Adsorção de tensoativos e polímero em rocha reservatório

Detalhes bibliográficos
Autor(a) principal: Cunha Bisneto, Manuel Carneiro
Data de Publicação: 2015
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/38364
Resumo: In the process of oil exploration where the energy in the formation is insufficient to produce oil of course, it is necessary to intervene in the well and this process is entitled to oil recovery, which may be referred to as enhanced oil recovery when using chemical processes, such as systems based on surfactants and polyelectrolytes. The surfactants have the property of adsorbing interface lowering the interfacial tension and facilitating the flow of oil from the rock pores to the inside of the reservoir while the polymer has the property of moving the oil bank from the high viscosity systems polymeric offers. The polyelectrolytes may also adsorb on the rock. To better understand the recovery process is necessary to study the phenomena of chemical adsorption of molecules in the reservoir rock and this was applied the techniques zeta potential and dynamic light scattering. The sandstone rock has negative charge and adding the acetic acid solution the load reverses, becoming positive. The anionic surfactant, OCS and SDS adsorb the sandstone at concentrations below and above the critical micelle concentration (CMC). Chitosan also adsorbs considerably sandstone. The adsorption takes place until such time that saturates the entire surface of the sandstone particles and the concentration of saturation for the chitosan and SDS is 0.005%, while for the OCS there is a critical value of saturation as there is a phenomenon of protonation. For the combination of chitosan-OCS saturation occurs at 0.002%, while for chitosan SDS and SDS OCS there is a critical point of saturation. The combination of chitosan-SDS-OCS has increased load up to 0.004% and decreased to 0.005% and from this value ha saturation sandstone surface. Particle sizes were determined from the dynamic light scattering technique. Particle sizes confirm that there are chemical interaction of molecules studied on the sandstone particle.
id UFRN_f46aa7e56fc62c85184552c3ce6a025b
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/38364
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Cunha Bisneto, Manuel CarneiroPergher, Sibele Berenice CastellãBraga, Tiago PinheiroMedeiros, Ana Catarina da RochaWanderley Neto, Alcides de Oliveira2015-07-15T00:44:49Z2021-09-27T11:48:13Z2015-07-15T00:44:49Z2021-09-27T11:48:13Z2015-06-262011024318Cunha Bisneto, Manuel Carneiro. Adsorção de tensoativos e polímero em rocha reservatório. 2015. 48f. Trabalho de Conclusão de Curso (Graduação em Química do Petróleo), Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, 2015.https://repositorio.ufrn.br/handle/123456789/38364In the process of oil exploration where the energy in the formation is insufficient to produce oil of course, it is necessary to intervene in the well and this process is entitled to oil recovery, which may be referred to as enhanced oil recovery when using chemical processes, such as systems based on surfactants and polyelectrolytes. The surfactants have the property of adsorbing interface lowering the interfacial tension and facilitating the flow of oil from the rock pores to the inside of the reservoir while the polymer has the property of moving the oil bank from the high viscosity systems polymeric offers. The polyelectrolytes may also adsorb on the rock. To better understand the recovery process is necessary to study the phenomena of chemical adsorption of molecules in the reservoir rock and this was applied the techniques zeta potential and dynamic light scattering. The sandstone rock has negative charge and adding the acetic acid solution the load reverses, becoming positive. The anionic surfactant, OCS and SDS adsorb the sandstone at concentrations below and above the critical micelle concentration (CMC). Chitosan also adsorbs considerably sandstone. The adsorption takes place until such time that saturates the entire surface of the sandstone particles and the concentration of saturation for the chitosan and SDS is 0.005%, while for the OCS there is a critical value of saturation as there is a phenomenon of protonation. For the combination of chitosan-OCS saturation occurs at 0.002%, while for chitosan SDS and SDS OCS there is a critical point of saturation. The combination of chitosan-SDS-OCS has increased load up to 0.004% and decreased to 0.005% and from this value ha saturation sandstone surface. Particle sizes were determined from the dynamic light scattering technique. Particle sizes confirm that there are chemical interaction of molecules studied on the sandstone particle.No processo de exploração de petróleo, quando a energia na formação não é suficiente para produzir o óleo naturalmente, faz-se necessário intervir no poço e a esse processo intitula-se de recuperação de óleo, que pode ser denominado de recuperação avançada de petróleo quando se utiliza processos químicos, como sistemas a base de tensoativos e polieletrólitos. Os tensoativos têm a propriedade de se adsorver em interface reduzindo a tensão interfacial e facilitar o escoamento do óleo dos poros da rocha para o interior do reservatório, enquanto que o polímero tem a propriedade de deslocar o banco de óleo a partir da alta viscosidade que os sistemas poliméricos oferecem. Os polieletrólitos também podem se adsorver na rocha. Para melhor entender o processo de recuperação se faz necessário estudar os fenômenos de adsorção das moléculas químicas na rocha reservatório e para isso aplicou-se as técnicas de potencial zeta e espalhamento dinâmico da luz. O arenito desagregado apresenta carga negativa e a adição da solução de ácido acético inverte a carga, passando a ser positiva. Os tensoativos aniônicos, óleo de coco saponificado (OCS) e Dodecil sulfato de sódio (SDS) se adsorvem ao arenito em concentrações abaixo e acima da concentração micelar crítica (CMC). A quitosana também se adsorve consideravelmente ao arenito. A adsorção acontece até o momento que satura toda a superfície das partículas do arenito desagregado e a concentração de saturação para a quitosana e SDS é 0,005%, enquanto para o OCS não há um valor crítico de saturação pois há o fenômeno da protonação. Para a combinação de quitosana-OCS a saturação se dá a 0,002%, enquanto que para a Quitosana-SDS e OCS-SDS não há um ponto crítico de saturação. A combinação de Quitosana-SDS-OCS apresenta aumento de carga até 0,004% e diminuição até 0,005% e partir deste valor há saturação da superfície do arenito. Os tamanhos de partículas foram determinados a partir da técnica de espalhamento dinâmico da luz. Os tamanhos de partículas confirmam que há interação das moléculas químicas estudadas sobre a partícula de arenito desagregado.Universidade Federal do Rio Grande do NorteUFRNBrasilQuímica do PetróleoRocha reservatório.Rock reservoir.Adsorção - QuimicaTamanho de partícula.Quitosana - Química.Adsorção de tensoativos e polímero em rocha reservatórioAdsorption surfactants and polymer in rock reservoirinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessTEXTAdsorcaoTensoativosPolímero_CunhaBisneto_2015.pdf.txtExtracted texttext/plain64655https://repositorio.ufrn.br/bitstream/123456789/38364/1/AdsorcaoTensoativosPol%c3%admero_CunhaBisneto_2015.pdf.txt0aac91ab7d963793f398a4caa81838c5MD51ORIGINALAdsorcaoTensoativosPolímero_CunhaBisneto_2015.pdfMonografiaapplication/pdf634792https://repositorio.ufrn.br/bitstream/123456789/38364/2/AdsorcaoTensoativosPol%c3%admero_CunhaBisneto_2015.pdf79e5138154cf59a2e0feb85077c137f0MD52LICENSElicense.txttext/plain756https://repositorio.ufrn.br/bitstream/123456789/38364/3/license.txta80a9cda2756d355b388cc443c3d8a43MD53123456789/383642023-05-19 10:59:57.402oai:https://repositorio.ufrn.br:123456789/38364PGNlbnRlcj48c3Ryb25nPlVOSVZFUlNJREFERSBGRURFUkFMIERPIFJJTyBHUkFOREUgRE8gTk9SVEU8L3N0cm9uZz48L2NlbnRlcj4KPGNlbnRlcj48c3Ryb25nPkJJQkxJT1RFQ0EgRElHSVRBTCBERSBNT05PR1JBRklBUzwvc3Ryb25nPjwvY2VudGVyPgoKPGNlbnRlcj5UZXJtbyBkZSBBdXRvcml6YcOnw6NvIHBhcmEgZGlzcG9uaWJpbGl6YcOnw6NvIGRlIE1vbm9ncmFmaWFzIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbyBuYSBCaWJsaW90ZWNhIERpZ2l0YWwgZGUgTW9ub2dyYWZpYXMgKEJETSk8L2NlbnRlcj4KCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBkYSBtb25vZ3JhZmlhLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIFJpbyBHcmFuZGUgZG8gTm9ydGUgKFVGUk4pIGEgZGlzcG9uaWJpbGl6YXIgYXRyYXbDqXMgZGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIE1vbm9ncmFmaWFzIGRhIFVGUk4sIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgZGUgYWNvcmRvIGNvbSBhIExlaSBuwrAgOTYxMC85OCwgbyB0ZXh0byBpbnRlZ3JhbCBkYSBvYnJhIHN1Ym1ldGlkYSBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCBhIHTDrXR1bG8gZGUgZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrWZpY2EgYnJhc2lsZWlyYSwgYSBwYXJ0aXIgZGEgZGF0YSBkZXN0YSBzdWJtaXNzw6NvLiAKRepositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-05-19T13:59:57Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pr_BR.fl_str_mv Adsorção de tensoativos e polímero em rocha reservatório
dc.title.alternative.pr_BR.fl_str_mv Adsorption surfactants and polymer in rock reservoir
title Adsorção de tensoativos e polímero em rocha reservatório
spellingShingle Adsorção de tensoativos e polímero em rocha reservatório
Cunha Bisneto, Manuel Carneiro
Rocha reservatório.
Rock reservoir.
Adsorção - Quimica
Tamanho de partícula.
Quitosana - Química.
title_short Adsorção de tensoativos e polímero em rocha reservatório
title_full Adsorção de tensoativos e polímero em rocha reservatório
title_fullStr Adsorção de tensoativos e polímero em rocha reservatório
title_full_unstemmed Adsorção de tensoativos e polímero em rocha reservatório
title_sort Adsorção de tensoativos e polímero em rocha reservatório
author Cunha Bisneto, Manuel Carneiro
author_facet Cunha Bisneto, Manuel Carneiro
author_role author
dc.contributor.referees1.none.fl_str_mv Pergher, Sibele Berenice Castellã
dc.contributor.referees2.none.fl_str_mv Braga, Tiago Pinheiro
dc.contributor.referees3.none.fl_str_mv Medeiros, Ana Catarina da Rocha
dc.contributor.author.fl_str_mv Cunha Bisneto, Manuel Carneiro
dc.contributor.advisor1.fl_str_mv Wanderley Neto, Alcides de Oliveira
contributor_str_mv Wanderley Neto, Alcides de Oliveira
dc.subject.pr_BR.fl_str_mv Rocha reservatório.
Rock reservoir.
Adsorção - Quimica
Tamanho de partícula.
Quitosana - Química.
topic Rocha reservatório.
Rock reservoir.
Adsorção - Quimica
Tamanho de partícula.
Quitosana - Química.
description In the process of oil exploration where the energy in the formation is insufficient to produce oil of course, it is necessary to intervene in the well and this process is entitled to oil recovery, which may be referred to as enhanced oil recovery when using chemical processes, such as systems based on surfactants and polyelectrolytes. The surfactants have the property of adsorbing interface lowering the interfacial tension and facilitating the flow of oil from the rock pores to the inside of the reservoir while the polymer has the property of moving the oil bank from the high viscosity systems polymeric offers. The polyelectrolytes may also adsorb on the rock. To better understand the recovery process is necessary to study the phenomena of chemical adsorption of molecules in the reservoir rock and this was applied the techniques zeta potential and dynamic light scattering. The sandstone rock has negative charge and adding the acetic acid solution the load reverses, becoming positive. The anionic surfactant, OCS and SDS adsorb the sandstone at concentrations below and above the critical micelle concentration (CMC). Chitosan also adsorbs considerably sandstone. The adsorption takes place until such time that saturates the entire surface of the sandstone particles and the concentration of saturation for the chitosan and SDS is 0.005%, while for the OCS there is a critical value of saturation as there is a phenomenon of protonation. For the combination of chitosan-OCS saturation occurs at 0.002%, while for chitosan SDS and SDS OCS there is a critical point of saturation. The combination of chitosan-SDS-OCS has increased load up to 0.004% and decreased to 0.005% and from this value ha saturation sandstone surface. Particle sizes were determined from the dynamic light scattering technique. Particle sizes confirm that there are chemical interaction of molecules studied on the sandstone particle.
publishDate 2015
dc.date.accessioned.fl_str_mv 2015-07-15T00:44:49Z
2021-09-27T11:48:13Z
dc.date.available.fl_str_mv 2015-07-15T00:44:49Z
2021-09-27T11:48:13Z
dc.date.issued.fl_str_mv 2015-06-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.pr_BR.fl_str_mv 2011024318
dc.identifier.citation.fl_str_mv Cunha Bisneto, Manuel Carneiro. Adsorção de tensoativos e polímero em rocha reservatório. 2015. 48f. Trabalho de Conclusão de Curso (Graduação em Química do Petróleo), Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, 2015.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/38364
identifier_str_mv 2011024318
Cunha Bisneto, Manuel Carneiro. Adsorção de tensoativos e polímero em rocha reservatório. 2015. 48f. Trabalho de Conclusão de Curso (Graduação em Química do Petróleo), Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, 2015.
url https://repositorio.ufrn.br/handle/123456789/38364
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Química do Petróleo
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/38364/1/AdsorcaoTensoativosPol%c3%admero_CunhaBisneto_2015.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/38364/2/AdsorcaoTensoativosPol%c3%admero_CunhaBisneto_2015.pdf
https://repositorio.ufrn.br/bitstream/123456789/38364/3/license.txt
bitstream.checksum.fl_str_mv 0aac91ab7d963793f398a4caa81838c5
79e5138154cf59a2e0feb85077c137f0
a80a9cda2756d355b388cc443c3d8a43
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1802117746351144960