Column generation bounds for numerical microaggregation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/30554 |
Resumo: | The biggest challenge when disclosing private data is to share information contained in databases while protecting people from being individually identified. Microaggregation is a family of methods for statistical disclosure control. The principle of microaggregation is that confidentiality rules permit the publication of individual records if they are partitioned into groups of size larger or equal to a fixed threshold value, where none is more representative than the others in the same group. The application of such rules leads to replacing individual values by those computed from small groups (microaggregates), before data publication. This work proposes a column generation algorithm for numerical microaggregation in which its pricing problem is solved by a specialized branch-and-bound. The algorithm is able to find, for the first time, lower bounds for instances of three real-world datasets commonly used in the literature. Furthermore, new best known solutions are obtained for these instances by means of a simple heuristic method with the columns generated |
id |
UFRN_f747ca78e12b1b1a15ad8d78b0e22a20 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/30554 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Rocha, Caroline Thennecy de MedeirosAloise, DanielHansen, PierreSanti, Éverton2020-11-10T13:37:11Z2020-11-10T13:37:11Z2014-02-18ALOISE, Daniel; HANSEN, Pierre; ROCHA, Caroline; SANTI, Éverton. Column generation bounds for numerical microaggregation. Journal of Global Optimization, [S.L.], v. 60, n. 2, p. 165-182, 18 fev. 2014. Disponível em: https://link.springer.com/article/10.1007/s10898-014-0149-3. Acesso em: 03 set. 2020. http://dx.doi.org/10.1007/s10898-014-0149-3.0925-50011573-2916https://repositorio.ufrn.br/handle/123456789/3055410.1007/s10898-014-0149-3SpringerAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessMicroaggregationColumn generationCutsBranch-and-boundColumn generation bounds for numerical microaggregationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe biggest challenge when disclosing private data is to share information contained in databases while protecting people from being individually identified. Microaggregation is a family of methods for statistical disclosure control. The principle of microaggregation is that confidentiality rules permit the publication of individual records if they are partitioned into groups of size larger or equal to a fixed threshold value, where none is more representative than the others in the same group. The application of such rules leads to replacing individual values by those computed from small groups (microaggregates), before data publication. This work proposes a column generation algorithm for numerical microaggregation in which its pricing problem is solved by a specialized branch-and-bound. The algorithm is able to find, for the first time, lower bounds for instances of three real-world datasets commonly used in the literature. Furthermore, new best known solutions are obtained for these instances by means of a simple heuristic method with the columns generatedengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALColumnGenerationBounds_2014.pdfColumnGenerationBounds_2014.pdfapplication/pdf240094https://repositorio.ufrn.br/bitstream/123456789/30554/1/ColumnGenerationBounds_2014.pdf4d8be2a04c53d2e819de5fe4ab05888cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/30554/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30554/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTColumnGenerationBounds_2014.pdf.txtColumnGenerationBounds_2014.pdf.txtExtracted texttext/plain52272https://repositorio.ufrn.br/bitstream/123456789/30554/4/ColumnGenerationBounds_2014.pdf.txtd849ef9f8e26d9bfe3bf925c5b913b2aMD54THUMBNAILColumnGenerationBounds_2014.pdf.jpgColumnGenerationBounds_2014.pdf.jpgGenerated Thumbnailimage/jpeg1444https://repositorio.ufrn.br/bitstream/123456789/30554/5/ColumnGenerationBounds_2014.pdf.jpg7fbcd52b1883bba0fa0504ae882ca514MD55123456789/305542020-11-15 05:07:00.004oai:https://repositorio.ufrn.br:123456789/30554Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-11-15T08:07Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Column generation bounds for numerical microaggregation |
title |
Column generation bounds for numerical microaggregation |
spellingShingle |
Column generation bounds for numerical microaggregation Rocha, Caroline Thennecy de Medeiros Microaggregation Column generation Cuts Branch-and-bound |
title_short |
Column generation bounds for numerical microaggregation |
title_full |
Column generation bounds for numerical microaggregation |
title_fullStr |
Column generation bounds for numerical microaggregation |
title_full_unstemmed |
Column generation bounds for numerical microaggregation |
title_sort |
Column generation bounds for numerical microaggregation |
author |
Rocha, Caroline Thennecy de Medeiros |
author_facet |
Rocha, Caroline Thennecy de Medeiros Aloise, Daniel Hansen, Pierre Santi, Éverton |
author_role |
author |
author2 |
Aloise, Daniel Hansen, Pierre Santi, Éverton |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Rocha, Caroline Thennecy de Medeiros Aloise, Daniel Hansen, Pierre Santi, Éverton |
dc.subject.por.fl_str_mv |
Microaggregation Column generation Cuts Branch-and-bound |
topic |
Microaggregation Column generation Cuts Branch-and-bound |
description |
The biggest challenge when disclosing private data is to share information contained in databases while protecting people from being individually identified. Microaggregation is a family of methods for statistical disclosure control. The principle of microaggregation is that confidentiality rules permit the publication of individual records if they are partitioned into groups of size larger or equal to a fixed threshold value, where none is more representative than the others in the same group. The application of such rules leads to replacing individual values by those computed from small groups (microaggregates), before data publication. This work proposes a column generation algorithm for numerical microaggregation in which its pricing problem is solved by a specialized branch-and-bound. The algorithm is able to find, for the first time, lower bounds for instances of three real-world datasets commonly used in the literature. Furthermore, new best known solutions are obtained for these instances by means of a simple heuristic method with the columns generated |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-02-18 |
dc.date.accessioned.fl_str_mv |
2020-11-10T13:37:11Z |
dc.date.available.fl_str_mv |
2020-11-10T13:37:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ALOISE, Daniel; HANSEN, Pierre; ROCHA, Caroline; SANTI, Éverton. Column generation bounds for numerical microaggregation. Journal of Global Optimization, [S.L.], v. 60, n. 2, p. 165-182, 18 fev. 2014. Disponível em: https://link.springer.com/article/10.1007/s10898-014-0149-3. Acesso em: 03 set. 2020. http://dx.doi.org/10.1007/s10898-014-0149-3. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/30554 |
dc.identifier.issn.none.fl_str_mv |
0925-5001 1573-2916 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s10898-014-0149-3 |
identifier_str_mv |
ALOISE, Daniel; HANSEN, Pierre; ROCHA, Caroline; SANTI, Éverton. Column generation bounds for numerical microaggregation. Journal of Global Optimization, [S.L.], v. 60, n. 2, p. 165-182, 18 fev. 2014. Disponível em: https://link.springer.com/article/10.1007/s10898-014-0149-3. Acesso em: 03 set. 2020. http://dx.doi.org/10.1007/s10898-014-0149-3. 0925-5001 1573-2916 10.1007/s10898-014-0149-3 |
url |
https://repositorio.ufrn.br/handle/123456789/30554 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/30554/1/ColumnGenerationBounds_2014.pdf https://repositorio.ufrn.br/bitstream/123456789/30554/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/30554/3/license.txt https://repositorio.ufrn.br/bitstream/123456789/30554/4/ColumnGenerationBounds_2014.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/30554/5/ColumnGenerationBounds_2014.pdf.jpg |
bitstream.checksum.fl_str_mv |
4d8be2a04c53d2e819de5fe4ab05888c 4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 d849ef9f8e26d9bfe3bf925c5b913b2a 7fbcd52b1883bba0fa0504ae882ca514 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832695911383040 |