Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/1/11805 |
Resumo: | The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches. |
id |
UFRN_e8c9080140c75f323d832137db59e91c |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:1/11805 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Ribeiro, TiagoRibeiro, Sidarta Tollendal GomesBelchior, HindiaelCaixeta, FábioCopelli, Mauro2014-04-22T19:36:39Z2014-04-22T19:36:39Z2014-04-21Ribeiro TL, Ribeiro S, Belchior H, Caixeta F, Copelli M (2014) Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches. PLoS ONE 9(4): e94992. doi:10.1371/journal.pone.00949921932-6203https://repositorio.ufrn.br/jspui/handle/1/11805The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.Work supported by Coordenac¸a˜o de Aperfeic¸oamento de Pessoal de Nı´vel Superior (CAPES), Financiadora de Estudos e Projetos (FINEP) grant 01.06.1092.00, Pro´-Reitoria de Po´s-Graduac¸a˜o da Universidade Federal do Rio Grande do Norte (UFRN), Conselho Nacional de Desenvolvimento Cientı´fico e Tecnolo´gico (CNPq)/Ministe´rio da Cieˆncia, Tecnologia e Inovac¸a˜o (MCTI), CNPq Universal Grants 481351/2011-6, 473554/2011-9 and 480053/2013-8, Programa de Apoio a Nu´cleos Emergentes PRONEM 003/2011 FAPERN/CNPq and PRONEM 12/2010 FACEPE/CNPq, Pew Latin American Fellows Program in the Biomedical Sciences, and Centro de Pesquisa, Inovac¸a˜o e Difusa˜o (CEPID-Neuromat). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.engAvalanche neuronalcriticalidadepotencial de açãoUndersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanchesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALTiagoRibeiro_ICE_Undersampled_2014.pdfTiagoRibeiro_ICE_Undersampled_2014.pdfapplication/pdf843306https://repositorio.ufrn.br/bitstream/1/11805/1/TiagoRibeiro_ICE_Undersampled_2014.pdfcf505fb28c20c37ac85019756ac6c028MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81563https://repositorio.ufrn.br/bitstream/1/11805/2/license.txt0d0d8fbe390275e816b5edb78063b7afMD52TEXTTiagoRibeiro_ICE_Undersampled_2014.pdf.txtTiagoRibeiro_ICE_Undersampled_2014.pdf.txtExtracted texttext/plain50821https://repositorio.ufrn.br/bitstream/1/11805/7/TiagoRibeiro_ICE_Undersampled_2014.pdf.txtdc5307f7c5d3fbfd30199ee65b934679MD57THUMBNAILTiagoRibeiro_ICE_Undersampled_2014.pdf.jpgTiagoRibeiro_ICE_Undersampled_2014.pdf.jpgIM Thumbnailimage/jpeg13277https://repositorio.ufrn.br/bitstream/1/11805/8/TiagoRibeiro_ICE_Undersampled_2014.pdf.jpgff7671b56386e2d059caf56a33758d41MD581/118052021-07-10 19:07:28.688oai:https://repositorio.ufrn.br:1/11805TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkFvIGFzc2luYXIgZSBlbnRyZWdhciBlc3RhIGxpY2Vuw6dhLCBvL2EgU3IuL1NyYS4gKGF1dG9yIG91IGRldGVudG9yIGRvcyBkaXJlaXRvcyBkZSBhdXRvcik6CgphKSBDb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIFJpbyBHcmFuZGUgZG8gTm9ydGUgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhYmFpeG8pLCBjb211bmljYXIgZS9vdSBkaXN0cmlidWlyIG8gZG9jdW1lbnRvIGVudHJlZ3VlIChpbmNsdWluZG8gbyByZXN1bW8vYWJzdHJhY3QpIGVtIGZvcm1hdG8gZGlnaXRhbCBvdSBpbXByZXNzbyBlIGVtIHF1YWxxdWVyIG1laW8uCgpiKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqSBzZXUgdHJhYmFsaG8gb3JpZ2luYWwsIGUgcXVlIGRldMOpbSBvIGRpcmVpdG8gZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIERlY2xhcmEgdGFtYsOpbSBxdWUgYSBlbnRyZWdhIGRvIGRvY3VtZW50byBuw6NvIGluZnJpbmdlLCB0YW50byBxdWFudG8gbGhlIMOpIHBvc3PDrXZlbCBzYWJlciwgb3MgZGlyZWl0b3MgZGUgcXVhbHF1ZXIgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlLgoKYykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgY29udMOpbSBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zCmRpcmVpdG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBvYnRldmUgYXV0b3JpemHDp8OjbyBkbyBkZXRlbnRvciBkb3MKZGlyZWl0b3MgZGUgYXV0b3IgcGFyYSBjb25jZWRlciDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSAgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lKHMpIGNvbW8gbyAocykgYXV0b3IgKGVzKSBvdSBkZXRlbnRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUsIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgcGFyYSBhbMOpbSBkYXMgcGVybWl0aWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-10T22:07:28Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches |
title |
Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches |
spellingShingle |
Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches Ribeiro, Tiago Avalanche neuronal criticalidade potencial de ação |
title_short |
Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches |
title_full |
Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches |
title_fullStr |
Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches |
title_full_unstemmed |
Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches |
title_sort |
Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches |
author |
Ribeiro, Tiago |
author_facet |
Ribeiro, Tiago Ribeiro, Sidarta Tollendal Gomes Belchior, Hindiael Caixeta, Fábio Copelli, Mauro |
author_role |
author |
author2 |
Ribeiro, Sidarta Tollendal Gomes Belchior, Hindiael Caixeta, Fábio Copelli, Mauro |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Ribeiro, Tiago Ribeiro, Sidarta Tollendal Gomes Belchior, Hindiael Caixeta, Fábio Copelli, Mauro |
dc.subject.por.fl_str_mv |
Avalanche neuronal criticalidade potencial de ação |
topic |
Avalanche neuronal criticalidade potencial de ação |
description |
The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches. |
publishDate |
2014 |
dc.date.accessioned.fl_str_mv |
2014-04-22T19:36:39Z |
dc.date.available.fl_str_mv |
2014-04-22T19:36:39Z |
dc.date.issued.fl_str_mv |
2014-04-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Ribeiro TL, Ribeiro S, Belchior H, Caixeta F, Copelli M (2014) Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches. PLoS ONE 9(4): e94992. doi:10.1371/journal.pone.0094992 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/1/11805 |
dc.identifier.issn.none.fl_str_mv |
1932-6203 |
identifier_str_mv |
Ribeiro TL, Ribeiro S, Belchior H, Caixeta F, Copelli M (2014) Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches. PLoS ONE 9(4): e94992. doi:10.1371/journal.pone.0094992 1932-6203 |
url |
https://repositorio.ufrn.br/jspui/handle/1/11805 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/1/11805/1/TiagoRibeiro_ICE_Undersampled_2014.pdf https://repositorio.ufrn.br/bitstream/1/11805/2/license.txt https://repositorio.ufrn.br/bitstream/1/11805/7/TiagoRibeiro_ICE_Undersampled_2014.pdf.txt https://repositorio.ufrn.br/bitstream/1/11805/8/TiagoRibeiro_ICE_Undersampled_2014.pdf.jpg |
bitstream.checksum.fl_str_mv |
cf505fb28c20c37ac85019756ac6c028 0d0d8fbe390275e816b5edb78063b7af dc5307f7c5d3fbfd30199ee65b934679 ff7671b56386e2d059caf56a33758d41 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832785066557440 |