General results for the transmuted Family of distributions and new models

Detalhes bibliográficos
Autor(a) principal: Bourguignon, Marcelo
Data de Publicação: 2016
Outros Autores: Ghosh, Indranil, Cordeiro, Gauss M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/49678
http://dx.doi.org/10.1155/2016/7208425
Resumo: The transmuted family of distributions has been receiving increased attention over the last few years. For a baseline G distribution, we derive a simple representation for the transmuted-G family density function as a linear mixture of the G and exponentiated-G densities. We investigate the asymptotes and shapes and obtain explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean deviations, R´enyi and Shannon entropies, and order statistics and their moments. We estimate the model parameters of the family by the method of maximum likelihood. We prove empirically the flexibility of the proposed model by means of an application to a real data set.
id UFRN_d71a5e4397ab0fbc9632b7e311664710
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/49678
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Bourguignon, MarceloGhosh, IndranilCordeiro, Gauss M.2022-11-08T18:23:25Z2022-11-08T18:23:25Z2016BOURGUIGNON, Marcelo; GHOSH, Indranil; CORDEIRO, Gauss M. . General Results for the Transmuted Family of Distributions and New Models. Journal of Probability and Statistics, v. 2016, p. 1-12, 2016. Disponível em:https://www.hindawi.com/journals/jps/2016/7208425. Acesso em: 07 dez. 2017.https://repositorio.ufrn.br/handle/123456789/49678http://dx.doi.org/10.1155/2016/7208425Journal of Probability and StatisticsTransmuted FamilyInformation TheoryMaximum Likelihood EstimationGeneral results for the transmuted Family of distributions and new modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe transmuted family of distributions has been receiving increased attention over the last few years. For a baseline G distribution, we derive a simple representation for the transmuted-G family density function as a linear mixture of the G and exponentiated-G densities. We investigate the asymptotes and shapes and obtain explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean deviations, R´enyi and Shannon entropies, and order statistics and their moments. We estimate the model parameters of the family by the method of maximum likelihood. We prove empirically the flexibility of the proposed model by means of an application to a real data set.info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/49678/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALGeneralResults_2016.pdfGeneralResults_2016.pdfapplication/pdf2325546https://repositorio.ufrn.br/bitstream/123456789/49678/1/GeneralResults_2016.pdf9ca57bda990efc1c465afed4a3ca983bMD51123456789/496782022-11-08 15:23:27.119oai:https://repositorio.ufrn.br:123456789/49678Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-11-08T18:23:27Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv General results for the transmuted Family of distributions and new models
title General results for the transmuted Family of distributions and new models
spellingShingle General results for the transmuted Family of distributions and new models
Bourguignon, Marcelo
Transmuted Family
Information Theory
Maximum Likelihood Estimation
title_short General results for the transmuted Family of distributions and new models
title_full General results for the transmuted Family of distributions and new models
title_fullStr General results for the transmuted Family of distributions and new models
title_full_unstemmed General results for the transmuted Family of distributions and new models
title_sort General results for the transmuted Family of distributions and new models
author Bourguignon, Marcelo
author_facet Bourguignon, Marcelo
Ghosh, Indranil
Cordeiro, Gauss M.
author_role author
author2 Ghosh, Indranil
Cordeiro, Gauss M.
author2_role author
author
dc.contributor.author.fl_str_mv Bourguignon, Marcelo
Ghosh, Indranil
Cordeiro, Gauss M.
dc.subject.por.fl_str_mv Transmuted Family
Information Theory
Maximum Likelihood Estimation
topic Transmuted Family
Information Theory
Maximum Likelihood Estimation
description The transmuted family of distributions has been receiving increased attention over the last few years. For a baseline G distribution, we derive a simple representation for the transmuted-G family density function as a linear mixture of the G and exponentiated-G densities. We investigate the asymptotes and shapes and obtain explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean deviations, R´enyi and Shannon entropies, and order statistics and their moments. We estimate the model parameters of the family by the method of maximum likelihood. We prove empirically the flexibility of the proposed model by means of an application to a real data set.
publishDate 2016
dc.date.issued.fl_str_mv 2016
dc.date.accessioned.fl_str_mv 2022-11-08T18:23:25Z
dc.date.available.fl_str_mv 2022-11-08T18:23:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv BOURGUIGNON, Marcelo; GHOSH, Indranil; CORDEIRO, Gauss M. . General Results for the Transmuted Family of Distributions and New Models. Journal of Probability and Statistics, v. 2016, p. 1-12, 2016. Disponível em:https://www.hindawi.com/journals/jps/2016/7208425. Acesso em: 07 dez. 2017.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/49678
dc.identifier.doi.none.fl_str_mv http://dx.doi.org/10.1155/2016/7208425
identifier_str_mv BOURGUIGNON, Marcelo; GHOSH, Indranil; CORDEIRO, Gauss M. . General Results for the Transmuted Family of Distributions and New Models. Journal of Probability and Statistics, v. 2016, p. 1-12, 2016. Disponível em:https://www.hindawi.com/journals/jps/2016/7208425. Acesso em: 07 dez. 2017.
url https://repositorio.ufrn.br/handle/123456789/49678
http://dx.doi.org/10.1155/2016/7208425
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Journal of Probability and Statistics
publisher.none.fl_str_mv Journal of Probability and Statistics
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/49678/2/license.txt
https://repositorio.ufrn.br/bitstream/123456789/49678/1/GeneralResults_2016.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
9ca57bda990efc1c465afed4a3ca983b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832902883508224