Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
DOI: | http://dx.doi.org/10.1590/2446-4740.03215 |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/23525 http://dx.doi.org/10.1590/2446-4740.03215 |
Resumo: | Introduction: Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows the detection of specific cerebral functions in humans based on hemodynamic changes. The contrast changes are about 5%, making visual inspection impossible. Thus, statistic strategies are applied to infer which brain region is engaged in a task. However, the traditional methods like general linear model and cross-correlation utilize voxel-wise calculation, introducing a lot of false-positive data. So, in this work we tested post-processing cluster algorithms to diminish the false-positives. Methods: In this study, three clustering algorithms (the hierarchical cluster, k-means and self-organizing maps) were tested and compared for false-positive removal in the post-processing of cross-correlation analyses. Results: Our results showed that the hierarchical cluster presented the best performance to remove the false positives in fMRI, being 2.3 times more accurate than k-means, and 1.9 times more accurate than self-organizing maps. Conclusion: The hierarchical cluster presented the best performance in false-positive removal because it uses the inconsistency coefficient threshold, while k-means and self-organizing maps utilize a priori cluster number (centroids and neurons number); thus, the hierarchical cluster avoids clustering scattered voxels, as the inconsistency coefficient threshold allows only the voxels to be clustered that are at a minimum distance to some cluster. |
id |
UFRN_d8f70b0629a19fa8511bab2c312b1751 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/23525 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Peres, André Salles CunhaLemos, Tenysson Will deBarros, Allan Kardec DuailibeBaffa Filho, OswaldoAraújo, Dráulio Barros de2017-06-27T12:31:32Z2017-06-27T12:31:32Z2017-03https://repositorio.ufrn.br/jspui/handle/123456789/23525http://dx.doi.org/10.1590/2446-4740.03215engCluster algorithmHierarchicalk-meansSelf-organizing mapsFalse-positivesfMRIPerformance quantification of clustering algorithms for false positive removal in fMRI by ROC curvesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIntroduction: Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows the detection of specific cerebral functions in humans based on hemodynamic changes. The contrast changes are about 5%, making visual inspection impossible. Thus, statistic strategies are applied to infer which brain region is engaged in a task. However, the traditional methods like general linear model and cross-correlation utilize voxel-wise calculation, introducing a lot of false-positive data. So, in this work we tested post-processing cluster algorithms to diminish the false-positives. Methods: In this study, three clustering algorithms (the hierarchical cluster, k-means and self-organizing maps) were tested and compared for false-positive removal in the post-processing of cross-correlation analyses. Results: Our results showed that the hierarchical cluster presented the best performance to remove the false positives in fMRI, being 2.3 times more accurate than k-means, and 1.9 times more accurate than self-organizing maps. Conclusion: The hierarchical cluster presented the best performance in false-positive removal because it uses the inconsistency coefficient threshold, while k-means and self-organizing maps utilize a priori cluster number (centroids and neurons number); thus, the hierarchical cluster avoids clustering scattered voxels, as the inconsistency coefficient threshold allows only the voxels to be clustered that are at a minimum distance to some cluster.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALPerformance quantification of clustering.pdfPerformance quantification of clustering.pdfDraulioAraujo_ICe_Performance quantification_2017application/pdf2334543https://repositorio.ufrn.br/bitstream/123456789/23525/1/Performance%20quantification%20of%20clustering.pdf52ff3d3839440a69adb93475537a6ca4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/23525/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTPerformance quantification of clustering.pdf.txtPerformance quantification of clustering.pdf.txtExtracted texttext/plain41465https://repositorio.ufrn.br/bitstream/123456789/23525/5/Performance%20quantification%20of%20clustering.pdf.txt78c435a50f482303704bbd94a31d2523MD55THUMBNAILPerformance quantification of clustering.pdf.jpgPerformance quantification of clustering.pdf.jpgIM Thumbnailimage/jpeg8786https://repositorio.ufrn.br/bitstream/123456789/23525/6/Performance%20quantification%20of%20clustering.pdf.jpgd89c992cd1662bb13a9bdcc01d3206d1MD56123456789/235252017-11-04 19:18:10.74oai:https://repositorio.ufrn.br:123456789/23525Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2017-11-04T22:18:10Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves |
title |
Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves |
spellingShingle |
Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves Peres, André Salles Cunha Cluster algorithm Hierarchical k-means Self-organizing maps False-positives fMRI |
title_short |
Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves |
title_full |
Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves |
title_fullStr |
Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves |
title_full_unstemmed |
Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves |
title_sort |
Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves |
author |
Peres, André Salles Cunha |
author_facet |
Peres, André Salles Cunha Lemos, Tenysson Will de Barros, Allan Kardec Duailibe Baffa Filho, Oswaldo Araújo, Dráulio Barros de |
author_role |
author |
author2 |
Lemos, Tenysson Will de Barros, Allan Kardec Duailibe Baffa Filho, Oswaldo Araújo, Dráulio Barros de |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Peres, André Salles Cunha Lemos, Tenysson Will de Barros, Allan Kardec Duailibe Baffa Filho, Oswaldo Araújo, Dráulio Barros de |
dc.subject.por.fl_str_mv |
Cluster algorithm Hierarchical k-means Self-organizing maps False-positives fMRI |
topic |
Cluster algorithm Hierarchical k-means Self-organizing maps False-positives fMRI |
description |
Introduction: Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows the detection of specific cerebral functions in humans based on hemodynamic changes. The contrast changes are about 5%, making visual inspection impossible. Thus, statistic strategies are applied to infer which brain region is engaged in a task. However, the traditional methods like general linear model and cross-correlation utilize voxel-wise calculation, introducing a lot of false-positive data. So, in this work we tested post-processing cluster algorithms to diminish the false-positives. Methods: In this study, three clustering algorithms (the hierarchical cluster, k-means and self-organizing maps) were tested and compared for false-positive removal in the post-processing of cross-correlation analyses. Results: Our results showed that the hierarchical cluster presented the best performance to remove the false positives in fMRI, being 2.3 times more accurate than k-means, and 1.9 times more accurate than self-organizing maps. Conclusion: The hierarchical cluster presented the best performance in false-positive removal because it uses the inconsistency coefficient threshold, while k-means and self-organizing maps utilize a priori cluster number (centroids and neurons number); thus, the hierarchical cluster avoids clustering scattered voxels, as the inconsistency coefficient threshold allows only the voxels to be clustered that are at a minimum distance to some cluster. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-06-27T12:31:32Z |
dc.date.available.fl_str_mv |
2017-06-27T12:31:32Z |
dc.date.issued.fl_str_mv |
2017-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/23525 |
dc.identifier.doi.none.fl_str_mv |
http://dx.doi.org/10.1590/2446-4740.03215 |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/23525 http://dx.doi.org/10.1590/2446-4740.03215 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/23525/1/Performance%20quantification%20of%20clustering.pdf https://repositorio.ufrn.br/bitstream/123456789/23525/2/license.txt https://repositorio.ufrn.br/bitstream/123456789/23525/5/Performance%20quantification%20of%20clustering.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/23525/6/Performance%20quantification%20of%20clustering.pdf.jpg |
bitstream.checksum.fl_str_mv |
52ff3d3839440a69adb93475537a6ca4 8a4605be74aa9ea9d79846c1fba20a33 78c435a50f482303704bbd94a31d2523 d89c992cd1662bb13a9bdcc01d3206d1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1823686757488525312 |