Potential biomarkers of major depression diagnosis and chronicity

Detalhes bibliográficos
Autor(a) principal: Galvão, Ana Cecília de Menezes
Data de Publicação: 2021
Outros Autores: Almeida, Raissa Nobrega, Sousa Júnior, Geovan Menezes de, Leocadio-Miguel, Mário André, Fontes, Fernanda Palhano Xavier de, Araujo, Draulio Barros de, Lobão-Soares, Bruno, Maia-de-Oliveira, João Paulo, Nunes, Emerson Arcoverde, Hallak, Jaime Eduardo Cecilio, Sarris, Jerome, Galvão-Coelho, Nicole Leite
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/45096
Resumo: Molecular biomarkers are promising tools to be routinely used in clinical psychiatry. Among psychiatric diseases, major depression disorder (MDD) has gotten attention due to its growing prevalence and morbidity. We tested some peripheral molecular parameters such as serum mature Brain-Derived Neurotrophic Factor (mBDNF), plasma C-Reactive Protein (CRP), serum cortisol (SC), and the salivary Cortisol Awakening Response (CAR), as well as the Pittsburgh sleep quality inventory (PSQI), as part of a multibiomarker panel for potential use in MDD diagnosis and evaluation of disease’s chronicity using regression models, and ROC curve. For diagnosis model, two groups were analyzed: patients in the first episode of major depression (MD: n = 30) and a healthy control (CG: n = 32). None of those diagnosis models tested had greater power than Hamilton Depression Rating Scale-6. For MDD chronicity, a group of patients with treatment-resistant major depression (TRD: n = 28) was tested across the MD group. The best chronicity model (p < 0.05) that discriminated between MD and TRD included four parameters, namely PSQI, CAR, SC, and mBDNF (AUC ROC = 0.99), with 96% of sensitivity and 93% of specificity. These results indicate that changes in specific biomarkers (CAR, SC, mBDNF and PSQI) have potential on the evaluation of MDD chronicity, but not for its diagnosis. Therefore, these findings can contribute for further studies aiming the development of a stronger model to be commercially available and used in psychiatry clinical practice
id UFRN_dd9a256526259760a4bc8546a1e39229
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/45096
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Galvão, Ana Cecília de MenezesAlmeida, Raissa NobregaSousa Júnior, Geovan Menezes deLeocadio-Miguel, Mário AndréFontes, Fernanda Palhano Xavier deAraujo, Draulio Barros deLobão-Soares, BrunoMaia-de-Oliveira, João PauloNunes, Emerson ArcoverdeHallak, Jaime Eduardo CecilioSarris, JeromeGalvão-Coelho, Nicole Leite2021-11-30T14:21:34Z2021-11-30T14:21:34Z2021-09-29GALVÃO, Ana Cecília de Menezes; ALMEIDA, Raíssa Nobrega; SOUSA JÚNIOR, Geovan Menezes de; LEOCADIO-MIGUEL, Mário André; PALHANO-FONTES, Fernanda; ARAUJO, Dráulio Barros de; LOBÃO-SOARES, Bruno; MAIA-DE-OLIVEIRA, João Paulo; NUNES, Emerson Arcoverde; HALLAK, Jaime Eduardo Cecilio; SARRIS,Jerome; GALVÃO-COELHOI,Nicole Leite. Potential biomarkers of major depression diagnosis and chronicity. Plos One, [S. l.], v. 16, n. 9, p. 1-17, 29 set. 2021. Doi: 10.1371/journal.pone.0257251https://repositorio.ufrn.br/handle/123456789/4509610.1371/journal.pone.0257251Attribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessDepressionMajor depression disorder (MDD)Molecular biomarkerspsychiatric diseasesPotential biomarkers of major depression diagnosis and chronicityinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleMolecular biomarkers are promising tools to be routinely used in clinical psychiatry. Among psychiatric diseases, major depression disorder (MDD) has gotten attention due to its growing prevalence and morbidity. We tested some peripheral molecular parameters such as serum mature Brain-Derived Neurotrophic Factor (mBDNF), plasma C-Reactive Protein (CRP), serum cortisol (SC), and the salivary Cortisol Awakening Response (CAR), as well as the Pittsburgh sleep quality inventory (PSQI), as part of a multibiomarker panel for potential use in MDD diagnosis and evaluation of disease’s chronicity using regression models, and ROC curve. For diagnosis model, two groups were analyzed: patients in the first episode of major depression (MD: n = 30) and a healthy control (CG: n = 32). None of those diagnosis models tested had greater power than Hamilton Depression Rating Scale-6. For MDD chronicity, a group of patients with treatment-resistant major depression (TRD: n = 28) was tested across the MD group. The best chronicity model (p < 0.05) that discriminated between MD and TRD included four parameters, namely PSQI, CAR, SC, and mBDNF (AUC ROC = 0.99), with 96% of sensitivity and 93% of specificity. These results indicate that changes in specific biomarkers (CAR, SC, mBDNF and PSQI) have potential on the evaluation of MDD chronicity, but not for its diagnosis. Therefore, these findings can contribute for further studies aiming the development of a stronger model to be commercially available and used in psychiatry clinical practiceengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALPotentialBiomarkersDepression_Araujo_2021.pdfPotentialBiomarkersDepression_Araujo_2021.pdfapplication/pdf907880https://repositorio.ufrn.br/bitstream/123456789/45096/1/PotentialBiomarkersDepression_Araujo_2021.pdfeaf43292b62043a5d656e784ffca1e5dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/45096/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/45096/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/450962021-11-30 11:21:34.592oai:https://repositorio.ufrn.br:123456789/45096Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-11-30T14:21:34Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Potential biomarkers of major depression diagnosis and chronicity
title Potential biomarkers of major depression diagnosis and chronicity
spellingShingle Potential biomarkers of major depression diagnosis and chronicity
Galvão, Ana Cecília de Menezes
Depression
Major depression disorder (MDD)
Molecular biomarkers
psychiatric diseases
title_short Potential biomarkers of major depression diagnosis and chronicity
title_full Potential biomarkers of major depression diagnosis and chronicity
title_fullStr Potential biomarkers of major depression diagnosis and chronicity
title_full_unstemmed Potential biomarkers of major depression diagnosis and chronicity
title_sort Potential biomarkers of major depression diagnosis and chronicity
author Galvão, Ana Cecília de Menezes
author_facet Galvão, Ana Cecília de Menezes
Almeida, Raissa Nobrega
Sousa Júnior, Geovan Menezes de
Leocadio-Miguel, Mário André
Fontes, Fernanda Palhano Xavier de
Araujo, Draulio Barros de
Lobão-Soares, Bruno
Maia-de-Oliveira, João Paulo
Nunes, Emerson Arcoverde
Hallak, Jaime Eduardo Cecilio
Sarris, Jerome
Galvão-Coelho, Nicole Leite
author_role author
author2 Almeida, Raissa Nobrega
Sousa Júnior, Geovan Menezes de
Leocadio-Miguel, Mário André
Fontes, Fernanda Palhano Xavier de
Araujo, Draulio Barros de
Lobão-Soares, Bruno
Maia-de-Oliveira, João Paulo
Nunes, Emerson Arcoverde
Hallak, Jaime Eduardo Cecilio
Sarris, Jerome
Galvão-Coelho, Nicole Leite
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Galvão, Ana Cecília de Menezes
Almeida, Raissa Nobrega
Sousa Júnior, Geovan Menezes de
Leocadio-Miguel, Mário André
Fontes, Fernanda Palhano Xavier de
Araujo, Draulio Barros de
Lobão-Soares, Bruno
Maia-de-Oliveira, João Paulo
Nunes, Emerson Arcoverde
Hallak, Jaime Eduardo Cecilio
Sarris, Jerome
Galvão-Coelho, Nicole Leite
dc.subject.por.fl_str_mv Depression
Major depression disorder (MDD)
Molecular biomarkers
psychiatric diseases
topic Depression
Major depression disorder (MDD)
Molecular biomarkers
psychiatric diseases
description Molecular biomarkers are promising tools to be routinely used in clinical psychiatry. Among psychiatric diseases, major depression disorder (MDD) has gotten attention due to its growing prevalence and morbidity. We tested some peripheral molecular parameters such as serum mature Brain-Derived Neurotrophic Factor (mBDNF), plasma C-Reactive Protein (CRP), serum cortisol (SC), and the salivary Cortisol Awakening Response (CAR), as well as the Pittsburgh sleep quality inventory (PSQI), as part of a multibiomarker panel for potential use in MDD diagnosis and evaluation of disease’s chronicity using regression models, and ROC curve. For diagnosis model, two groups were analyzed: patients in the first episode of major depression (MD: n = 30) and a healthy control (CG: n = 32). None of those diagnosis models tested had greater power than Hamilton Depression Rating Scale-6. For MDD chronicity, a group of patients with treatment-resistant major depression (TRD: n = 28) was tested across the MD group. The best chronicity model (p < 0.05) that discriminated between MD and TRD included four parameters, namely PSQI, CAR, SC, and mBDNF (AUC ROC = 0.99), with 96% of sensitivity and 93% of specificity. These results indicate that changes in specific biomarkers (CAR, SC, mBDNF and PSQI) have potential on the evaluation of MDD chronicity, but not for its diagnosis. Therefore, these findings can contribute for further studies aiming the development of a stronger model to be commercially available and used in psychiatry clinical practice
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-11-30T14:21:34Z
dc.date.available.fl_str_mv 2021-11-30T14:21:34Z
dc.date.issued.fl_str_mv 2021-09-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv GALVÃO, Ana Cecília de Menezes; ALMEIDA, Raíssa Nobrega; SOUSA JÚNIOR, Geovan Menezes de; LEOCADIO-MIGUEL, Mário André; PALHANO-FONTES, Fernanda; ARAUJO, Dráulio Barros de; LOBÃO-SOARES, Bruno; MAIA-DE-OLIVEIRA, João Paulo; NUNES, Emerson Arcoverde; HALLAK, Jaime Eduardo Cecilio; SARRIS,Jerome; GALVÃO-COELHOI,Nicole Leite. Potential biomarkers of major depression diagnosis and chronicity. Plos One, [S. l.], v. 16, n. 9, p. 1-17, 29 set. 2021. Doi: 10.1371/journal.pone.0257251
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/45096
dc.identifier.doi.none.fl_str_mv 10.1371/journal.pone.0257251
identifier_str_mv GALVÃO, Ana Cecília de Menezes; ALMEIDA, Raíssa Nobrega; SOUSA JÚNIOR, Geovan Menezes de; LEOCADIO-MIGUEL, Mário André; PALHANO-FONTES, Fernanda; ARAUJO, Dráulio Barros de; LOBÃO-SOARES, Bruno; MAIA-DE-OLIVEIRA, João Paulo; NUNES, Emerson Arcoverde; HALLAK, Jaime Eduardo Cecilio; SARRIS,Jerome; GALVÃO-COELHOI,Nicole Leite. Potential biomarkers of major depression diagnosis and chronicity. Plos One, [S. l.], v. 16, n. 9, p. 1-17, 29 set. 2021. Doi: 10.1371/journal.pone.0257251
10.1371/journal.pone.0257251
url https://repositorio.ufrn.br/handle/123456789/45096
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/45096/1/PotentialBiomarkersDepression_Araujo_2021.pdf
https://repositorio.ufrn.br/bitstream/123456789/45096/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/45096/3/license.txt
bitstream.checksum.fl_str_mv eaf43292b62043a5d656e784ffca1e5d
4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814833073693392896