Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations

Detalhes bibliográficos
Autor(a) principal: Turesson, Hjalmar K.
Data de Publicação: 2016
Outros Autores: Ribeiro, Sidarta Tollendal Gomes, Pereira, Danillo R., Papa, João P., Albuquerque, Victor Hugo C. de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/21398
Resumo: Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available.
id UFRN_cfd457352a7a6484a2dfe2ab738404e3
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/21398
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Turesson, Hjalmar K.Ribeiro, Sidarta Tollendal GomesPereira, Danillo R.Papa, João P.Albuquerque, Victor Hugo C. de2016-09-29T14:47:27Z2016-09-29T14:47:27Z2016-09TURESSON, H.K.; RIBEIRO, S.; PEREIRA, D.R.; PAPA, J.P.; DE ALBUQUERQUE, V.H.C. Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations. PLoS ONE. v.11, n.9, p.e0163041, 2016. doi:10.1371/journal.pone.0163041https://repositorio.ufrn.br/jspui/handle/123456789/21398Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available.Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available.engMachine Learning AlgorithmsMarmoset VocalizationsMachine Learning Algorithmsfor Automatic Classification of Marmoset VocalizationsMachine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALSidartaRibeiro_ICE_2016_MachineLearning.pdfSidartaRibeiro_ICE_2016_MachineLearning.pdfapplication/pdf2491425https://repositorio.ufrn.br/bitstream/123456789/21398/1/SidartaRibeiro_ICE_2016_MachineLearning.pdf1e4165cfd316cdf646416ce431a6254fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/21398/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSidartaRibeiro_ICE_2016_MachineLearning.pdf.txtSidartaRibeiro_ICE_2016_MachineLearning.pdf.txtExtracted texttext/plain45282https://repositorio.ufrn.br/bitstream/123456789/21398/7/SidartaRibeiro_ICE_2016_MachineLearning.pdf.txt6ae7ff0fb80926ec99a6e87f9f0efb8dMD57THUMBNAILSidartaRibeiro_ICE_2016_MachineLearning.pdf.jpgSidartaRibeiro_ICE_2016_MachineLearning.pdf.jpgIM Thumbnailimage/jpeg10969https://repositorio.ufrn.br/bitstream/123456789/21398/8/SidartaRibeiro_ICE_2016_MachineLearning.pdf.jpgc56154fbedf81d37bf366cb4390ad4a5MD58123456789/213982021-07-10 19:17:52.482oai:https://repositorio.ufrn.br:123456789/21398Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-10T22:17:52Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations
dc.title.alternative.pt_BR.fl_str_mv Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations
title Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations
spellingShingle Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations
Turesson, Hjalmar K.
Machine Learning Algorithms
Marmoset Vocalizations
title_short Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations
title_full Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations
title_fullStr Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations
title_full_unstemmed Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations
title_sort Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations
author Turesson, Hjalmar K.
author_facet Turesson, Hjalmar K.
Ribeiro, Sidarta Tollendal Gomes
Pereira, Danillo R.
Papa, João P.
Albuquerque, Victor Hugo C. de
author_role author
author2 Ribeiro, Sidarta Tollendal Gomes
Pereira, Danillo R.
Papa, João P.
Albuquerque, Victor Hugo C. de
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Turesson, Hjalmar K.
Ribeiro, Sidarta Tollendal Gomes
Pereira, Danillo R.
Papa, João P.
Albuquerque, Victor Hugo C. de
dc.subject.por.fl_str_mv Machine Learning Algorithms
Marmoset Vocalizations
topic Machine Learning Algorithms
Marmoset Vocalizations
description Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-09-29T14:47:27Z
dc.date.available.fl_str_mv 2016-09-29T14:47:27Z
dc.date.issued.fl_str_mv 2016-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv TURESSON, H.K.; RIBEIRO, S.; PEREIRA, D.R.; PAPA, J.P.; DE ALBUQUERQUE, V.H.C. Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations. PLoS ONE. v.11, n.9, p.e0163041, 2016. doi:10.1371/journal.pone.0163041
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/21398
identifier_str_mv TURESSON, H.K.; RIBEIRO, S.; PEREIRA, D.R.; PAPA, J.P.; DE ALBUQUERQUE, V.H.C. Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations. PLoS ONE. v.11, n.9, p.e0163041, 2016. doi:10.1371/journal.pone.0163041
url https://repositorio.ufrn.br/jspui/handle/123456789/21398
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/21398/1/SidartaRibeiro_ICE_2016_MachineLearning.pdf
https://repositorio.ufrn.br/bitstream/123456789/21398/2/license.txt
https://repositorio.ufrn.br/bitstream/123456789/21398/7/SidartaRibeiro_ICE_2016_MachineLearning.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/21398/8/SidartaRibeiro_ICE_2016_MachineLearning.pdf.jpg
bitstream.checksum.fl_str_mv 1e4165cfd316cdf646416ce431a6254f
8a4605be74aa9ea9d79846c1fba20a33
6ae7ff0fb80926ec99a6e87f9f0efb8d
c56154fbedf81d37bf366cb4390ad4a5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814833015715528704