Comparative analysis between wavelets for the identification of pathological voices

Detalhes bibliográficos
Autor(a) principal: Soares, Heliana Bezerra
Data de Publicação: 2010
Outros Autores: Cavalcanti, Náthalee, Silva, Sandro, Bresolin, Adriano, Guerreiro, Ana Maria Guimarães
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/45116
https://doi.org/10.1007/978-3-642-16687-7_34
Resumo: 2030
id UFRN_cc190963ff87088bbf76dab8ee3b4652
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/45116
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Soares, Heliana BezerraCavalcanti, NáthaleeSilva, SandroBresolin, AdrianoGuerreiro, Ana Maria Guimarães2021-12-01T17:42:01Z2010CAVALCANTE, Nathalee; SOARES, Heliana Bezerra ; BRESOLIN, Adriano A.; Silva, Sandro; Guerreiro, Ana Maria Guimarães. Comparative Analysis between Wavelets for the Identification of Phatological Voices. Lecture Notes in Computer Science, v. 6419, p. 236-243, 2010. Disponível em: https://link.springer.com/chapter/10.1007%2F978-3-642-16687-7_34. Acesso em: 16 jul. 2020. https://doi.org/10.1007/978-3-642-16687-7_34.978-3-642-16686-0978-3-642-16687-70302-9743 (print)https://repositorio.ufrn.br/handle/123456789/45116https://doi.org/10.1007/978-3-642-16687-7_34Springer NatureAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessVocal disorderSupport Vector Machine (SVM)Wavelet Packet TransformComparative analysis between wavelets for the identification of pathological voicesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2030This study presents a comparative analysis of wavelets, in order to find a descriptor that provides a better classification of voice pathologies. Different types of Wavelet Packet Transform were used as a tool for feature extraction and Support Vector Machine (SVM) to classify vocal disorders. Tests were conducted with 23 wavelets types in two SVMs, the first using the strategy “one vs. all” to classify normal and pathological voices and the second, using the strategy “one vs. one” to classify pathologies: edema and nodules. The best results were obtained using Daubechies family, especially Daubechies 5 (db5) waveletengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/45116/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/45116/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/451162024-03-19 01:01:34.346oai:https://repositorio.ufrn.br:123456789/45116Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2024-03-19T04:01:34Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Comparative analysis between wavelets for the identification of pathological voices
title Comparative analysis between wavelets for the identification of pathological voices
spellingShingle Comparative analysis between wavelets for the identification of pathological voices
Soares, Heliana Bezerra
Vocal disorder
Support Vector Machine (SVM)
Wavelet Packet Transform
title_short Comparative analysis between wavelets for the identification of pathological voices
title_full Comparative analysis between wavelets for the identification of pathological voices
title_fullStr Comparative analysis between wavelets for the identification of pathological voices
title_full_unstemmed Comparative analysis between wavelets for the identification of pathological voices
title_sort Comparative analysis between wavelets for the identification of pathological voices
author Soares, Heliana Bezerra
author_facet Soares, Heliana Bezerra
Cavalcanti, Náthalee
Silva, Sandro
Bresolin, Adriano
Guerreiro, Ana Maria Guimarães
author_role author
author2 Cavalcanti, Náthalee
Silva, Sandro
Bresolin, Adriano
Guerreiro, Ana Maria Guimarães
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Soares, Heliana Bezerra
Cavalcanti, Náthalee
Silva, Sandro
Bresolin, Adriano
Guerreiro, Ana Maria Guimarães
dc.subject.por.fl_str_mv Vocal disorder
Support Vector Machine (SVM)
Wavelet Packet Transform
topic Vocal disorder
Support Vector Machine (SVM)
Wavelet Packet Transform
description 2030
publishDate 2010
dc.date.issued.fl_str_mv 2010
dc.date.accessioned.fl_str_mv 2021-12-01T17:42:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv CAVALCANTE, Nathalee; SOARES, Heliana Bezerra ; BRESOLIN, Adriano A.; Silva, Sandro; Guerreiro, Ana Maria Guimarães. Comparative Analysis between Wavelets for the Identification of Phatological Voices. Lecture Notes in Computer Science, v. 6419, p. 236-243, 2010. Disponível em: https://link.springer.com/chapter/10.1007%2F978-3-642-16687-7_34. Acesso em: 16 jul. 2020. https://doi.org/10.1007/978-3-642-16687-7_34.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/45116
dc.identifier.isbn.none.fl_str_mv 978-3-642-16686-0
978-3-642-16687-7
dc.identifier.issn.none.fl_str_mv 0302-9743 (print)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-642-16687-7_34
identifier_str_mv CAVALCANTE, Nathalee; SOARES, Heliana Bezerra ; BRESOLIN, Adriano A.; Silva, Sandro; Guerreiro, Ana Maria Guimarães. Comparative Analysis between Wavelets for the Identification of Phatological Voices. Lecture Notes in Computer Science, v. 6419, p. 236-243, 2010. Disponível em: https://link.springer.com/chapter/10.1007%2F978-3-642-16687-7_34. Acesso em: 16 jul. 2020. https://doi.org/10.1007/978-3-642-16687-7_34.
978-3-642-16686-0
978-3-642-16687-7
0302-9743 (print)
url https://repositorio.ufrn.br/handle/123456789/45116
https://doi.org/10.1007/978-3-642-16687-7_34
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Nature
publisher.none.fl_str_mv Springer Nature
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/45116/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/45116/3/license.txt
bitstream.checksum.fl_str_mv 4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832649649258496