Comparative analysis between wavelets for the identification of pathological voices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/45116 https://doi.org/10.1007/978-3-642-16687-7_34 |
Resumo: | 2030 |
id |
UFRN_cc190963ff87088bbf76dab8ee3b4652 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/45116 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Soares, Heliana BezerraCavalcanti, NáthaleeSilva, SandroBresolin, AdrianoGuerreiro, Ana Maria Guimarães2021-12-01T17:42:01Z2010CAVALCANTE, Nathalee; SOARES, Heliana Bezerra ; BRESOLIN, Adriano A.; Silva, Sandro; Guerreiro, Ana Maria Guimarães. Comparative Analysis between Wavelets for the Identification of Phatological Voices. Lecture Notes in Computer Science, v. 6419, p. 236-243, 2010. Disponível em: https://link.springer.com/chapter/10.1007%2F978-3-642-16687-7_34. Acesso em: 16 jul. 2020. https://doi.org/10.1007/978-3-642-16687-7_34.978-3-642-16686-0978-3-642-16687-70302-9743 (print)https://repositorio.ufrn.br/handle/123456789/45116https://doi.org/10.1007/978-3-642-16687-7_34Springer NatureAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessVocal disorderSupport Vector Machine (SVM)Wavelet Packet TransformComparative analysis between wavelets for the identification of pathological voicesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2030This study presents a comparative analysis of wavelets, in order to find a descriptor that provides a better classification of voice pathologies. Different types of Wavelet Packet Transform were used as a tool for feature extraction and Support Vector Machine (SVM) to classify vocal disorders. Tests were conducted with 23 wavelets types in two SVMs, the first using the strategy “one vs. all” to classify normal and pathological voices and the second, using the strategy “one vs. one” to classify pathologies: edema and nodules. The best results were obtained using Daubechies family, especially Daubechies 5 (db5) waveletengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/45116/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/45116/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/451162024-03-19 01:01:34.346oai:https://repositorio.ufrn.br:123456789/45116Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2024-03-19T04:01:34Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Comparative analysis between wavelets for the identification of pathological voices |
title |
Comparative analysis between wavelets for the identification of pathological voices |
spellingShingle |
Comparative analysis between wavelets for the identification of pathological voices Soares, Heliana Bezerra Vocal disorder Support Vector Machine (SVM) Wavelet Packet Transform |
title_short |
Comparative analysis between wavelets for the identification of pathological voices |
title_full |
Comparative analysis between wavelets for the identification of pathological voices |
title_fullStr |
Comparative analysis between wavelets for the identification of pathological voices |
title_full_unstemmed |
Comparative analysis between wavelets for the identification of pathological voices |
title_sort |
Comparative analysis between wavelets for the identification of pathological voices |
author |
Soares, Heliana Bezerra |
author_facet |
Soares, Heliana Bezerra Cavalcanti, Náthalee Silva, Sandro Bresolin, Adriano Guerreiro, Ana Maria Guimarães |
author_role |
author |
author2 |
Cavalcanti, Náthalee Silva, Sandro Bresolin, Adriano Guerreiro, Ana Maria Guimarães |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Soares, Heliana Bezerra Cavalcanti, Náthalee Silva, Sandro Bresolin, Adriano Guerreiro, Ana Maria Guimarães |
dc.subject.por.fl_str_mv |
Vocal disorder Support Vector Machine (SVM) Wavelet Packet Transform |
topic |
Vocal disorder Support Vector Machine (SVM) Wavelet Packet Transform |
description |
2030 |
publishDate |
2010 |
dc.date.issued.fl_str_mv |
2010 |
dc.date.accessioned.fl_str_mv |
2021-12-01T17:42:01Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CAVALCANTE, Nathalee; SOARES, Heliana Bezerra ; BRESOLIN, Adriano A.; Silva, Sandro; Guerreiro, Ana Maria Guimarães. Comparative Analysis between Wavelets for the Identification of Phatological Voices. Lecture Notes in Computer Science, v. 6419, p. 236-243, 2010. Disponível em: https://link.springer.com/chapter/10.1007%2F978-3-642-16687-7_34. Acesso em: 16 jul. 2020. https://doi.org/10.1007/978-3-642-16687-7_34. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/45116 |
dc.identifier.isbn.none.fl_str_mv |
978-3-642-16686-0 978-3-642-16687-7 |
dc.identifier.issn.none.fl_str_mv |
0302-9743 (print) |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-642-16687-7_34 |
identifier_str_mv |
CAVALCANTE, Nathalee; SOARES, Heliana Bezerra ; BRESOLIN, Adriano A.; Silva, Sandro; Guerreiro, Ana Maria Guimarães. Comparative Analysis between Wavelets for the Identification of Phatological Voices. Lecture Notes in Computer Science, v. 6419, p. 236-243, 2010. Disponível em: https://link.springer.com/chapter/10.1007%2F978-3-642-16687-7_34. Acesso em: 16 jul. 2020. https://doi.org/10.1007/978-3-642-16687-7_34. 978-3-642-16686-0 978-3-642-16687-7 0302-9743 (print) |
url |
https://repositorio.ufrn.br/handle/123456789/45116 https://doi.org/10.1007/978-3-642-16687-7_34 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/45116/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/45116/3/license.txt |
bitstream.checksum.fl_str_mv |
4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832649649258496 |