Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves

Detalhes bibliográficos
Autor(a) principal: Peres, André Salles Cunha
Data de Publicação: 2017
Outros Autores: Lemos, Tenysson Will de, Barros, Allan Kardec Duailibe, Baffa Filho, Oswaldo, Araújo, Dráulio Barros de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
DOI: http://dx.doi.org/10.1590/2446-4740.03215
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/23525
http://dx.doi.org/10.1590/2446-4740.03215
Resumo: Introduction: Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows the detection of specific cerebral functions in humans based on hemodynamic changes. The contrast changes are about 5%, making visual inspection impossible. Thus, statistic strategies are applied to infer which brain region is engaged in a task. However, the traditional methods like general linear model and cross-correlation utilize voxel-wise calculation, introducing a lot of false-positive data. So, in this work we tested post-processing cluster algorithms to diminish the false-positives. Methods: In this study, three clustering algorithms (the hierarchical cluster, k-means and self-organizing maps) were tested and compared for false-positive removal in the post-processing of cross-correlation analyses. Results: Our results showed that the hierarchical cluster presented the best performance to remove the false positives in fMRI, being 2.3 times more accurate than k-means, and 1.9 times more accurate than self-organizing maps. Conclusion: The hierarchical cluster presented the best performance in false-positive removal because it uses the inconsistency coefficient threshold, while k-means and self-organizing maps utilize a priori cluster number (centroids and neurons number); thus, the hierarchical cluster avoids clustering scattered voxels, as the inconsistency coefficient threshold allows only the voxels to be clustered that are at a minimum distance to some cluster.
id UFRN_d8f70b0629a19fa8511bab2c312b1751
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/23525
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Peres, André Salles CunhaLemos, Tenysson Will deBarros, Allan Kardec DuailibeBaffa Filho, OswaldoAraújo, Dráulio Barros de2017-06-27T12:31:32Z2017-06-27T12:31:32Z2017-03https://repositorio.ufrn.br/jspui/handle/123456789/23525http://dx.doi.org/10.1590/2446-4740.03215engCluster algorithmHierarchicalk-meansSelf-organizing mapsFalse-positivesfMRIPerformance quantification of clustering algorithms for false positive removal in fMRI by ROC curvesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIntroduction: Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows the detection of specific cerebral functions in humans based on hemodynamic changes. The contrast changes are about 5%, making visual inspection impossible. Thus, statistic strategies are applied to infer which brain region is engaged in a task. However, the traditional methods like general linear model and cross-correlation utilize voxel-wise calculation, introducing a lot of false-positive data. So, in this work we tested post-processing cluster algorithms to diminish the false-positives. Methods: In this study, three clustering algorithms (the hierarchical cluster, k-means and self-organizing maps) were tested and compared for false-positive removal in the post-processing of cross-correlation analyses. Results: Our results showed that the hierarchical cluster presented the best performance to remove the false positives in fMRI, being 2.3 times more accurate than k-means, and 1.9 times more accurate than self-organizing maps. Conclusion: The hierarchical cluster presented the best performance in false-positive removal because it uses the inconsistency coefficient threshold, while k-means and self-organizing maps utilize a priori cluster number (centroids and neurons number); thus, the hierarchical cluster avoids clustering scattered voxels, as the inconsistency coefficient threshold allows only the voxels to be clustered that are at a minimum distance to some cluster.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALPerformance quantification of clustering.pdfPerformance quantification of clustering.pdfDraulioAraujo_ICe_Performance quantification_2017application/pdf2334543https://repositorio.ufrn.br/bitstream/123456789/23525/1/Performance%20quantification%20of%20clustering.pdf52ff3d3839440a69adb93475537a6ca4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/23525/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTPerformance quantification of clustering.pdf.txtPerformance quantification of clustering.pdf.txtExtracted texttext/plain41465https://repositorio.ufrn.br/bitstream/123456789/23525/5/Performance%20quantification%20of%20clustering.pdf.txt78c435a50f482303704bbd94a31d2523MD55THUMBNAILPerformance quantification of clustering.pdf.jpgPerformance quantification of clustering.pdf.jpgIM Thumbnailimage/jpeg8786https://repositorio.ufrn.br/bitstream/123456789/23525/6/Performance%20quantification%20of%20clustering.pdf.jpgd89c992cd1662bb13a9bdcc01d3206d1MD56123456789/235252017-11-04 19:18:10.74oai:https://repositorio.ufrn.br:123456789/23525Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2017-11-04T22:18:10Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves
title Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves
spellingShingle Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves
Peres, André Salles Cunha
Cluster algorithm
Hierarchical
k-means
Self-organizing maps
False-positives
fMRI
title_short Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves
title_full Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves
title_fullStr Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves
title_full_unstemmed Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves
title_sort Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves
author Peres, André Salles Cunha
author_facet Peres, André Salles Cunha
Lemos, Tenysson Will de
Barros, Allan Kardec Duailibe
Baffa Filho, Oswaldo
Araújo, Dráulio Barros de
author_role author
author2 Lemos, Tenysson Will de
Barros, Allan Kardec Duailibe
Baffa Filho, Oswaldo
Araújo, Dráulio Barros de
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Peres, André Salles Cunha
Lemos, Tenysson Will de
Barros, Allan Kardec Duailibe
Baffa Filho, Oswaldo
Araújo, Dráulio Barros de
dc.subject.por.fl_str_mv Cluster algorithm
Hierarchical
k-means
Self-organizing maps
False-positives
fMRI
topic Cluster algorithm
Hierarchical
k-means
Self-organizing maps
False-positives
fMRI
description Introduction: Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows the detection of specific cerebral functions in humans based on hemodynamic changes. The contrast changes are about 5%, making visual inspection impossible. Thus, statistic strategies are applied to infer which brain region is engaged in a task. However, the traditional methods like general linear model and cross-correlation utilize voxel-wise calculation, introducing a lot of false-positive data. So, in this work we tested post-processing cluster algorithms to diminish the false-positives. Methods: In this study, three clustering algorithms (the hierarchical cluster, k-means and self-organizing maps) were tested and compared for false-positive removal in the post-processing of cross-correlation analyses. Results: Our results showed that the hierarchical cluster presented the best performance to remove the false positives in fMRI, being 2.3 times more accurate than k-means, and 1.9 times more accurate than self-organizing maps. Conclusion: The hierarchical cluster presented the best performance in false-positive removal because it uses the inconsistency coefficient threshold, while k-means and self-organizing maps utilize a priori cluster number (centroids and neurons number); thus, the hierarchical cluster avoids clustering scattered voxels, as the inconsistency coefficient threshold allows only the voxels to be clustered that are at a minimum distance to some cluster.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-06-27T12:31:32Z
dc.date.available.fl_str_mv 2017-06-27T12:31:32Z
dc.date.issued.fl_str_mv 2017-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/23525
dc.identifier.doi.none.fl_str_mv http://dx.doi.org/10.1590/2446-4740.03215
url https://repositorio.ufrn.br/jspui/handle/123456789/23525
http://dx.doi.org/10.1590/2446-4740.03215
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/23525/1/Performance%20quantification%20of%20clustering.pdf
https://repositorio.ufrn.br/bitstream/123456789/23525/2/license.txt
https://repositorio.ufrn.br/bitstream/123456789/23525/5/Performance%20quantification%20of%20clustering.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/23525/6/Performance%20quantification%20of%20clustering.pdf.jpg
bitstream.checksum.fl_str_mv 52ff3d3839440a69adb93475537a6ca4
8a4605be74aa9ea9d79846c1fba20a33
78c435a50f482303704bbd94a31d2523
d89c992cd1662bb13a9bdcc01d3206d1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1823686757488525312