Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Tiago
Data de Publicação: 2014
Outros Autores: Ribeiro, Sidarta Tollendal Gomes, Belchior, Hindiael, Caixeta, Fábio, Copelli, Mauro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/1/11805
Resumo: The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.
id UFRN_e8c9080140c75f323d832137db59e91c
oai_identifier_str oai:https://repositorio.ufrn.br:1/11805
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Ribeiro, TiagoRibeiro, Sidarta Tollendal GomesBelchior, HindiaelCaixeta, FábioCopelli, Mauro2014-04-22T19:36:39Z2014-04-22T19:36:39Z2014-04-21Ribeiro TL, Ribeiro S, Belchior H, Caixeta F, Copelli M (2014) Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches. PLoS ONE 9(4): e94992. doi:10.1371/journal.pone.00949921932-6203https://repositorio.ufrn.br/jspui/handle/1/11805The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.Work supported by Coordenac¸a˜o de Aperfeic¸oamento de Pessoal de Nı´vel Superior (CAPES), Financiadora de Estudos e Projetos (FINEP) grant 01.06.1092.00, Pro´-Reitoria de Po´s-Graduac¸a˜o da Universidade Federal do Rio Grande do Norte (UFRN), Conselho Nacional de Desenvolvimento Cientı´fico e Tecnolo´gico (CNPq)/Ministe´rio da Cieˆncia, Tecnologia e Inovac¸a˜o (MCTI), CNPq Universal Grants 481351/2011-6, 473554/2011-9 and 480053/2013-8, Programa de Apoio a Nu´cleos Emergentes PRONEM 003/2011 FAPERN/CNPq and PRONEM 12/2010 FACEPE/CNPq, Pew Latin American Fellows Program in the Biomedical Sciences, and Centro de Pesquisa, Inovac¸a˜o e Difusa˜o (CEPID-Neuromat). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.engAvalanche neuronalcriticalidadepotencial de açãoUndersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanchesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALTiagoRibeiro_ICE_Undersampled_2014.pdfTiagoRibeiro_ICE_Undersampled_2014.pdfapplication/pdf843306https://repositorio.ufrn.br/bitstream/1/11805/1/TiagoRibeiro_ICE_Undersampled_2014.pdfcf505fb28c20c37ac85019756ac6c028MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81563https://repositorio.ufrn.br/bitstream/1/11805/2/license.txt0d0d8fbe390275e816b5edb78063b7afMD52TEXTTiagoRibeiro_ICE_Undersampled_2014.pdf.txtTiagoRibeiro_ICE_Undersampled_2014.pdf.txtExtracted texttext/plain50821https://repositorio.ufrn.br/bitstream/1/11805/7/TiagoRibeiro_ICE_Undersampled_2014.pdf.txtdc5307f7c5d3fbfd30199ee65b934679MD57THUMBNAILTiagoRibeiro_ICE_Undersampled_2014.pdf.jpgTiagoRibeiro_ICE_Undersampled_2014.pdf.jpgIM Thumbnailimage/jpeg13277https://repositorio.ufrn.br/bitstream/1/11805/8/TiagoRibeiro_ICE_Undersampled_2014.pdf.jpgff7671b56386e2d059caf56a33758d41MD581/118052021-07-10 19:07:28.688oai:https://repositorio.ufrn.br:1/11805TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkFvIGFzc2luYXIgZSBlbnRyZWdhciBlc3RhIGxpY2Vuw6dhLCBvL2EgU3IuL1NyYS4gKGF1dG9yIG91IGRldGVudG9yIGRvcyBkaXJlaXRvcyBkZSBhdXRvcik6CgphKSBDb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIFJpbyBHcmFuZGUgZG8gTm9ydGUgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhYmFpeG8pLCBjb211bmljYXIgZS9vdSBkaXN0cmlidWlyIG8gZG9jdW1lbnRvIGVudHJlZ3VlIChpbmNsdWluZG8gbyByZXN1bW8vYWJzdHJhY3QpIGVtIGZvcm1hdG8gZGlnaXRhbCBvdSBpbXByZXNzbyBlIGVtIHF1YWxxdWVyIG1laW8uCgpiKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqSBzZXUgdHJhYmFsaG8gb3JpZ2luYWwsIGUgcXVlIGRldMOpbSBvIGRpcmVpdG8gZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIERlY2xhcmEgdGFtYsOpbSBxdWUgYSBlbnRyZWdhIGRvIGRvY3VtZW50byBuw6NvIGluZnJpbmdlLCB0YW50byBxdWFudG8gbGhlIMOpIHBvc3PDrXZlbCBzYWJlciwgb3MgZGlyZWl0b3MgZGUgcXVhbHF1ZXIgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlLgoKYykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgY29udMOpbSBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zCmRpcmVpdG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBvYnRldmUgYXV0b3JpemHDp8OjbyBkbyBkZXRlbnRvciBkb3MKZGlyZWl0b3MgZGUgYXV0b3IgcGFyYSBjb25jZWRlciDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSAgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lKHMpIGNvbW8gbyAocykgYXV0b3IgKGVzKSBvdSBkZXRlbnRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUsIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgcGFyYSBhbMOpbSBkYXMgcGVybWl0aWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-10T22:07:28Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches
title Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches
spellingShingle Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches
Ribeiro, Tiago
Avalanche neuronal
criticalidade
potencial de ação
title_short Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches
title_full Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches
title_fullStr Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches
title_full_unstemmed Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches
title_sort Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches
author Ribeiro, Tiago
author_facet Ribeiro, Tiago
Ribeiro, Sidarta Tollendal Gomes
Belchior, Hindiael
Caixeta, Fábio
Copelli, Mauro
author_role author
author2 Ribeiro, Sidarta Tollendal Gomes
Belchior, Hindiael
Caixeta, Fábio
Copelli, Mauro
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Ribeiro, Tiago
Ribeiro, Sidarta Tollendal Gomes
Belchior, Hindiael
Caixeta, Fábio
Copelli, Mauro
dc.subject.por.fl_str_mv Avalanche neuronal
criticalidade
potencial de ação
topic Avalanche neuronal
criticalidade
potencial de ação
description The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.
publishDate 2014
dc.date.accessioned.fl_str_mv 2014-04-22T19:36:39Z
dc.date.available.fl_str_mv 2014-04-22T19:36:39Z
dc.date.issued.fl_str_mv 2014-04-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv Ribeiro TL, Ribeiro S, Belchior H, Caixeta F, Copelli M (2014) Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches. PLoS ONE 9(4): e94992. doi:10.1371/journal.pone.0094992
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/1/11805
dc.identifier.issn.none.fl_str_mv 1932-6203
identifier_str_mv Ribeiro TL, Ribeiro S, Belchior H, Caixeta F, Copelli M (2014) Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches. PLoS ONE 9(4): e94992. doi:10.1371/journal.pone.0094992
1932-6203
url https://repositorio.ufrn.br/jspui/handle/1/11805
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/1/11805/1/TiagoRibeiro_ICE_Undersampled_2014.pdf
https://repositorio.ufrn.br/bitstream/1/11805/2/license.txt
https://repositorio.ufrn.br/bitstream/1/11805/7/TiagoRibeiro_ICE_Undersampled_2014.pdf.txt
https://repositorio.ufrn.br/bitstream/1/11805/8/TiagoRibeiro_ICE_Undersampled_2014.pdf.jpg
bitstream.checksum.fl_str_mv cf505fb28c20c37ac85019756ac6c028
0d0d8fbe390275e816b5edb78063b7af
dc5307f7c5d3fbfd30199ee65b934679
ff7671b56386e2d059caf56a33758d41
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832785066557440