Hybrid fuzzy MADM ranking procedure for better alternative discrimination

Detalhes bibliográficos
Autor(a) principal: Ferreira, Luciano
Data de Publicação: 2016
Outros Autores: Borenstein, Denis, Santi, Éverton
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/30632
Resumo: In this paper, we propose a hybrid fuzzy decision making approach, combining elements of fuzzy-ELECTRE and Fuzzy-TOPSIS, towards a new ranking procedure. The main objective of FETOPSIS is to offer rankings with good alternative discriminatory power to decision makers (DMs). This research work was motivated by a real case study in which multiple attribute decision making techniques were used to select the best set of investment projects for the industrial restructuring of a small oil company in Brazil. After the application of Fuzzy-TOPSIS and ELECTRE II, the obtained rankings were quite deceptive from the DMs׳ point of view, either to very close scores or by the excess of indifferences among alternatives. Our developed approach uses the closeness coefficients to rank the alternatives, following Fuzzy-TOPSIS, however they are computed over the normalized fuzzy concordance and discordance indexes based on the ELECTRE family. Extensive computational experiments were performed to evaluate our method. The good results obtained by FETOPSIS in the experiments, both in terms of alternative discriminatory power of rankings, and eliminating ranking reversal cases, gave us the confidence to apply the method in the real case. The DMs praised the developed approach, since the obtained rankings were more discriminatory in the alternatives than both Fuzzy-TOPSIS and ELECTRE II, making it possible to select with confidence a set of suited alternatives
id UFRN_d49fc83d6d6a6ac42a72d086c2537b5a
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/30632
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Ferreira, LucianoBorenstein, DenisSanti, Éverton2020-11-23T15:14:20Z2020-11-23T15:14:20Z2016-04FERREIRA, Luciano; BORENSTEIN, Denis; SANTI, Everton. Hybrid fuzzy MADM ranking procedure for better alternative discrimination. Engineering Applications of Artificial Intelligence, [S.L.], v. 50, p. 71-82, abr. 2016. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0952197615002857?via%3Dihub. Acesso em: 08 set. 2020. http://dx.doi.org/10.1016/j.engappai.2015.12.0120952-1976https://repositorio.ufrn.br/handle/123456789/3063210.1016/j.engappai.2015.12.012ElsevierFuzzy MADMIndustrial restructuringTOPSISELECTREHybrid fuzzy MADM ranking procedure for better alternative discriminationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn this paper, we propose a hybrid fuzzy decision making approach, combining elements of fuzzy-ELECTRE and Fuzzy-TOPSIS, towards a new ranking procedure. The main objective of FETOPSIS is to offer rankings with good alternative discriminatory power to decision makers (DMs). This research work was motivated by a real case study in which multiple attribute decision making techniques were used to select the best set of investment projects for the industrial restructuring of a small oil company in Brazil. After the application of Fuzzy-TOPSIS and ELECTRE II, the obtained rankings were quite deceptive from the DMs׳ point of view, either to very close scores or by the excess of indifferences among alternatives. Our developed approach uses the closeness coefficients to rank the alternatives, following Fuzzy-TOPSIS, however they are computed over the normalized fuzzy concordance and discordance indexes based on the ELECTRE family. Extensive computational experiments were performed to evaluate our method. The good results obtained by FETOPSIS in the experiments, both in terms of alternative discriminatory power of rankings, and eliminating ranking reversal cases, gave us the confidence to apply the method in the real case. The DMs praised the developed approach, since the obtained rankings were more discriminatory in the alternatives than both Fuzzy-TOPSIS and ELECTRE II, making it possible to select with confidence a set of suited alternativesengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/30632/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30632/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTHybridFuzzyMADM_2016.pdf.txtHybridFuzzyMADM_2016.pdf.txtExtracted texttext/plain69549https://repositorio.ufrn.br/bitstream/123456789/30632/4/HybridFuzzyMADM_2016.pdf.txtaa7b4cc3a73fa26d5056ac1af1905845MD54THUMBNAILHybridFuzzyMADM_2016.pdf.jpgHybridFuzzyMADM_2016.pdf.jpgGenerated Thumbnailimage/jpeg1782https://repositorio.ufrn.br/bitstream/123456789/30632/5/HybridFuzzyMADM_2016.pdf.jpg8332d5d32c1fc4bd980a64cd6fd99769MD55123456789/306322023-02-03 16:02:47.634oai:https://repositorio.ufrn.br:123456789/30632Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-02-03T19:02:47Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Hybrid fuzzy MADM ranking procedure for better alternative discrimination
title Hybrid fuzzy MADM ranking procedure for better alternative discrimination
spellingShingle Hybrid fuzzy MADM ranking procedure for better alternative discrimination
Ferreira, Luciano
Fuzzy MADM
Industrial restructuring
TOPSIS
ELECTRE
title_short Hybrid fuzzy MADM ranking procedure for better alternative discrimination
title_full Hybrid fuzzy MADM ranking procedure for better alternative discrimination
title_fullStr Hybrid fuzzy MADM ranking procedure for better alternative discrimination
title_full_unstemmed Hybrid fuzzy MADM ranking procedure for better alternative discrimination
title_sort Hybrid fuzzy MADM ranking procedure for better alternative discrimination
author Ferreira, Luciano
author_facet Ferreira, Luciano
Borenstein, Denis
Santi, Éverton
author_role author
author2 Borenstein, Denis
Santi, Éverton
author2_role author
author
dc.contributor.author.fl_str_mv Ferreira, Luciano
Borenstein, Denis
Santi, Éverton
dc.subject.por.fl_str_mv Fuzzy MADM
Industrial restructuring
TOPSIS
ELECTRE
topic Fuzzy MADM
Industrial restructuring
TOPSIS
ELECTRE
description In this paper, we propose a hybrid fuzzy decision making approach, combining elements of fuzzy-ELECTRE and Fuzzy-TOPSIS, towards a new ranking procedure. The main objective of FETOPSIS is to offer rankings with good alternative discriminatory power to decision makers (DMs). This research work was motivated by a real case study in which multiple attribute decision making techniques were used to select the best set of investment projects for the industrial restructuring of a small oil company in Brazil. After the application of Fuzzy-TOPSIS and ELECTRE II, the obtained rankings were quite deceptive from the DMs׳ point of view, either to very close scores or by the excess of indifferences among alternatives. Our developed approach uses the closeness coefficients to rank the alternatives, following Fuzzy-TOPSIS, however they are computed over the normalized fuzzy concordance and discordance indexes based on the ELECTRE family. Extensive computational experiments were performed to evaluate our method. The good results obtained by FETOPSIS in the experiments, both in terms of alternative discriminatory power of rankings, and eliminating ranking reversal cases, gave us the confidence to apply the method in the real case. The DMs praised the developed approach, since the obtained rankings were more discriminatory in the alternatives than both Fuzzy-TOPSIS and ELECTRE II, making it possible to select with confidence a set of suited alternatives
publishDate 2016
dc.date.issued.fl_str_mv 2016-04
dc.date.accessioned.fl_str_mv 2020-11-23T15:14:20Z
dc.date.available.fl_str_mv 2020-11-23T15:14:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv FERREIRA, Luciano; BORENSTEIN, Denis; SANTI, Everton. Hybrid fuzzy MADM ranking procedure for better alternative discrimination. Engineering Applications of Artificial Intelligence, [S.L.], v. 50, p. 71-82, abr. 2016. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0952197615002857?via%3Dihub. Acesso em: 08 set. 2020. http://dx.doi.org/10.1016/j.engappai.2015.12.012
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/30632
dc.identifier.issn.none.fl_str_mv 0952-1976
dc.identifier.doi.none.fl_str_mv 10.1016/j.engappai.2015.12.012
identifier_str_mv FERREIRA, Luciano; BORENSTEIN, Denis; SANTI, Everton. Hybrid fuzzy MADM ranking procedure for better alternative discrimination. Engineering Applications of Artificial Intelligence, [S.L.], v. 50, p. 71-82, abr. 2016. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0952197615002857?via%3Dihub. Acesso em: 08 set. 2020. http://dx.doi.org/10.1016/j.engappai.2015.12.012
0952-1976
10.1016/j.engappai.2015.12.012
url https://repositorio.ufrn.br/handle/123456789/30632
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/30632/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/30632/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/30632/4/HybridFuzzyMADM_2016.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/30632/5/HybridFuzzyMADM_2016.pdf.jpg
bitstream.checksum.fl_str_mv 4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
aa7b4cc3a73fa26d5056ac1af1905845
8332d5d32c1fc4bd980a64cd6fd99769
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832848657448960