Column generation bounds for numerical microaggregation

Detalhes bibliográficos
Autor(a) principal: Rocha, Caroline Thennecy de Medeiros
Data de Publicação: 2014
Outros Autores: Aloise, Daniel, Hansen, Pierre, Santi, Éverton
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/30554
Resumo: The biggest challenge when disclosing private data is to share information contained in databases while protecting people from being individually identified. Microaggregation is a family of methods for statistical disclosure control. The principle of microaggregation is that confidentiality rules permit the publication of individual records if they are partitioned into groups of size larger or equal to a fixed threshold value, where none is more representative than the others in the same group. The application of such rules leads to replacing individual values by those computed from small groups (microaggregates), before data publication. This work proposes a column generation algorithm for numerical microaggregation in which its pricing problem is solved by a specialized branch-and-bound. The algorithm is able to find, for the first time, lower bounds for instances of three real-world datasets commonly used in the literature. Furthermore, new best known solutions are obtained for these instances by means of a simple heuristic method with the columns generated
id UFRN_f747ca78e12b1b1a15ad8d78b0e22a20
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/30554
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Rocha, Caroline Thennecy de MedeirosAloise, DanielHansen, PierreSanti, Éverton2020-11-10T13:37:11Z2020-11-10T13:37:11Z2014-02-18ALOISE, Daniel; HANSEN, Pierre; ROCHA, Caroline; SANTI, Éverton. Column generation bounds for numerical microaggregation. Journal of Global Optimization, [S.L.], v. 60, n. 2, p. 165-182, 18 fev. 2014. Disponível em: https://link.springer.com/article/10.1007/s10898-014-0149-3. Acesso em: 03 set. 2020. http://dx.doi.org/10.1007/s10898-014-0149-3.0925-50011573-2916https://repositorio.ufrn.br/handle/123456789/3055410.1007/s10898-014-0149-3SpringerAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessMicroaggregationColumn generationCutsBranch-and-boundColumn generation bounds for numerical microaggregationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe biggest challenge when disclosing private data is to share information contained in databases while protecting people from being individually identified. Microaggregation is a family of methods for statistical disclosure control. The principle of microaggregation is that confidentiality rules permit the publication of individual records if they are partitioned into groups of size larger or equal to a fixed threshold value, where none is more representative than the others in the same group. The application of such rules leads to replacing individual values by those computed from small groups (microaggregates), before data publication. This work proposes a column generation algorithm for numerical microaggregation in which its pricing problem is solved by a specialized branch-and-bound. The algorithm is able to find, for the first time, lower bounds for instances of three real-world datasets commonly used in the literature. Furthermore, new best known solutions are obtained for these instances by means of a simple heuristic method with the columns generatedengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALColumnGenerationBounds_2014.pdfColumnGenerationBounds_2014.pdfapplication/pdf240094https://repositorio.ufrn.br/bitstream/123456789/30554/1/ColumnGenerationBounds_2014.pdf4d8be2a04c53d2e819de5fe4ab05888cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/30554/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30554/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTColumnGenerationBounds_2014.pdf.txtColumnGenerationBounds_2014.pdf.txtExtracted texttext/plain52272https://repositorio.ufrn.br/bitstream/123456789/30554/4/ColumnGenerationBounds_2014.pdf.txtd849ef9f8e26d9bfe3bf925c5b913b2aMD54THUMBNAILColumnGenerationBounds_2014.pdf.jpgColumnGenerationBounds_2014.pdf.jpgGenerated Thumbnailimage/jpeg1444https://repositorio.ufrn.br/bitstream/123456789/30554/5/ColumnGenerationBounds_2014.pdf.jpg7fbcd52b1883bba0fa0504ae882ca514MD55123456789/305542020-11-15 05:07:00.004oai:https://repositorio.ufrn.br:123456789/30554Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-11-15T08:07Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Column generation bounds for numerical microaggregation
title Column generation bounds for numerical microaggregation
spellingShingle Column generation bounds for numerical microaggregation
Rocha, Caroline Thennecy de Medeiros
Microaggregation
Column generation
Cuts
Branch-and-bound
title_short Column generation bounds for numerical microaggregation
title_full Column generation bounds for numerical microaggregation
title_fullStr Column generation bounds for numerical microaggregation
title_full_unstemmed Column generation bounds for numerical microaggregation
title_sort Column generation bounds for numerical microaggregation
author Rocha, Caroline Thennecy de Medeiros
author_facet Rocha, Caroline Thennecy de Medeiros
Aloise, Daniel
Hansen, Pierre
Santi, Éverton
author_role author
author2 Aloise, Daniel
Hansen, Pierre
Santi, Éverton
author2_role author
author
author
dc.contributor.author.fl_str_mv Rocha, Caroline Thennecy de Medeiros
Aloise, Daniel
Hansen, Pierre
Santi, Éverton
dc.subject.por.fl_str_mv Microaggregation
Column generation
Cuts
Branch-and-bound
topic Microaggregation
Column generation
Cuts
Branch-and-bound
description The biggest challenge when disclosing private data is to share information contained in databases while protecting people from being individually identified. Microaggregation is a family of methods for statistical disclosure control. The principle of microaggregation is that confidentiality rules permit the publication of individual records if they are partitioned into groups of size larger or equal to a fixed threshold value, where none is more representative than the others in the same group. The application of such rules leads to replacing individual values by those computed from small groups (microaggregates), before data publication. This work proposes a column generation algorithm for numerical microaggregation in which its pricing problem is solved by a specialized branch-and-bound. The algorithm is able to find, for the first time, lower bounds for instances of three real-world datasets commonly used in the literature. Furthermore, new best known solutions are obtained for these instances by means of a simple heuristic method with the columns generated
publishDate 2014
dc.date.issued.fl_str_mv 2014-02-18
dc.date.accessioned.fl_str_mv 2020-11-10T13:37:11Z
dc.date.available.fl_str_mv 2020-11-10T13:37:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv ALOISE, Daniel; HANSEN, Pierre; ROCHA, Caroline; SANTI, Éverton. Column generation bounds for numerical microaggregation. Journal of Global Optimization, [S.L.], v. 60, n. 2, p. 165-182, 18 fev. 2014. Disponível em: https://link.springer.com/article/10.1007/s10898-014-0149-3. Acesso em: 03 set. 2020. http://dx.doi.org/10.1007/s10898-014-0149-3.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/30554
dc.identifier.issn.none.fl_str_mv 0925-5001
1573-2916
dc.identifier.doi.none.fl_str_mv 10.1007/s10898-014-0149-3
identifier_str_mv ALOISE, Daniel; HANSEN, Pierre; ROCHA, Caroline; SANTI, Éverton. Column generation bounds for numerical microaggregation. Journal of Global Optimization, [S.L.], v. 60, n. 2, p. 165-182, 18 fev. 2014. Disponível em: https://link.springer.com/article/10.1007/s10898-014-0149-3. Acesso em: 03 set. 2020. http://dx.doi.org/10.1007/s10898-014-0149-3.
0925-5001
1573-2916
10.1007/s10898-014-0149-3
url https://repositorio.ufrn.br/handle/123456789/30554
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/30554/1/ColumnGenerationBounds_2014.pdf
https://repositorio.ufrn.br/bitstream/123456789/30554/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/30554/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/30554/4/ColumnGenerationBounds_2014.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/30554/5/ColumnGenerationBounds_2014.pdf.jpg
bitstream.checksum.fl_str_mv 4d8be2a04c53d2e819de5fe4ab05888c
4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
d849ef9f8e26d9bfe3bf925c5b913b2a
7fbcd52b1883bba0fa0504ae882ca514
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832695911383040