHF and L bands, being also very effective in the rejection of the S and C bands. Applications that demand the rejection of the first half of the X band can also use the filters detailed in this paperengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALSharpRejectionandWide_Campos_2018.pdfSharpRejectionandWide_Campos_2018.pdfapplication/pdf921042https://repositorio.ufrn.br/bitstream/123456789/45292/1/SharpRejectionandWide_Campos_2018.pdfa3f8e38c40e840a1d2c12433ed325d37MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/45292/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/45292/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/452922022-01-04 11:51:54.038oai:https://repositorio.ufrn.br:123456789/45292Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-01-04T14:51:54Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Sharp rejection and wide stopband microstrip lowpass filters using complementary split ring resonators |
title |
Sharp rejection and wide stopband microstrip lowpass filters using complementary split ring resonators |
spellingShingle |
Sharp rejection and wide stopband microstrip lowpass filters using complementary split ring resonators Costa, I. F. Microstrip filters Selectivity Complementary split ring resonators Microwave |
title_short |
Sharp rejection and wide stopband microstrip lowpass filters using complementary split ring resonators |
title_full |
Sharp rejection and wide stopband microstrip lowpass filters using complementary split ring resonators |
title_fullStr |
Sharp rejection and wide stopband microstrip lowpass filters using complementary split ring resonators |
title_full_unstemmed |
Sharp rejection and wide stopband microstrip lowpass filters using complementary split ring resonators |
title_sort |
Sharp rejection and wide stopband microstrip lowpass filters using complementary split ring resonators |
author |
Costa, I. F. |
author_facet |
Costa, I. F. Campos, Antonio Luiz Pereira de Siqueira Gomes Neto, Alfredo |
author_role |
author |
author2 |
Campos, Antonio Luiz Pereira de Siqueira Gomes Neto, Alfredo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Costa, I. F. Campos, Antonio Luiz Pereira de Siqueira Gomes Neto, Alfredo |
dc.subject.por.fl_str_mv |
Microstrip filters Selectivity Complementary split ring resonators Microwave |
topic |
Microstrip filters Selectivity Complementary split ring resonators Microwave |
description |
Chebyshev microstrip lowpass filters with improved performance, achieved by means of circular complementary split ring resonators (CSRR), are presented. CSRR particles exhibit frequency rejection bandwidths in the vicinity of their resonant frequencies that can be used to meliorate both selectivity and stopband in microstrip lowpass filters. Two configurations have been used: a stepped-impedance model and a configuration using open-circuited stubs. Microstrip filters having 5, 7 and 9 poles were designed and fabricated. Selectivity values up to 86 dB/GHz and suppression levels reaching 60 dB in the stopband were obtained. The filters have cutoff frequency around 2 GHz and rejection band up to 10 GHz. The insertion of the designed CSRR resonators in the ground plane of the filters removes all the transmission spurious observed in the analyzed frequency band. No considerable variation in the passband group delay is observed in the CSRR-based lowpass filters. A comparison is made among the filters designed in this and other referenced works, considering their number of poles and size. The measured results are in good agreement with the simulated ones. The presented filters can be candidates for applications using the VHF, UHF and L bands, being also very effective in the rejection of the S and C bands. Applications that demand the rejection of the first half of the X band can also use the filters detailed in this paper |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-03 |
dc.date.accessioned.fl_str_mv |
2021-12-09T14:25:59Z |
dc.date.available.fl_str_mv |
2021-12-09T14:25:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
COSTA, I. F.; CAMPOS, A. L. P. S.; GOMES NETO, Alfrêdo. Sharp Rejection and Wide Stopband Microstrip Lowpass Filters using Complementary Split Ring Resonators. JOURNAL OF MICROWAVES, OPTOELECTRONICS AND ELECTROMAGNETIC APPLICATIONS, v. 17, p. 134-143, 2018. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742018000100134&lng=en&tlng=en. Acesso em: 30 out. 2020. https://doi.org/10.1590/2179-10742018v17i11101 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/45292 |
dc.identifier.issn.none.fl_str_mv |
2179-1074 |
dc.identifier.doi.none.fl_str_mv |
10.1590/2179-10742018v17i11101 |
identifier_str_mv |
COSTA, I. F.; CAMPOS, A. L. P. S.; GOMES NETO, Alfrêdo. Sharp Rejection and Wide Stopband Microstrip Lowpass Filters using Complementary Split Ring Resonators. JOURNAL OF MICROWAVES, OPTOELECTRONICS AND ELECTROMAGNETIC APPLICATIONS, v. 17, p. 134-143, 2018. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742018000100134&lng=en&tlng=en. Acesso em: 30 out. 2020. https://doi.org/10.1590/2179-10742018v17i11101 2179-1074 10.1590/2179-10742018v17i11101 |
url |
https://repositorio.ufrn.br/handle/123456789/45292 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Microondas e Optoeletrônica |
publisher.none.fl_str_mv |
Sociedade Brasileira de Microondas e Optoeletrônica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/45292/1/SharpRejectionandWide_Campos_2018.pdf https://repositorio.ufrn.br/bitstream/123456789/45292/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/45292/3/license.txt |
bitstream.checksum.fl_str_mv |
a3f8e38c40e840a1d2c12433ed325d37 4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814833010740035584 |