General results for the transmuted Family of distributions and new models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/49678 http://dx.doi.org/10.1155/2016/7208425 |
Resumo: | The transmuted family of distributions has been receiving increased attention over the last few years. For a baseline G distribution, we derive a simple representation for the transmuted-G family density function as a linear mixture of the G and exponentiated-G densities. We investigate the asymptotes and shapes and obtain explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean deviations, R´enyi and Shannon entropies, and order statistics and their moments. We estimate the model parameters of the family by the method of maximum likelihood. We prove empirically the flexibility of the proposed model by means of an application to a real data set. |
id |
UFRN_d71a5e4397ab0fbc9632b7e311664710 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/49678 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Bourguignon, MarceloGhosh, IndranilCordeiro, Gauss M.2022-11-08T18:23:25Z2022-11-08T18:23:25Z2016BOURGUIGNON, Marcelo; GHOSH, Indranil; CORDEIRO, Gauss M. . General Results for the Transmuted Family of Distributions and New Models. Journal of Probability and Statistics, v. 2016, p. 1-12, 2016. Disponível em:https://www.hindawi.com/journals/jps/2016/7208425. Acesso em: 07 dez. 2017.https://repositorio.ufrn.br/handle/123456789/49678http://dx.doi.org/10.1155/2016/7208425Journal of Probability and StatisticsTransmuted FamilyInformation TheoryMaximum Likelihood EstimationGeneral results for the transmuted Family of distributions and new modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe transmuted family of distributions has been receiving increased attention over the last few years. For a baseline G distribution, we derive a simple representation for the transmuted-G family density function as a linear mixture of the G and exponentiated-G densities. We investigate the asymptotes and shapes and obtain explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean deviations, R´enyi and Shannon entropies, and order statistics and their moments. We estimate the model parameters of the family by the method of maximum likelihood. We prove empirically the flexibility of the proposed model by means of an application to a real data set.info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/49678/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALGeneralResults_2016.pdfGeneralResults_2016.pdfapplication/pdf2325546https://repositorio.ufrn.br/bitstream/123456789/49678/1/GeneralResults_2016.pdf9ca57bda990efc1c465afed4a3ca983bMD51123456789/496782022-11-08 15:23:27.119oai:https://repositorio.ufrn.br:123456789/49678Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-11-08T18:23:27Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
General results for the transmuted Family of distributions and new models |
title |
General results for the transmuted Family of distributions and new models |
spellingShingle |
General results for the transmuted Family of distributions and new models Bourguignon, Marcelo Transmuted Family Information Theory Maximum Likelihood Estimation |
title_short |
General results for the transmuted Family of distributions and new models |
title_full |
General results for the transmuted Family of distributions and new models |
title_fullStr |
General results for the transmuted Family of distributions and new models |
title_full_unstemmed |
General results for the transmuted Family of distributions and new models |
title_sort |
General results for the transmuted Family of distributions and new models |
author |
Bourguignon, Marcelo |
author_facet |
Bourguignon, Marcelo Ghosh, Indranil Cordeiro, Gauss M. |
author_role |
author |
author2 |
Ghosh, Indranil Cordeiro, Gauss M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Bourguignon, Marcelo Ghosh, Indranil Cordeiro, Gauss M. |
dc.subject.por.fl_str_mv |
Transmuted Family Information Theory Maximum Likelihood Estimation |
topic |
Transmuted Family Information Theory Maximum Likelihood Estimation |
description |
The transmuted family of distributions has been receiving increased attention over the last few years. For a baseline G distribution, we derive a simple representation for the transmuted-G family density function as a linear mixture of the G and exponentiated-G densities. We investigate the asymptotes and shapes and obtain explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean deviations, R´enyi and Shannon entropies, and order statistics and their moments. We estimate the model parameters of the family by the method of maximum likelihood. We prove empirically the flexibility of the proposed model by means of an application to a real data set. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016 |
dc.date.accessioned.fl_str_mv |
2022-11-08T18:23:25Z |
dc.date.available.fl_str_mv |
2022-11-08T18:23:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BOURGUIGNON, Marcelo; GHOSH, Indranil; CORDEIRO, Gauss M. . General Results for the Transmuted Family of Distributions and New Models. Journal of Probability and Statistics, v. 2016, p. 1-12, 2016. Disponível em:https://www.hindawi.com/journals/jps/2016/7208425. Acesso em: 07 dez. 2017. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/49678 |
dc.identifier.doi.none.fl_str_mv |
http://dx.doi.org/10.1155/2016/7208425 |
identifier_str_mv |
BOURGUIGNON, Marcelo; GHOSH, Indranil; CORDEIRO, Gauss M. . General Results for the Transmuted Family of Distributions and New Models. Journal of Probability and Statistics, v. 2016, p. 1-12, 2016. Disponível em:https://www.hindawi.com/journals/jps/2016/7208425. Acesso em: 07 dez. 2017. |
url |
https://repositorio.ufrn.br/handle/123456789/49678 http://dx.doi.org/10.1155/2016/7208425 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Journal of Probability and Statistics |
publisher.none.fl_str_mv |
Journal of Probability and Statistics |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/49678/2/license.txt https://repositorio.ufrn.br/bitstream/123456789/49678/1/GeneralResults_2016.pdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 9ca57bda990efc1c465afed4a3ca983b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832902883508224 |