Precursores LaNiO3/La2NiO4 suportados em MCM-41 para obtenção de hidrogênio a partir da reforma a seco do metano.

Detalhes bibliográficos
Autor(a) principal: Agostinho, Lenilton Vidal
Data de Publicação: 2016
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/38348
Resumo: The energy generation in the face of growing energy demand is a challenge to maintain the social welfare, especially if we take into account the strong presence of oil in the energy matrix. Added to this, there is the link between oil and climate changes due to carbon dioxide (CO2) emissions. In an attempt to cease such problems, hydrogen (H2) stands out as an energy source due to its high conversion and efficiency. With the increase of environmental awareness, the Methane Dry Reforming, MDR, is highlighted due to the use of CO2 in synthesis gas generation (H2 and CO). Nickel catalysts are widely studied because of its low cost and stability. As a catalyst, nickel can be obtained from the perovskite LaNiO3 because of perovskite’s good stability. Perovskite compounds have low surface area, limiting their use. The use of supports with high surface area, such as MCM-41, increases the surface area of the catalyst. One of the problems in supporting perovskites on MCM-41 is the high temperature required to form them, which would destabilize the MCM-41 structure. The present work aims to put together MCM-41 and perovskite proprieties preparing LaNiO3 and La2NiO4 in situ by wet impregnation as precursors of Ni0/La2O3 supported on MCM-41. The calcination temperature (700°C) was chosen because it was intermediate to that of perovskite formation and destabilization of the MCM-41 structure. The XRD results show a mixture of NiO, La2O3, LaNiO3 and La2NiO4, whereas the post-TPR XRD show Ni0 and La2O3. MDR results in fixed-bed reactor show CH4 and CO2 conversion rates around 88.8 and 88.1%, respectively, for a ten-hour analysis, as well as H2/CO> 1 ratio, indicating good results for hydrogen generation.
id UFRN_d8ed377de22e301424ec64ba6a2da4a8
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/38348
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Agostinho, Lenilton VidalRodolfo Luiz Bezerra de Araújo MedeirosVitor Sobrinho, EledirMelo, Dulce Maria de Araújo2017-01-30T12:13:56Z2021-09-27T11:47:57Z2017-01-30T12:13:56Z2021-09-27T11:47:57Z2016-12-162011024354ABBAS, H.F.; WAN DAUD, W.M.A. Hydrogen production by methane decomposition: A review. International Journal of Hydrogen Energy, v. 35, p. 1160–1190, 2010. http://dx.doi.org/10.1016/j.ijhydene.2009.11.036 Agência Nacional do Petróleo, Gás Natural e Biocombustíveis – ANP. Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis: 2015. Disponível em: <http://www.anp.gov.br/?dw=78135> Acesso em: 29 de agosto de 2016. ALIPOUR, Z.; REZAEI, M.; MESHKANI, F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. Journal of Industrial and Engineering Chemistry, v. 20, p. 2858–2863, 2014. http://dx.doi.org/10.1016/j.jiec.2013.11.018 ALOTAIBI, R.; ALENAZEY, F.; ALOTAIBI, F.; ALOTAIBI, F.; WEI, N.; AL-FATESH, A.; FAKEESHA, A. Ni catalysts with different promoters supported on zeolite for dry reforming of methane. Applied Petrochemical Research, v. 5, p. 329–337, 2015. http://dx.doi.org/10.1007/s13203-015-0117-y ARMOR, J.N. The multiple roles for catalysis in the production of H2. Applied Catalysis A: General, v. 176, p. 159–176, 1999. http://dx.doi.org/10.1016/S0926-860X(98)00244-0 ASHIK, U.P.M.; WAN DAUD, W.M.A.; ABBAS, H.F.; Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review. Renewable and Sustainable Energy Reviews, v. 44, p. 221–256, 2015. http://dx.doi.org/10.1016/j.rser.2014.12.025 BARROS, B.S.; KULESZA, J.; MELO, D.M.A.; KIENNEMAN, A. Nickel-Based catalyst precursor prepared via microwave-induced combustion method: themodynamics of sythesis and performance in dry reforming of CH4. Material Research, v.18, p. 732-739, 2015. http://dx.doi.org/10.1590/1516-1439.018115 BATIOT-DUPEYRAT, C.; SIERRA GALLEGO G.A.; MONDRAGON, F.; BARRAULT, J.; TATIBOUTËT, J.-M. CO2 reforming of methane over LaNiO3 as precursor material. Catalysis Today, v. 107–108, p. 474–480, 2005. http://dx.doi.org/10.1016/j.cattod.2005.07.014 BAUDOUIN, D.; RODEMERCK, U.; KRUMEICH, F.; MALLMANN, A.; SZETO, K.C.; MÉNARD, H.; VEYRE, L.; CANDY, J.-P.; WEBB, P.B.; THIEULEUX, C.; COPÉRET, C. Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles. Journal of Catalysis, v. 297, p. 27–34, 2013. http://dx.doi.org/10.1016/j.jcat.2012.09.011 DECOURT, B.; LAJOIE, B.; DEBARRE, R.; SOUPA, O. Hydrogen-Based Energy Conversion, More than Storage: System Flexibility, SBC Energy Institute, 2014, Paris. Disponível em: <http://www.4is-cnmi.com/feasability/doc-added-4-2014/SBC-Energy-Institute_Hydrogen-based-energy-conversion_Presentation.pdf> Acesso em: 29 de agosto de 2016. BRASIL, Lei 9.478 de 06 de agosto de 1997. CHAMBRIARD, M. Perspectivas para o Gás Natural, Agência Nacional de Petróleo (ANP), 17 de outubro de 2012. Disponível em: <www.anp.gov.br/?dw=66342> Acesso em: 18 de agosto de 2016. CIESIELCZUK, T.; POLUSZYNSKA, J.; ROSIK-DULEWSKA, C.; SPOREK, M.; LENKIEWICZ, M. Uses of weeds as an economical alternative to processed wood biomass and fossil fuels. Ecological Engineering, V. 95, p. 485–491, 2016. http://dx.doi.org/10.1016/j.ecoleng.2016.06.100 CIOLA, R. Fundamentos da Catálise. Universidade de São Paulo: Editora da Universidade de São Paulo: São Paulo, 1981. COSTA, C.C.; MELO, D.M.A.; MARTINELLI, A.E.; FONTES, M.S.B.; MELO, M.A.F.; BARROS, J.M.F. Adsorption of CO2 in MCM-41 synthesized using mixed surfactants. Applied Mechanics and Materials, v. 830, p. 11-18, 2016. http://dx.doi.org/10.4028/www.scientific.net/AMM.830.11 DIAS, J.A.C.; ASSAF, J.M. Influence of calcium content in Ni/CaO/-Al2O3 catalysts for CO2-reforming of methane. Catalysis Today, v. 85, p. 59–68, 2003. http://dx.doi.org/10.1016/S0920-5861(03)00194-9 DUTTA, S. A review on production, storage of hydrogen and its utilization as an energy resource Journal of Industrial and Engineering Chemistry, v. 20, p. 1148–1156, 2014. http://dx.doi.org/10.1016/j.jiec.2013.07.037 EWBANK, J.L.; KOBARIK, L.; DIALLO, F.Z.; SIEVERS, C. Effect of metal–support interactions in Ni/Al2O3 catalysts with low metal loading for methane dry reforming. Applied Catalysis A: General, v. 494, p. 57–67, 2015. http://dx.doi.org/10.1016/j.apcata.2015.01.029 FAN, M.-S.; ABDULLAH, A.Z.; BHATIA, S. Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas. ChemCatChem, v.1, p. 192–208, 2009. http://dx.doi.org/10.1002/cctc.200900025 FARAMAWY, S.; ZAKI, T.; SAKR, A.A.-E. Natural gas origin, composition, and processing: A review. Journal of Natural Gas Science and Engineering, v. 34, p. 34–54, 2016. http://dx.doi.org/10.1016/j.jngse.2016.06.030 GALLEGO, G.S.; MONDRAGÓN, F.; TATIBOUËT, J.-M.; BARRAULT, J.; BATIOT-DUPEYRAT, C. Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor—Characterization of carbon deposition. Catalysis Today, v. 133–135, p. 200–209, 2008. http://dx.doi.org/10.1016/j.cattod.2007.12.075 GHONIEM, A.F. Needs, resources and climate change: Clean and efficient conversion technologies. Progress in Energy and Combustion Science, v. 37, p. 15-51, 2011. http://dx.doi.org/10.1016/j.pecs.2010.02.006 GIL, M.V.; FERMOSO, J.; RUBIERA, F.; CHEN, D. H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: An assessment of the effect of operation variables using response surface methodology. Catalysis Today, v. 242, p. 19–34, 2015. http://dx.doi.org/10.1016/j.cattod.2014.04.018 GRANDELL, L.; LEHTILÄ, A.; KIVINEN, M.; KOLJONEN, T.; KIHLMAN, S.; LAURI, L.S. Role of critical metals in the future markets of clean energy technologies. Renewable Energy, v. 95, p. 53-62, 2016. http://dx.doi.org/10.1016/j.renene.2016.03.102 GUO, J.; LOU, H.; ZHAO, H.; CHAI, D.; ZHENG, X. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Applied Catalysis A: General, v. 273, p. 75–82, 2004. http://dx.doi.org/10.1016/j.apcata.2004.06.014 HE, N.; LU, Z.; YUAN, C.; HONG, J.; YANG, C.; BAO, S.; XU, Q. Effect of trivalent elements on the thermal and hydrothermal stability of MCM-41 mesoporous molecular materials. Supramolecular Science, v. 5, p. 553-558, 1998. http://dx.doi.org/10.1016/S0968-5677(98)00073-X HÖHLEIN, B.; MENZER, R.; RANGE, J. High temperature methanation in the long-distance nuclear energy transport system. Applied Catalysis, v. 1, p. 125-139, 1981. http://dx.doi.org/10.1016/0166-9834(81)80001-2 HUANG, F.; WANG, R.; YANG, C.; DRISS, H.; CHU, W.; ZHANG, H. Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen. Journal of Energy Chemistry, v. 25, p. 709–719, 2016. http://dx.doi.org/10.1016/j.jechem.2016.03.004 HÜBERT, T.; BOON-BRETT, L.; BLACK, G.; BANACH, U. Hydrogen sensors – A review. Sensors and Actuators B, v. 157, p. 329–352, 2011. http://dx.doi.org/10.1016/j.snb.2011.04.070 Inorganic Crystal Structure Database. Disponível em: < https://icsd.fiz-karlsruhe.de/search/index.xhtml> Acesso em: 01 de setembro de 2016 International Energy Agency - IEA. Hydrogen and FuelCells. OECD Publishing, 2015, Paris. Acesso em 13 de setembro de 2016. http://dx.doi.org/10.1787/9789264239760-en International Energy Agency - IEA. Wourld Energy Outlook 2015. OECD Publishing, 2015, Paris. Acesso dia 13 de setembro de 2016. http://dx.doi.org/10.1787/weo-2015-en International Energy Agency – IEA. CO2 Emissions From Fuel Combustion 2015. OECD Publishing, 2015, Paris. Acesso em 13 de setembro de 2016. http://dx.doi.org/10.1787/co2_fuel-2015-en International Energy Agency – IEA. CO2 Emissions From Fuel Combustion 2013. IEA, 2013, Paris. Acesso em 13 de setembro de 2016. http://dx.doi.org/10.1787/co2_fuel-2013-en KOTHARI, R.; TYAGI, V.V.; PATHAK, A. Waste-to-energy: A way from renewable energy sources to sustainable development. Renewable and Sustainable Energy Reviews, v. 14, p. 3164-3167, 2010. http://dx.doi.org/10.1016/j.rser.2010.05.005 KRESGE, C.T.; LEONOWICZ, M.E.; ROTH, W.J.; VARTULI, J.C.; BECK, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, v. 359, p. 710-712, 1992. http://dx.doi.org/10.1038/359710a0 LEVALLEY, T.L.; RICHARD, A.R.; FAN, M. The progress in water gas shift and steam reforming hydrogen production technologies e A review. International Journal of Hydrogen Energy, v. 39, p. 16983-17000, 2014. http://dx.doi.org/10.1016/j.ijhydene.2014.08.041 LIMA, S.M.; SILVA, A.M.; COSTA, L.O.O.; ASSAF, J.M.; JACOBS, G.; DAVIS, B.H.; MATTOS, L.V.; NORONHA, F.B. Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Applied Catalysis A: General, v. 377, p. 181–190, 2010 http://dx.doi.org/10.1016/j.apcata.2010.01.036 LIU, B.S.; AU, C.T. Carbon deposition and catalyst stability over La2NiO4/-Al2O3 during CO2 reforming of methane to syngas. Applied Catalysis A: General, v. 244, p. 181–195, 2003. http://dx.doi.org/10.1016/S0926-860X(02)00591-4 LUO, Y; LU, G.Z.; GUO, Y.L.; WANG, Y.S. Study on Ti-MCM-41 zeolites prepared with inorganic Ti sources: Synthesis, characterization and catalysis. Catalysis Communications, v. 3, p. 129–134, 2002. http://dx.doi.org/10.1016/S1566-7367(02)00069-9 MAKSHINA, E.V.; SIROTIN, S.V.; BERG, M.W.E.; KLEMENTIEV, K.V.; YUSHCHENKO, V.V.; MAZO, G.N.; GRÜNERT, W.; ROMANOVSKY, B.V. Characterization and catalytic properties of nanosized cobaltate particles prepared by in situ synthesis inside mesoporous molecular sieves. Applied Catalysis A: General, v. 312, p. 59–66, 2006. http://dx.doi.org/10.1016/j.apcata.2006.06.021 MEDEIROS, R.L.B.A.; MACEDO, H.P.; MELO, V.R.M.; OLIVEIRA, A.A.S.; BARROS, J.M.F.; MELO, M.A.F.; MELO, D.M.A. Ni supported on Fe-doped MgAl2O4 for dry reforming of methane: Use of factorial design to optimize H2 yield. International Journal of Hydrogen Energy, v. 41, p. 14047–14057, 2016. http://dx.doi.org/10.1016/j.ijhydene.2016.06.246 MEYNEN, V.; COOL, P.; VANSANT, E.F. Verified syntheses of mesoporous materials. Microporous and Mesoporous Materials, v. 12, p. 170–223, 2009. http://dx.doi.org/10.1016/j.micromeso.2009.03.046 NGUYEN, S.V.; SZABO, V.; TRONG-ON, D.; KALIAGUINE, S.; Mesoporous silica supported LaCoO3 perovskites as catalysts for methane oxidation. Microporous and Mesoporous Materials, v. 54, p. 51–61, 2002. http://dx.doi.org/10.1016/S1387-1811(02)00340-2 NIKOO, M.K.; AMIN, N.A.S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Processing Technology, v. 92, p. 678–691, 2011. http://dx.doi.org/10.1016/j.fuproc.2010.11.027 NOWOTNY, J.; VEZIROGLU, T.N. Impact of hydrogen on the environment. International Journal of Hydrogen Energy, v. 36, p. 13218-13224, 2011. http://dx.doi.org/10.1016/j.ijhydene.2011.07.071 OMOREGBE, O.; DANH, H.T.; ABIDIN, S.Z.; SETIABUDI, H.D.; ABDULLAH, B.; VU, K.B.; VO, D.V.N. Influence of Lanthanide Promoters on Ni/SBA-15 Catalysts for Syngas Production by Methane Dry Reforming. Procedia Engineering, v. 148, p. 1388–1395, 2016. http://dx.doi.org/10.1016/j.proeng.2016.06.556 PEÑA, M.A.; GÓMEZ, J.P.; FIERRO, J.L.G. New Catalytic Routes for Syngas and Hydrogen Production. Applied Catalysis A, v. 144, p. 7–57, 1996. http://dx.doi.org/10.1016/0926-860X(96)00108-1 PENNER, S.S. Steps toward the hydrogen economy. Energy, v. 31, p. 33–43, 2006. http://dx.doi.org/10.1016/j.energy.2004.04.060 PEREÑIGUEZ, R.; CRUZ, G.M.V.; CABALLERO, A. HOLGADO, J.P. LaNiO3 as a precursor of Ni/La2O3 for CO2 reforming of CH4: Effect of the presence of an amorphous NiO phase. Applied Catalysis B: Environmental, v. 123-124, p.324-332. 2012. http://dx.doi.org/10.1016/j.apcatb.2012.04.044 RATNASAMY, P.; KUMAR, R. Ferrisilicate analogs of zeolites. Catalysis Today, v. 9, 10, p. 329-416, 1991. http://dx.doi.org/10.1016/0920-5861(91)80001-P RATNASAMY, P.; KUMAR, R. Transition metal-silicate analogs of zeolites. Catalysis Letters, v. 22, p. 227-237, 1993. http://dx.doi.org/10.1007/BF00810369 RAUPACH, M.R.; MARLAND, G.; CIAIS, P.; LE QUÉRÉ, C.; CANADELL, J.G.; KLEPPER, G.; FIELD, C.B. Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Siences of the United States of America – PNAS, v.104, n. 24, p. 10288–10293, 2007. Disponível em: <www.pnas.org/cgi/doi/10.1073/pnas.0700609104> Acesso em: 08 de agosto de 2016. ROSS, J.R.H.; KEULEN, A.N.J.; HEGARTY, M.E.S.; SESHAN, K.; The catalytic conversion of natural gas to useful products. Catalysis Today, v. 30, p. 193-199, 1996. http://dx.doi.org/10.1016/0920-5861(96)00035-1 SARKAR, B.; GOYAK, R.; PENDEM, C.; SASAKI, T.; BAL, R. Highly nanodispersed Gd-doped Ni/ZSM-5 catalyst for enhanced carbon-resistant dry reforming of methane. Journal of Molecular Catalysis A: Chemical, v. 424, p. 17-26, 2016. http://dx.doi.org/10.1016/j.molcata.2016.08.006 SCHOLZ, W.H. Processes for industrial production of hydrogen and associated environmental effects. Gas Separation & Purification, v. 7, p. 131-139, 1993. http://dx.doi.org/10.1016/0950-4214(93)80001-D SONG, X.; DONG, X.; YIN, S.; WANG, M.; LI, M.; WANG, HA. Effects of Fe partial substitution of La2NiO4/LaNiO3 catalyst precursors prepared by wet impregnation method for the dry reforming of methane. Applied Catalysis A: General, v. 526, p. 132–138, 2016. http://dx.doi.org/10.1016/j.apcata.2016.07.024 SUTTHIUMPORN, K.; MANEERUNG, T.; KATHIRASER, Y.; KAWI, S. CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on CeH activation and carbon suppression. International Journal of Hydrogen Energy, v. 37, p. 11195-11207, 2012. http://dx.doi.org/10.1016/j.ijhydene.2012.04.059 TSANG, S.C.; CLARIDGE, J.B.; GREEN, M.L.H. Recent advances in the conversion of methane to synthesis gas. Catalysis Today, v. 23, p. 3–15, 1995. http://dx.doi.org/10.1016/0920-5861(94)00080-L VALDERRAMA, G.; GOLDWASSER, M.R.; NAVARRO, C.U.; TATIBOUËT, J.M.; BARRAULT, J.; BATIOT-DUPEYRAT, C.; MARTÍNEZ, F. Dry reforming of methane over Ni perovskite type oxides. Catalysis Today, v. 107-108, p. 785-791, 2005. http://dx.doi.org/10.1016/j.cattod.2005.07.010 VALDERRAMA, G.; KIENNEMANN, A.; GOLDWASSER, M.R. La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane. International Journal of Hydrogen Energy, v. 39, p. 4917-4925, 2014. http://dx.doi.org/10.1016/j.jpowsour.2009.10.004 WANG, N.; YU, X.; WANG, Y.; CHU, W.; LIU, M. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catalysis Today, v. 212, p. 98–107, 2013. http://dx.doi.org/10.1016/j.cattod.2012.07.022 WANG, Z.; CAO, X.M.; ZHU, J.; HU, P. Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory. Journal of Catalysis, v. 311, p. 469-480, 2014. http://dx.doi.org/10.1016/j.jcat.2013.12.015 YI, N.; CAO, Y.; SU, Y.; DAI, W.-L.; HE, H.-Y.; FAN, K.-N. Nanocrystalline LaCoO3 perovskite particles confined in SBA-15 silica as a new efficient catalyst for hydrocarbon oxidation. Journal of Catalysis, v. 230, p. 249–253, 2005. http://dx.doi.org/10.1016/j.jcat.2004.11.042 ZHANG, Q.; LI, Z.; WANG, G.; LI, H. Study on the impacts of natural gas supply cost on gas flow and infrastructure deployment in China. Applied Energy, v. 162, p. 1385-1398, 2016. http://dx.doi.org/10.1016/j.apenergy.2015.06.058https://repositorio.ufrn.br/handle/123456789/38348The energy generation in the face of growing energy demand is a challenge to maintain the social welfare, especially if we take into account the strong presence of oil in the energy matrix. Added to this, there is the link between oil and climate changes due to carbon dioxide (CO2) emissions. In an attempt to cease such problems, hydrogen (H2) stands out as an energy source due to its high conversion and efficiency. With the increase of environmental awareness, the Methane Dry Reforming, MDR, is highlighted due to the use of CO2 in synthesis gas generation (H2 and CO). Nickel catalysts are widely studied because of its low cost and stability. As a catalyst, nickel can be obtained from the perovskite LaNiO3 because of perovskite’s good stability. Perovskite compounds have low surface area, limiting their use. The use of supports with high surface area, such as MCM-41, increases the surface area of the catalyst. One of the problems in supporting perovskites on MCM-41 is the high temperature required to form them, which would destabilize the MCM-41 structure. The present work aims to put together MCM-41 and perovskite proprieties preparing LaNiO3 and La2NiO4 in situ by wet impregnation as precursors of Ni0/La2O3 supported on MCM-41. The calcination temperature (700°C) was chosen because it was intermediate to that of perovskite formation and destabilization of the MCM-41 structure. The XRD results show a mixture of NiO, La2O3, LaNiO3 and La2NiO4, whereas the post-TPR XRD show Ni0 and La2O3. MDR results in fixed-bed reactor show CH4 and CO2 conversion rates around 88.8 and 88.1%, respectively, for a ten-hour analysis, as well as H2/CO> 1 ratio, indicating good results for hydrogen generation.A geração de energia frente ao crescimento da demanda energética é um desafio para manutenção do bem-estar social, principalmente se levarmos em conta a forte presença do petróleo na matriz energética. Soma-se a isso, a ligação entre petróleo e mudanças climáticas devido às emissões de dióxido de carbono (CO2). Na tentativa de driblar tais problemas, o hidrogênio (H2) se destaca como fonte de energia devido à sua alta conversão e eficiência. Com a conscientização ambiental, a Reforma a Seco do Metano, RSM, ganha destaque devido à utilização de CO2 na geração de gás de síntese (H2 e CO). Catalisadores de níquel são largamente estudados devido ao baixo custo e estabilidade. Como catalisador, o níquel, Ni, pode ser obtido a partir da perovskita LaNiO3 em função de sua boa estabilidade. Tal composto tem uma baixa área superficial, limitando sua utilização. A utilização de suportes com alta área superficial, como o MCM-41, aumenta a área superficial do catalisador. Um dos problemas em suportar perovskitas em MCM-41 é a alta temperatura requerida na formação das mesmas, o que desestabilizaria a estrutura do MCM-41. O presente trabalho objetiva unir propriedades do MCM-41 e da perovskita, preparando LaNiO3 e La2NiO4 in situ por impregnação úmida como precursores de Ni0/La2O3 suportados em MCM-41. A temperatura de calcinação (700ºC) foi escolhida por ser intermediária à de formação das perovskitas e destruição da desestabilização do MCM-41. Os resultados de DRX mostram uma mistura de NiO, La2O3, LaNiO3 e La2NiO4, enquanto que os pós-RTP mostram Ni0 e La2O3. Os resultados de RSM realizados em reator de leito fixo mostram taxas de conversão de CH4 e CO2 em torno de 88,8 e 88,1%, respectivamente, para 10 horas de reação, além de razão H2/CO > 1, indicando bons resultados para a produção de hidrogênio.Universidade Federal do Rio Grande do NorteUFRNBrasilQuímica do PetróleoHidrogênio.MCM-41.Perovskita.Reforma a Seco do Metano.Methane Dry Reforming.Hydrogen.CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICAPrecursores LaNiO3/La2NiO4 suportados em MCM-41 para obtenção de hidrogênio a partir da reforma a seco do metano.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTPrecursoresLaNiO3-La2NiO4_Agostinho_2016.pdf.txtExtracted texttext/plain85755https://repositorio.ufrn.br/bitstream/123456789/38348/1/PrecursoresLaNiO3-La2NiO4_Agostinho_2016.pdf.txte4939b8b4c5a102597fc027155b2c505MD51LICENSElicense.txttext/plain756https://repositorio.ufrn.br/bitstream/123456789/38348/2/license.txta80a9cda2756d355b388cc443c3d8a43MD52ORIGINALPrecursoresLaNiO3-La2NiO4_Agostinho_2016.pdfapplication/pdf1496879https://repositorio.ufrn.br/bitstream/123456789/38348/3/PrecursoresLaNiO3-La2NiO4_Agostinho_2016.pdf1776b87810eb3b301bf7f32283f9d389MD53123456789/383482023-05-12 13:46:06.71oai:https://repositorio.ufrn.br:123456789/38348PGNlbnRlcj48c3Ryb25nPlVOSVZFUlNJREFERSBGRURFUkFMIERPIFJJTyBHUkFOREUgRE8gTk9SVEU8L3N0cm9uZz48L2NlbnRlcj4KPGNlbnRlcj48c3Ryb25nPkJJQkxJT1RFQ0EgRElHSVRBTCBERSBNT05PR1JBRklBUzwvc3Ryb25nPjwvY2VudGVyPgoKPGNlbnRlcj5UZXJtbyBkZSBBdXRvcml6YcOnw6NvIHBhcmEgZGlzcG9uaWJpbGl6YcOnw6NvIGRlIE1vbm9ncmFmaWFzIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbyBuYSBCaWJsaW90ZWNhIERpZ2l0YWwgZGUgTW9ub2dyYWZpYXMgKEJETSk8L2NlbnRlcj4KCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBkYSBtb25vZ3JhZmlhLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIFJpbyBHcmFuZGUgZG8gTm9ydGUgKFVGUk4pIGEgZGlzcG9uaWJpbGl6YXIgYXRyYXbDqXMgZGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIE1vbm9ncmFmaWFzIGRhIFVGUk4sIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgZGUgYWNvcmRvIGNvbSBhIExlaSBuwrAgOTYxMC85OCwgbyB0ZXh0byBpbnRlZ3JhbCBkYSBvYnJhIHN1Ym1ldGlkYSBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCBhIHTDrXR1bG8gZGUgZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrWZpY2EgYnJhc2lsZWlyYSwgYSBwYXJ0aXIgZGEgZGF0YSBkZXN0YSBzdWJtaXNzw6NvLiAKRepositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-05-12T16:46:06Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pr_BR.fl_str_mv Precursores LaNiO3/La2NiO4 suportados em MCM-41 para obtenção de hidrogênio a partir da reforma a seco do metano.
title Precursores LaNiO3/La2NiO4 suportados em MCM-41 para obtenção de hidrogênio a partir da reforma a seco do metano.
spellingShingle Precursores LaNiO3/La2NiO4 suportados em MCM-41 para obtenção de hidrogênio a partir da reforma a seco do metano.
Agostinho, Lenilton Vidal
Hidrogênio.
MCM-41.
Perovskita.
Reforma a Seco do Metano.
Methane Dry Reforming.
Hydrogen.
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Precursores LaNiO3/La2NiO4 suportados em MCM-41 para obtenção de hidrogênio a partir da reforma a seco do metano.
title_full Precursores LaNiO3/La2NiO4 suportados em MCM-41 para obtenção de hidrogênio a partir da reforma a seco do metano.
title_fullStr Precursores LaNiO3/La2NiO4 suportados em MCM-41 para obtenção de hidrogênio a partir da reforma a seco do metano.
title_full_unstemmed Precursores LaNiO3/La2NiO4 suportados em MCM-41 para obtenção de hidrogênio a partir da reforma a seco do metano.
title_sort Precursores LaNiO3/La2NiO4 suportados em MCM-41 para obtenção de hidrogênio a partir da reforma a seco do metano.
author Agostinho, Lenilton Vidal
author_facet Agostinho, Lenilton Vidal
author_role author
dc.contributor.referees1.none.fl_str_mv Vitor Sobrinho, Eledir
dc.contributor.author.fl_str_mv Agostinho, Lenilton Vidal
dc.contributor.advisor-co1.fl_str_mv Rodolfo Luiz Bezerra de Araújo Medeiros
dc.contributor.advisor1.fl_str_mv Melo, Dulce Maria de Araújo
contributor_str_mv Rodolfo Luiz Bezerra de Araújo Medeiros
Melo, Dulce Maria de Araújo
dc.subject.pr_BR.fl_str_mv Hidrogênio.
MCM-41.
Perovskita.
Reforma a Seco do Metano.
Methane Dry Reforming.
Hydrogen.
topic Hidrogênio.
MCM-41.
Perovskita.
Reforma a Seco do Metano.
Methane Dry Reforming.
Hydrogen.
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
description The energy generation in the face of growing energy demand is a challenge to maintain the social welfare, especially if we take into account the strong presence of oil in the energy matrix. Added to this, there is the link between oil and climate changes due to carbon dioxide (CO2) emissions. In an attempt to cease such problems, hydrogen (H2) stands out as an energy source due to its high conversion and efficiency. With the increase of environmental awareness, the Methane Dry Reforming, MDR, is highlighted due to the use of CO2 in synthesis gas generation (H2 and CO). Nickel catalysts are widely studied because of its low cost and stability. As a catalyst, nickel can be obtained from the perovskite LaNiO3 because of perovskite’s good stability. Perovskite compounds have low surface area, limiting their use. The use of supports with high surface area, such as MCM-41, increases the surface area of the catalyst. One of the problems in supporting perovskites on MCM-41 is the high temperature required to form them, which would destabilize the MCM-41 structure. The present work aims to put together MCM-41 and perovskite proprieties preparing LaNiO3 and La2NiO4 in situ by wet impregnation as precursors of Ni0/La2O3 supported on MCM-41. The calcination temperature (700°C) was chosen because it was intermediate to that of perovskite formation and destabilization of the MCM-41 structure. The XRD results show a mixture of NiO, La2O3, LaNiO3 and La2NiO4, whereas the post-TPR XRD show Ni0 and La2O3. MDR results in fixed-bed reactor show CH4 and CO2 conversion rates around 88.8 and 88.1%, respectively, for a ten-hour analysis, as well as H2/CO> 1 ratio, indicating good results for hydrogen generation.
publishDate 2016
dc.date.issued.fl_str_mv 2016-12-16
dc.date.accessioned.fl_str_mv 2017-01-30T12:13:56Z
2021-09-27T11:47:57Z
dc.date.available.fl_str_mv 2017-01-30T12:13:56Z
2021-09-27T11:47:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.pr_BR.fl_str_mv 2011024354
dc.identifier.citation.fl_str_mv ABBAS, H.F.; WAN DAUD, W.M.A. Hydrogen production by methane decomposition: A review. International Journal of Hydrogen Energy, v. 35, p. 1160–1190, 2010. http://dx.doi.org/10.1016/j.ijhydene.2009.11.036 Agência Nacional do Petróleo, Gás Natural e Biocombustíveis – ANP. Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis: 2015. Disponível em: <http://www.anp.gov.br/?dw=78135> Acesso em: 29 de agosto de 2016. ALIPOUR, Z.; REZAEI, M.; MESHKANI, F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. Journal of Industrial and Engineering Chemistry, v. 20, p. 2858–2863, 2014. http://dx.doi.org/10.1016/j.jiec.2013.11.018 ALOTAIBI, R.; ALENAZEY, F.; ALOTAIBI, F.; ALOTAIBI, F.; WEI, N.; AL-FATESH, A.; FAKEESHA, A. Ni catalysts with different promoters supported on zeolite for dry reforming of methane. Applied Petrochemical Research, v. 5, p. 329–337, 2015. http://dx.doi.org/10.1007/s13203-015-0117-y ARMOR, J.N. The multiple roles for catalysis in the production of H2. Applied Catalysis A: General, v. 176, p. 159–176, 1999. http://dx.doi.org/10.1016/S0926-860X(98)00244-0 ASHIK, U.P.M.; WAN DAUD, W.M.A.; ABBAS, H.F.; Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review. Renewable and Sustainable Energy Reviews, v. 44, p. 221–256, 2015. http://dx.doi.org/10.1016/j.rser.2014.12.025 BARROS, B.S.; KULESZA, J.; MELO, D.M.A.; KIENNEMAN, A. Nickel-Based catalyst precursor prepared via microwave-induced combustion method: themodynamics of sythesis and performance in dry reforming of CH4. Material Research, v.18, p. 732-739, 2015. http://dx.doi.org/10.1590/1516-1439.018115 BATIOT-DUPEYRAT, C.; SIERRA GALLEGO G.A.; MONDRAGON, F.; BARRAULT, J.; TATIBOUTËT, J.-M. CO2 reforming of methane over LaNiO3 as precursor material. Catalysis Today, v. 107–108, p. 474–480, 2005. http://dx.doi.org/10.1016/j.cattod.2005.07.014 BAUDOUIN, D.; RODEMERCK, U.; KRUMEICH, F.; MALLMANN, A.; SZETO, K.C.; MÉNARD, H.; VEYRE, L.; CANDY, J.-P.; WEBB, P.B.; THIEULEUX, C.; COPÉRET, C. Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles. Journal of Catalysis, v. 297, p. 27–34, 2013. http://dx.doi.org/10.1016/j.jcat.2012.09.011 DECOURT, B.; LAJOIE, B.; DEBARRE, R.; SOUPA, O. Hydrogen-Based Energy Conversion, More than Storage: System Flexibility, SBC Energy Institute, 2014, Paris. Disponível em: <http://www.4is-cnmi.com/feasability/doc-added-4-2014/SBC-Energy-Institute_Hydrogen-based-energy-conversion_Presentation.pdf> Acesso em: 29 de agosto de 2016. BRASIL, Lei 9.478 de 06 de agosto de 1997. CHAMBRIARD, M. Perspectivas para o Gás Natural, Agência Nacional de Petróleo (ANP), 17 de outubro de 2012. Disponível em: <www.anp.gov.br/?dw=66342> Acesso em: 18 de agosto de 2016. CIESIELCZUK, T.; POLUSZYNSKA, J.; ROSIK-DULEWSKA, C.; SPOREK, M.; LENKIEWICZ, M. Uses of weeds as an economical alternative to processed wood biomass and fossil fuels. Ecological Engineering, V. 95, p. 485–491, 2016. http://dx.doi.org/10.1016/j.ecoleng.2016.06.100 CIOLA, R. Fundamentos da Catálise. Universidade de São Paulo: Editora da Universidade de São Paulo: São Paulo, 1981. COSTA, C.C.; MELO, D.M.A.; MARTINELLI, A.E.; FONTES, M.S.B.; MELO, M.A.F.; BARROS, J.M.F. Adsorption of CO2 in MCM-41 synthesized using mixed surfactants. Applied Mechanics and Materials, v. 830, p. 11-18, 2016. http://dx.doi.org/10.4028/www.scientific.net/AMM.830.11 DIAS, J.A.C.; ASSAF, J.M. Influence of calcium content in Ni/CaO/-Al2O3 catalysts for CO2-reforming of methane. Catalysis Today, v. 85, p. 59–68, 2003. http://dx.doi.org/10.1016/S0920-5861(03)00194-9 DUTTA, S. A review on production, storage of hydrogen and its utilization as an energy resource Journal of Industrial and Engineering Chemistry, v. 20, p. 1148–1156, 2014. http://dx.doi.org/10.1016/j.jiec.2013.07.037 EWBANK, J.L.; KOBARIK, L.; DIALLO, F.Z.; SIEVERS, C. Effect of metal–support interactions in Ni/Al2O3 catalysts with low metal loading for methane dry reforming. Applied Catalysis A: General, v. 494, p. 57–67, 2015. http://dx.doi.org/10.1016/j.apcata.2015.01.029 FAN, M.-S.; ABDULLAH, A.Z.; BHATIA, S. Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas. ChemCatChem, v.1, p. 192–208, 2009. http://dx.doi.org/10.1002/cctc.200900025 FARAMAWY, S.; ZAKI, T.; SAKR, A.A.-E. Natural gas origin, composition, and processing: A review. Journal of Natural Gas Science and Engineering, v. 34, p. 34–54, 2016. http://dx.doi.org/10.1016/j.jngse.2016.06.030 GALLEGO, G.S.; MONDRAGÓN, F.; TATIBOUËT, J.-M.; BARRAULT, J.; BATIOT-DUPEYRAT, C. Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor—Characterization of carbon deposition. Catalysis Today, v. 133–135, p. 200–209, 2008. http://dx.doi.org/10.1016/j.cattod.2007.12.075 GHONIEM, A.F. Needs, resources and climate change: Clean and efficient conversion technologies. Progress in Energy and Combustion Science, v. 37, p. 15-51, 2011. http://dx.doi.org/10.1016/j.pecs.2010.02.006 GIL, M.V.; FERMOSO, J.; RUBIERA, F.; CHEN, D. H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: An assessment of the effect of operation variables using response surface methodology. Catalysis Today, v. 242, p. 19–34, 2015. http://dx.doi.org/10.1016/j.cattod.2014.04.018 GRANDELL, L.; LEHTILÄ, A.; KIVINEN, M.; KOLJONEN, T.; KIHLMAN, S.; LAURI, L.S. Role of critical metals in the future markets of clean energy technologies. Renewable Energy, v. 95, p. 53-62, 2016. http://dx.doi.org/10.1016/j.renene.2016.03.102 GUO, J.; LOU, H.; ZHAO, H.; CHAI, D.; ZHENG, X. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Applied Catalysis A: General, v. 273, p. 75–82, 2004. http://dx.doi.org/10.1016/j.apcata.2004.06.014 HE, N.; LU, Z.; YUAN, C.; HONG, J.; YANG, C.; BAO, S.; XU, Q. Effect of trivalent elements on the thermal and hydrothermal stability of MCM-41 mesoporous molecular materials. Supramolecular Science, v. 5, p. 553-558, 1998. http://dx.doi.org/10.1016/S0968-5677(98)00073-X HÖHLEIN, B.; MENZER, R.; RANGE, J. High temperature methanation in the long-distance nuclear energy transport system. Applied Catalysis, v. 1, p. 125-139, 1981. http://dx.doi.org/10.1016/0166-9834(81)80001-2 HUANG, F.; WANG, R.; YANG, C.; DRISS, H.; CHU, W.; ZHANG, H. Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen. Journal of Energy Chemistry, v. 25, p. 709–719, 2016. http://dx.doi.org/10.1016/j.jechem.2016.03.004 HÜBERT, T.; BOON-BRETT, L.; BLACK, G.; BANACH, U. Hydrogen sensors – A review. Sensors and Actuators B, v. 157, p. 329–352, 2011. http://dx.doi.org/10.1016/j.snb.2011.04.070 Inorganic Crystal Structure Database. Disponível em: < https://icsd.fiz-karlsruhe.de/search/index.xhtml> Acesso em: 01 de setembro de 2016 International Energy Agency - IEA. Hydrogen and FuelCells. OECD Publishing, 2015, Paris. Acesso em 13 de setembro de 2016. http://dx.doi.org/10.1787/9789264239760-en International Energy Agency - IEA. Wourld Energy Outlook 2015. OECD Publishing, 2015, Paris. Acesso dia 13 de setembro de 2016. http://dx.doi.org/10.1787/weo-2015-en International Energy Agency – IEA. CO2 Emissions From Fuel Combustion 2015. OECD Publishing, 2015, Paris. Acesso em 13 de setembro de 2016. http://dx.doi.org/10.1787/co2_fuel-2015-en International Energy Agency – IEA. CO2 Emissions From Fuel Combustion 2013. IEA, 2013, Paris. Acesso em 13 de setembro de 2016. http://dx.doi.org/10.1787/co2_fuel-2013-en KOTHARI, R.; TYAGI, V.V.; PATHAK, A. Waste-to-energy: A way from renewable energy sources to sustainable development. Renewable and Sustainable Energy Reviews, v. 14, p. 3164-3167, 2010. http://dx.doi.org/10.1016/j.rser.2010.05.005 KRESGE, C.T.; LEONOWICZ, M.E.; ROTH, W.J.; VARTULI, J.C.; BECK, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, v. 359, p. 710-712, 1992. http://dx.doi.org/10.1038/359710a0 LEVALLEY, T.L.; RICHARD, A.R.; FAN, M. The progress in water gas shift and steam reforming hydrogen production technologies e A review. International Journal of Hydrogen Energy, v. 39, p. 16983-17000, 2014. http://dx.doi.org/10.1016/j.ijhydene.2014.08.041 LIMA, S.M.; SILVA, A.M.; COSTA, L.O.O.; ASSAF, J.M.; JACOBS, G.; DAVIS, B.H.; MATTOS, L.V.; NORONHA, F.B. Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Applied Catalysis A: General, v. 377, p. 181–190, 2010 http://dx.doi.org/10.1016/j.apcata.2010.01.036 LIU, B.S.; AU, C.T. Carbon deposition and catalyst stability over La2NiO4/-Al2O3 during CO2 reforming of methane to syngas. Applied Catalysis A: General, v. 244, p. 181–195, 2003. http://dx.doi.org/10.1016/S0926-860X(02)00591-4 LUO, Y; LU, G.Z.; GUO, Y.L.; WANG, Y.S. Study on Ti-MCM-41 zeolites prepared with inorganic Ti sources: Synthesis, characterization and catalysis. Catalysis Communications, v. 3, p. 129–134, 2002. http://dx.doi.org/10.1016/S1566-7367(02)00069-9 MAKSHINA, E.V.; SIROTIN, S.V.; BERG, M.W.E.; KLEMENTIEV, K.V.; YUSHCHENKO, V.V.; MAZO, G.N.; GRÜNERT, W.; ROMANOVSKY, B.V. Characterization and catalytic properties of nanosized cobaltate particles prepared by in situ synthesis inside mesoporous molecular sieves. Applied Catalysis A: General, v. 312, p. 59–66, 2006. http://dx.doi.org/10.1016/j.apcata.2006.06.021 MEDEIROS, R.L.B.A.; MACEDO, H.P.; MELO, V.R.M.; OLIVEIRA, A.A.S.; BARROS, J.M.F.; MELO, M.A.F.; MELO, D.M.A. Ni supported on Fe-doped MgAl2O4 for dry reforming of methane: Use of factorial design to optimize H2 yield. International Journal of Hydrogen Energy, v. 41, p. 14047–14057, 2016. http://dx.doi.org/10.1016/j.ijhydene.2016.06.246 MEYNEN, V.; COOL, P.; VANSANT, E.F. Verified syntheses of mesoporous materials. Microporous and Mesoporous Materials, v. 12, p. 170–223, 2009. http://dx.doi.org/10.1016/j.micromeso.2009.03.046 NGUYEN, S.V.; SZABO, V.; TRONG-ON, D.; KALIAGUINE, S.; Mesoporous silica supported LaCoO3 perovskites as catalysts for methane oxidation. Microporous and Mesoporous Materials, v. 54, p. 51–61, 2002. http://dx.doi.org/10.1016/S1387-1811(02)00340-2 NIKOO, M.K.; AMIN, N.A.S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Processing Technology, v. 92, p. 678–691, 2011. http://dx.doi.org/10.1016/j.fuproc.2010.11.027 NOWOTNY, J.; VEZIROGLU, T.N. Impact of hydrogen on the environment. International Journal of Hydrogen Energy, v. 36, p. 13218-13224, 2011. http://dx.doi.org/10.1016/j.ijhydene.2011.07.071 OMOREGBE, O.; DANH, H.T.; ABIDIN, S.Z.; SETIABUDI, H.D.; ABDULLAH, B.; VU, K.B.; VO, D.V.N. Influence of Lanthanide Promoters on Ni/SBA-15 Catalysts for Syngas Production by Methane Dry Reforming. Procedia Engineering, v. 148, p. 1388–1395, 2016. http://dx.doi.org/10.1016/j.proeng.2016.06.556 PEÑA, M.A.; GÓMEZ, J.P.; FIERRO, J.L.G. New Catalytic Routes for Syngas and Hydrogen Production. Applied Catalysis A, v. 144, p. 7–57, 1996. http://dx.doi.org/10.1016/0926-860X(96)00108-1 PENNER, S.S. Steps toward the hydrogen economy. Energy, v. 31, p. 33–43, 2006. http://dx.doi.org/10.1016/j.energy.2004.04.060 PEREÑIGUEZ, R.; CRUZ, G.M.V.; CABALLERO, A. HOLGADO, J.P. LaNiO3 as a precursor of Ni/La2O3 for CO2 reforming of CH4: Effect of the presence of an amorphous NiO phase. Applied Catalysis B: Environmental, v. 123-124, p.324-332. 2012. http://dx.doi.org/10.1016/j.apcatb.2012.04.044 RATNASAMY, P.; KUMAR, R. Ferrisilicate analogs of zeolites. Catalysis Today, v. 9, 10, p. 329-416, 1991. http://dx.doi.org/10.1016/0920-5861(91)80001-P RATNASAMY, P.; KUMAR, R. Transition metal-silicate analogs of zeolites. Catalysis Letters, v. 22, p. 227-237, 1993. http://dx.doi.org/10.1007/BF00810369 RAUPACH, M.R.; MARLAND, G.; CIAIS, P.; LE QUÉRÉ, C.; CANADELL, J.G.; KLEPPER, G.; FIELD, C.B. Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Siences of the United States of America – PNAS, v.104, n. 24, p. 10288–10293, 2007. Disponível em: <www.pnas.org/cgi/doi/10.1073/pnas.0700609104> Acesso em: 08 de agosto de 2016. ROSS, J.R.H.; KEULEN, A.N.J.; HEGARTY, M.E.S.; SESHAN, K.; The catalytic conversion of natural gas to useful products. Catalysis Today, v. 30, p. 193-199, 1996. http://dx.doi.org/10.1016/0920-5861(96)00035-1 SARKAR, B.; GOYAK, R.; PENDEM, C.; SASAKI, T.; BAL, R. Highly nanodispersed Gd-doped Ni/ZSM-5 catalyst for enhanced carbon-resistant dry reforming of methane. Journal of Molecular Catalysis A: Chemical, v. 424, p. 17-26, 2016. http://dx.doi.org/10.1016/j.molcata.2016.08.006 SCHOLZ, W.H. Processes for industrial production of hydrogen and associated environmental effects. Gas Separation & Purification, v. 7, p. 131-139, 1993. http://dx.doi.org/10.1016/0950-4214(93)80001-D SONG, X.; DONG, X.; YIN, S.; WANG, M.; LI, M.; WANG, HA. Effects of Fe partial substitution of La2NiO4/LaNiO3 catalyst precursors prepared by wet impregnation method for the dry reforming of methane. Applied Catalysis A: General, v. 526, p. 132–138, 2016. http://dx.doi.org/10.1016/j.apcata.2016.07.024 SUTTHIUMPORN, K.; MANEERUNG, T.; KATHIRASER, Y.; KAWI, S. CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on CeH activation and carbon suppression. International Journal of Hydrogen Energy, v. 37, p. 11195-11207, 2012. http://dx.doi.org/10.1016/j.ijhydene.2012.04.059 TSANG, S.C.; CLARIDGE, J.B.; GREEN, M.L.H. Recent advances in the conversion of methane to synthesis gas. Catalysis Today, v. 23, p. 3–15, 1995. http://dx.doi.org/10.1016/0920-5861(94)00080-L VALDERRAMA, G.; GOLDWASSER, M.R.; NAVARRO, C.U.; TATIBOUËT, J.M.; BARRAULT, J.; BATIOT-DUPEYRAT, C.; MARTÍNEZ, F. Dry reforming of methane over Ni perovskite type oxides. Catalysis Today, v. 107-108, p. 785-791, 2005. http://dx.doi.org/10.1016/j.cattod.2005.07.010 VALDERRAMA, G.; KIENNEMANN, A.; GOLDWASSER, M.R. La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane. International Journal of Hydrogen Energy, v. 39, p. 4917-4925, 2014. http://dx.doi.org/10.1016/j.jpowsour.2009.10.004 WANG, N.; YU, X.; WANG, Y.; CHU, W.; LIU, M. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catalysis Today, v. 212, p. 98–107, 2013. http://dx.doi.org/10.1016/j.cattod.2012.07.022 WANG, Z.; CAO, X.M.; ZHU, J.; HU, P. Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory. Journal of Catalysis, v. 311, p. 469-480, 2014. http://dx.doi.org/10.1016/j.jcat.2013.12.015 YI, N.; CAO, Y.; SU, Y.; DAI, W.-L.; HE, H.-Y.; FAN, K.-N. Nanocrystalline LaCoO3 perovskite particles confined in SBA-15 silica as a new efficient catalyst for hydrocarbon oxidation. Journal of Catalysis, v. 230, p. 249–253, 2005. http://dx.doi.org/10.1016/j.jcat.2004.11.042 ZHANG, Q.; LI, Z.; WANG, G.; LI, H. Study on the impacts of natural gas supply cost on gas flow and infrastructure deployment in China. Applied Energy, v. 162, p. 1385-1398, 2016. http://dx.doi.org/10.1016/j.apenergy.2015.06.058
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/38348
identifier_str_mv 2011024354
ABBAS, H.F.; WAN DAUD, W.M.A. Hydrogen production by methane decomposition: A review. International Journal of Hydrogen Energy, v. 35, p. 1160–1190, 2010. http://dx.doi.org/10.1016/j.ijhydene.2009.11.036 Agência Nacional do Petróleo, Gás Natural e Biocombustíveis – ANP. Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis: 2015. Disponível em: <http://www.anp.gov.br/?dw=78135> Acesso em: 29 de agosto de 2016. ALIPOUR, Z.; REZAEI, M.; MESHKANI, F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. Journal of Industrial and Engineering Chemistry, v. 20, p. 2858–2863, 2014. http://dx.doi.org/10.1016/j.jiec.2013.11.018 ALOTAIBI, R.; ALENAZEY, F.; ALOTAIBI, F.; ALOTAIBI, F.; WEI, N.; AL-FATESH, A.; FAKEESHA, A. Ni catalysts with different promoters supported on zeolite for dry reforming of methane. Applied Petrochemical Research, v. 5, p. 329–337, 2015. http://dx.doi.org/10.1007/s13203-015-0117-y ARMOR, J.N. The multiple roles for catalysis in the production of H2. Applied Catalysis A: General, v. 176, p. 159–176, 1999. http://dx.doi.org/10.1016/S0926-860X(98)00244-0 ASHIK, U.P.M.; WAN DAUD, W.M.A.; ABBAS, H.F.; Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review. Renewable and Sustainable Energy Reviews, v. 44, p. 221–256, 2015. http://dx.doi.org/10.1016/j.rser.2014.12.025 BARROS, B.S.; KULESZA, J.; MELO, D.M.A.; KIENNEMAN, A. Nickel-Based catalyst precursor prepared via microwave-induced combustion method: themodynamics of sythesis and performance in dry reforming of CH4. Material Research, v.18, p. 732-739, 2015. http://dx.doi.org/10.1590/1516-1439.018115 BATIOT-DUPEYRAT, C.; SIERRA GALLEGO G.A.; MONDRAGON, F.; BARRAULT, J.; TATIBOUTËT, J.-M. CO2 reforming of methane over LaNiO3 as precursor material. Catalysis Today, v. 107–108, p. 474–480, 2005. http://dx.doi.org/10.1016/j.cattod.2005.07.014 BAUDOUIN, D.; RODEMERCK, U.; KRUMEICH, F.; MALLMANN, A.; SZETO, K.C.; MÉNARD, H.; VEYRE, L.; CANDY, J.-P.; WEBB, P.B.; THIEULEUX, C.; COPÉRET, C. Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles. Journal of Catalysis, v. 297, p. 27–34, 2013. http://dx.doi.org/10.1016/j.jcat.2012.09.011 DECOURT, B.; LAJOIE, B.; DEBARRE, R.; SOUPA, O. Hydrogen-Based Energy Conversion, More than Storage: System Flexibility, SBC Energy Institute, 2014, Paris. Disponível em: <http://www.4is-cnmi.com/feasability/doc-added-4-2014/SBC-Energy-Institute_Hydrogen-based-energy-conversion_Presentation.pdf> Acesso em: 29 de agosto de 2016. BRASIL, Lei 9.478 de 06 de agosto de 1997. CHAMBRIARD, M. Perspectivas para o Gás Natural, Agência Nacional de Petróleo (ANP), 17 de outubro de 2012. Disponível em: <www.anp.gov.br/?dw=66342> Acesso em: 18 de agosto de 2016. CIESIELCZUK, T.; POLUSZYNSKA, J.; ROSIK-DULEWSKA, C.; SPOREK, M.; LENKIEWICZ, M. Uses of weeds as an economical alternative to processed wood biomass and fossil fuels. Ecological Engineering, V. 95, p. 485–491, 2016. http://dx.doi.org/10.1016/j.ecoleng.2016.06.100 CIOLA, R. Fundamentos da Catálise. Universidade de São Paulo: Editora da Universidade de São Paulo: São Paulo, 1981. COSTA, C.C.; MELO, D.M.A.; MARTINELLI, A.E.; FONTES, M.S.B.; MELO, M.A.F.; BARROS, J.M.F. Adsorption of CO2 in MCM-41 synthesized using mixed surfactants. Applied Mechanics and Materials, v. 830, p. 11-18, 2016. http://dx.doi.org/10.4028/www.scientific.net/AMM.830.11 DIAS, J.A.C.; ASSAF, J.M. Influence of calcium content in Ni/CaO/-Al2O3 catalysts for CO2-reforming of methane. Catalysis Today, v. 85, p. 59–68, 2003. http://dx.doi.org/10.1016/S0920-5861(03)00194-9 DUTTA, S. A review on production, storage of hydrogen and its utilization as an energy resource Journal of Industrial and Engineering Chemistry, v. 20, p. 1148–1156, 2014. http://dx.doi.org/10.1016/j.jiec.2013.07.037 EWBANK, J.L.; KOBARIK, L.; DIALLO, F.Z.; SIEVERS, C. Effect of metal–support interactions in Ni/Al2O3 catalysts with low metal loading for methane dry reforming. Applied Catalysis A: General, v. 494, p. 57–67, 2015. http://dx.doi.org/10.1016/j.apcata.2015.01.029 FAN, M.-S.; ABDULLAH, A.Z.; BHATIA, S. Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas. ChemCatChem, v.1, p. 192–208, 2009. http://dx.doi.org/10.1002/cctc.200900025 FARAMAWY, S.; ZAKI, T.; SAKR, A.A.-E. Natural gas origin, composition, and processing: A review. Journal of Natural Gas Science and Engineering, v. 34, p. 34–54, 2016. http://dx.doi.org/10.1016/j.jngse.2016.06.030 GALLEGO, G.S.; MONDRAGÓN, F.; TATIBOUËT, J.-M.; BARRAULT, J.; BATIOT-DUPEYRAT, C. Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor—Characterization of carbon deposition. Catalysis Today, v. 133–135, p. 200–209, 2008. http://dx.doi.org/10.1016/j.cattod.2007.12.075 GHONIEM, A.F. Needs, resources and climate change: Clean and efficient conversion technologies. Progress in Energy and Combustion Science, v. 37, p. 15-51, 2011. http://dx.doi.org/10.1016/j.pecs.2010.02.006 GIL, M.V.; FERMOSO, J.; RUBIERA, F.; CHEN, D. H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: An assessment of the effect of operation variables using response surface methodology. Catalysis Today, v. 242, p. 19–34, 2015. http://dx.doi.org/10.1016/j.cattod.2014.04.018 GRANDELL, L.; LEHTILÄ, A.; KIVINEN, M.; KOLJONEN, T.; KIHLMAN, S.; LAURI, L.S. Role of critical metals in the future markets of clean energy technologies. Renewable Energy, v. 95, p. 53-62, 2016. http://dx.doi.org/10.1016/j.renene.2016.03.102 GUO, J.; LOU, H.; ZHAO, H.; CHAI, D.; ZHENG, X. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Applied Catalysis A: General, v. 273, p. 75–82, 2004. http://dx.doi.org/10.1016/j.apcata.2004.06.014 HE, N.; LU, Z.; YUAN, C.; HONG, J.; YANG, C.; BAO, S.; XU, Q. Effect of trivalent elements on the thermal and hydrothermal stability of MCM-41 mesoporous molecular materials. Supramolecular Science, v. 5, p. 553-558, 1998. http://dx.doi.org/10.1016/S0968-5677(98)00073-X HÖHLEIN, B.; MENZER, R.; RANGE, J. High temperature methanation in the long-distance nuclear energy transport system. Applied Catalysis, v. 1, p. 125-139, 1981. http://dx.doi.org/10.1016/0166-9834(81)80001-2 HUANG, F.; WANG, R.; YANG, C.; DRISS, H.; CHU, W.; ZHANG, H. Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen. Journal of Energy Chemistry, v. 25, p. 709–719, 2016. http://dx.doi.org/10.1016/j.jechem.2016.03.004 HÜBERT, T.; BOON-BRETT, L.; BLACK, G.; BANACH, U. Hydrogen sensors – A review. Sensors and Actuators B, v. 157, p. 329–352, 2011. http://dx.doi.org/10.1016/j.snb.2011.04.070 Inorganic Crystal Structure Database. Disponível em: < https://icsd.fiz-karlsruhe.de/search/index.xhtml> Acesso em: 01 de setembro de 2016 International Energy Agency - IEA. Hydrogen and FuelCells. OECD Publishing, 2015, Paris. Acesso em 13 de setembro de 2016. http://dx.doi.org/10.1787/9789264239760-en International Energy Agency - IEA. Wourld Energy Outlook 2015. OECD Publishing, 2015, Paris. Acesso dia 13 de setembro de 2016. http://dx.doi.org/10.1787/weo-2015-en International Energy Agency – IEA. CO2 Emissions From Fuel Combustion 2015. OECD Publishing, 2015, Paris. Acesso em 13 de setembro de 2016. http://dx.doi.org/10.1787/co2_fuel-2015-en International Energy Agency – IEA. CO2 Emissions From Fuel Combustion 2013. IEA, 2013, Paris. Acesso em 13 de setembro de 2016. http://dx.doi.org/10.1787/co2_fuel-2013-en KOTHARI, R.; TYAGI, V.V.; PATHAK, A. Waste-to-energy: A way from renewable energy sources to sustainable development. Renewable and Sustainable Energy Reviews, v. 14, p. 3164-3167, 2010. http://dx.doi.org/10.1016/j.rser.2010.05.005 KRESGE, C.T.; LEONOWICZ, M.E.; ROTH, W.J.; VARTULI, J.C.; BECK, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, v. 359, p. 710-712, 1992. http://dx.doi.org/10.1038/359710a0 LEVALLEY, T.L.; RICHARD, A.R.; FAN, M. The progress in water gas shift and steam reforming hydrogen production technologies e A review. International Journal of Hydrogen Energy, v. 39, p. 16983-17000, 2014. http://dx.doi.org/10.1016/j.ijhydene.2014.08.041 LIMA, S.M.; SILVA, A.M.; COSTA, L.O.O.; ASSAF, J.M.; JACOBS, G.; DAVIS, B.H.; MATTOS, L.V.; NORONHA, F.B. Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Applied Catalysis A: General, v. 377, p. 181–190, 2010 http://dx.doi.org/10.1016/j.apcata.2010.01.036 LIU, B.S.; AU, C.T. Carbon deposition and catalyst stability over La2NiO4/-Al2O3 during CO2 reforming of methane to syngas. Applied Catalysis A: General, v. 244, p. 181–195, 2003. http://dx.doi.org/10.1016/S0926-860X(02)00591-4 LUO, Y; LU, G.Z.; GUO, Y.L.; WANG, Y.S. Study on Ti-MCM-41 zeolites prepared with inorganic Ti sources: Synthesis, characterization and catalysis. Catalysis Communications, v. 3, p. 129–134, 2002. http://dx.doi.org/10.1016/S1566-7367(02)00069-9 MAKSHINA, E.V.; SIROTIN, S.V.; BERG, M.W.E.; KLEMENTIEV, K.V.; YUSHCHENKO, V.V.; MAZO, G.N.; GRÜNERT, W.; ROMANOVSKY, B.V. Characterization and catalytic properties of nanosized cobaltate particles prepared by in situ synthesis inside mesoporous molecular sieves. Applied Catalysis A: General, v. 312, p. 59–66, 2006. http://dx.doi.org/10.1016/j.apcata.2006.06.021 MEDEIROS, R.L.B.A.; MACEDO, H.P.; MELO, V.R.M.; OLIVEIRA, A.A.S.; BARROS, J.M.F.; MELO, M.A.F.; MELO, D.M.A. Ni supported on Fe-doped MgAl2O4 for dry reforming of methane: Use of factorial design to optimize H2 yield. International Journal of Hydrogen Energy, v. 41, p. 14047–14057, 2016. http://dx.doi.org/10.1016/j.ijhydene.2016.06.246 MEYNEN, V.; COOL, P.; VANSANT, E.F. Verified syntheses of mesoporous materials. Microporous and Mesoporous Materials, v. 12, p. 170–223, 2009. http://dx.doi.org/10.1016/j.micromeso.2009.03.046 NGUYEN, S.V.; SZABO, V.; TRONG-ON, D.; KALIAGUINE, S.; Mesoporous silica supported LaCoO3 perovskites as catalysts for methane oxidation. Microporous and Mesoporous Materials, v. 54, p. 51–61, 2002. http://dx.doi.org/10.1016/S1387-1811(02)00340-2 NIKOO, M.K.; AMIN, N.A.S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Processing Technology, v. 92, p. 678–691, 2011. http://dx.doi.org/10.1016/j.fuproc.2010.11.027 NOWOTNY, J.; VEZIROGLU, T.N. Impact of hydrogen on the environment. International Journal of Hydrogen Energy, v. 36, p. 13218-13224, 2011. http://dx.doi.org/10.1016/j.ijhydene.2011.07.071 OMOREGBE, O.; DANH, H.T.; ABIDIN, S.Z.; SETIABUDI, H.D.; ABDULLAH, B.; VU, K.B.; VO, D.V.N. Influence of Lanthanide Promoters on Ni/SBA-15 Catalysts for Syngas Production by Methane Dry Reforming. Procedia Engineering, v. 148, p. 1388–1395, 2016. http://dx.doi.org/10.1016/j.proeng.2016.06.556 PEÑA, M.A.; GÓMEZ, J.P.; FIERRO, J.L.G. New Catalytic Routes for Syngas and Hydrogen Production. Applied Catalysis A, v. 144, p. 7–57, 1996. http://dx.doi.org/10.1016/0926-860X(96)00108-1 PENNER, S.S. Steps toward the hydrogen economy. Energy, v. 31, p. 33–43, 2006. http://dx.doi.org/10.1016/j.energy.2004.04.060 PEREÑIGUEZ, R.; CRUZ, G.M.V.; CABALLERO, A. HOLGADO, J.P. LaNiO3 as a precursor of Ni/La2O3 for CO2 reforming of CH4: Effect of the presence of an amorphous NiO phase. Applied Catalysis B: Environmental, v. 123-124, p.324-332. 2012. http://dx.doi.org/10.1016/j.apcatb.2012.04.044 RATNASAMY, P.; KUMAR, R. Ferrisilicate analogs of zeolites. Catalysis Today, v. 9, 10, p. 329-416, 1991. http://dx.doi.org/10.1016/0920-5861(91)80001-P RATNASAMY, P.; KUMAR, R. Transition metal-silicate analogs of zeolites. Catalysis Letters, v. 22, p. 227-237, 1993. http://dx.doi.org/10.1007/BF00810369 RAUPACH, M.R.; MARLAND, G.; CIAIS, P.; LE QUÉRÉ, C.; CANADELL, J.G.; KLEPPER, G.; FIELD, C.B. Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Siences of the United States of America – PNAS, v.104, n. 24, p. 10288–10293, 2007. Disponível em: <www.pnas.org/cgi/doi/10.1073/pnas.0700609104> Acesso em: 08 de agosto de 2016. ROSS, J.R.H.; KEULEN, A.N.J.; HEGARTY, M.E.S.; SESHAN, K.; The catalytic conversion of natural gas to useful products. Catalysis Today, v. 30, p. 193-199, 1996. http://dx.doi.org/10.1016/0920-5861(96)00035-1 SARKAR, B.; GOYAK, R.; PENDEM, C.; SASAKI, T.; BAL, R. Highly nanodispersed Gd-doped Ni/ZSM-5 catalyst for enhanced carbon-resistant dry reforming of methane. Journal of Molecular Catalysis A: Chemical, v. 424, p. 17-26, 2016. http://dx.doi.org/10.1016/j.molcata.2016.08.006 SCHOLZ, W.H. Processes for industrial production of hydrogen and associated environmental effects. Gas Separation & Purification, v. 7, p. 131-139, 1993. http://dx.doi.org/10.1016/0950-4214(93)80001-D SONG, X.; DONG, X.; YIN, S.; WANG, M.; LI, M.; WANG, HA. Effects of Fe partial substitution of La2NiO4/LaNiO3 catalyst precursors prepared by wet impregnation method for the dry reforming of methane. Applied Catalysis A: General, v. 526, p. 132–138, 2016. http://dx.doi.org/10.1016/j.apcata.2016.07.024 SUTTHIUMPORN, K.; MANEERUNG, T.; KATHIRASER, Y.; KAWI, S. CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on CeH activation and carbon suppression. International Journal of Hydrogen Energy, v. 37, p. 11195-11207, 2012. http://dx.doi.org/10.1016/j.ijhydene.2012.04.059 TSANG, S.C.; CLARIDGE, J.B.; GREEN, M.L.H. Recent advances in the conversion of methane to synthesis gas. Catalysis Today, v. 23, p. 3–15, 1995. http://dx.doi.org/10.1016/0920-5861(94)00080-L VALDERRAMA, G.; GOLDWASSER, M.R.; NAVARRO, C.U.; TATIBOUËT, J.M.; BARRAULT, J.; BATIOT-DUPEYRAT, C.; MARTÍNEZ, F. Dry reforming of methane over Ni perovskite type oxides. Catalysis Today, v. 107-108, p. 785-791, 2005. http://dx.doi.org/10.1016/j.cattod.2005.07.010 VALDERRAMA, G.; KIENNEMANN, A.; GOLDWASSER, M.R. La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane. International Journal of Hydrogen Energy, v. 39, p. 4917-4925, 2014. http://dx.doi.org/10.1016/j.jpowsour.2009.10.004 WANG, N.; YU, X.; WANG, Y.; CHU, W.; LIU, M. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catalysis Today, v. 212, p. 98–107, 2013. http://dx.doi.org/10.1016/j.cattod.2012.07.022 WANG, Z.; CAO, X.M.; ZHU, J.; HU, P. Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory. Journal of Catalysis, v. 311, p. 469-480, 2014. http://dx.doi.org/10.1016/j.jcat.2013.12.015 YI, N.; CAO, Y.; SU, Y.; DAI, W.-L.; HE, H.-Y.; FAN, K.-N. Nanocrystalline LaCoO3 perovskite particles confined in SBA-15 silica as a new efficient catalyst for hydrocarbon oxidation. Journal of Catalysis, v. 230, p. 249–253, 2005. http://dx.doi.org/10.1016/j.jcat.2004.11.042 ZHANG, Q.; LI, Z.; WANG, G.; LI, H. Study on the impacts of natural gas supply cost on gas flow and infrastructure deployment in China. Applied Energy, v. 162, p. 1385-1398, 2016. http://dx.doi.org/10.1016/j.apenergy.2015.06.058
url https://repositorio.ufrn.br/handle/123456789/38348
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Química do Petróleo
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/38348/1/PrecursoresLaNiO3-La2NiO4_Agostinho_2016.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/38348/2/license.txt
https://repositorio.ufrn.br/bitstream/123456789/38348/3/PrecursoresLaNiO3-La2NiO4_Agostinho_2016.pdf
bitstream.checksum.fl_str_mv e4939b8b4c5a102597fc027155b2c505
a80a9cda2756d355b388cc443c3d8a43
1776b87810eb3b301bf7f32283f9d389
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1802117799294795776