Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/21398 |
Resumo: | Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available. |
id |
UFRN_cfd457352a7a6484a2dfe2ab738404e3 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/21398 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Turesson, Hjalmar K.Ribeiro, Sidarta Tollendal GomesPereira, Danillo R.Papa, João P.Albuquerque, Victor Hugo C. de2016-09-29T14:47:27Z2016-09-29T14:47:27Z2016-09TURESSON, H.K.; RIBEIRO, S.; PEREIRA, D.R.; PAPA, J.P.; DE ALBUQUERQUE, V.H.C. Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations. PLoS ONE. v.11, n.9, p.e0163041, 2016. doi:10.1371/journal.pone.0163041https://repositorio.ufrn.br/jspui/handle/123456789/21398Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available.Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available.engMachine Learning AlgorithmsMarmoset VocalizationsMachine Learning Algorithmsfor Automatic Classification of Marmoset VocalizationsMachine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALSidartaRibeiro_ICE_2016_MachineLearning.pdfSidartaRibeiro_ICE_2016_MachineLearning.pdfapplication/pdf2491425https://repositorio.ufrn.br/bitstream/123456789/21398/1/SidartaRibeiro_ICE_2016_MachineLearning.pdf1e4165cfd316cdf646416ce431a6254fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/21398/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSidartaRibeiro_ICE_2016_MachineLearning.pdf.txtSidartaRibeiro_ICE_2016_MachineLearning.pdf.txtExtracted texttext/plain45282https://repositorio.ufrn.br/bitstream/123456789/21398/7/SidartaRibeiro_ICE_2016_MachineLearning.pdf.txt6ae7ff0fb80926ec99a6e87f9f0efb8dMD57THUMBNAILSidartaRibeiro_ICE_2016_MachineLearning.pdf.jpgSidartaRibeiro_ICE_2016_MachineLearning.pdf.jpgIM Thumbnailimage/jpeg10969https://repositorio.ufrn.br/bitstream/123456789/21398/8/SidartaRibeiro_ICE_2016_MachineLearning.pdf.jpgc56154fbedf81d37bf366cb4390ad4a5MD58123456789/213982021-07-10 19:17:52.482oai:https://repositorio.ufrn.br:123456789/21398Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-10T22:17:52Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations |
dc.title.alternative.pt_BR.fl_str_mv |
Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations |
title |
Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations |
spellingShingle |
Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations Turesson, Hjalmar K. Machine Learning Algorithms Marmoset Vocalizations |
title_short |
Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations |
title_full |
Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations |
title_fullStr |
Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations |
title_full_unstemmed |
Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations |
title_sort |
Machine Learning Algorithmsfor Automatic Classification of Marmoset Vocalizations |
author |
Turesson, Hjalmar K. |
author_facet |
Turesson, Hjalmar K. Ribeiro, Sidarta Tollendal Gomes Pereira, Danillo R. Papa, João P. Albuquerque, Victor Hugo C. de |
author_role |
author |
author2 |
Ribeiro, Sidarta Tollendal Gomes Pereira, Danillo R. Papa, João P. Albuquerque, Victor Hugo C. de |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Turesson, Hjalmar K. Ribeiro, Sidarta Tollendal Gomes Pereira, Danillo R. Papa, João P. Albuquerque, Victor Hugo C. de |
dc.subject.por.fl_str_mv |
Machine Learning Algorithms Marmoset Vocalizations |
topic |
Machine Learning Algorithms Marmoset Vocalizations |
description |
Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-09-29T14:47:27Z |
dc.date.available.fl_str_mv |
2016-09-29T14:47:27Z |
dc.date.issued.fl_str_mv |
2016-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
TURESSON, H.K.; RIBEIRO, S.; PEREIRA, D.R.; PAPA, J.P.; DE ALBUQUERQUE, V.H.C. Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations. PLoS ONE. v.11, n.9, p.e0163041, 2016. doi:10.1371/journal.pone.0163041 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/21398 |
identifier_str_mv |
TURESSON, H.K.; RIBEIRO, S.; PEREIRA, D.R.; PAPA, J.P.; DE ALBUQUERQUE, V.H.C. Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations. PLoS ONE. v.11, n.9, p.e0163041, 2016. doi:10.1371/journal.pone.0163041 |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/21398 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/21398/1/SidartaRibeiro_ICE_2016_MachineLearning.pdf https://repositorio.ufrn.br/bitstream/123456789/21398/2/license.txt https://repositorio.ufrn.br/bitstream/123456789/21398/7/SidartaRibeiro_ICE_2016_MachineLearning.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/21398/8/SidartaRibeiro_ICE_2016_MachineLearning.pdf.jpg |
bitstream.checksum.fl_str_mv |
1e4165cfd316cdf646416ce431a6254f 8a4605be74aa9ea9d79846c1fba20a33 6ae7ff0fb80926ec99a6e87f9f0efb8d c56154fbedf81d37bf366cb4390ad4a5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814833015715528704 |