NPi-Cluster: a Low Power Energy-Proportional Computing Cluster Architecture
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/48874 |
Resumo: | This paper presents the NPi-Cluster, an energy proportional computing cluster that automatically powers ON or OFF the number of running machines according to the actual processing demand. A theoretical model is proposed, discussed, and implemented on a cluster composed of Raspberry Pi computer boards designed and built in order to test the proposed system architecture. Experimental results show adequate performance of the proposed platform when compared with other web servers running on traditional server architectures, but with considerably less power consumption. The power consumption of the entire cluster is about 14 W when running at maximum performance. In this situation, the system is able to handle more than 450 simultaneous requests, with about 1000 transactions per second, making it possible to be used as a server capable of handling real web workloads with acceptable quality of service. When the requests demand is reduced to a minimum, the power consumption is dynamically reduced until less than 2 W. Additionally, the proposed cluster architecture also provides high availability by reducing single points of failure on the system |
id |
UFRN_fbd64a305859a750bd5740e1a53550f5 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/48874 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Filho, Sebastião Emidio AlvesBurlamaqui, Aquiles Medeiros FilgueiraAroca, Rafael VidalGonçalves, Luiz Marcos Garcia2022-07-29T15:37:06Z2022-07-29T15:37:06Z2017-08-09ALVES FILHO, Sebastiao Emidio; BURLAMAQUI, Aquiles Medeiros Filgueira; AROCA, Rafael Vidal; GONCALVES, Luiz Marcos Garcia. NPi-Cluster: a low power energy-proportional computing cluster architecture. Ieee Access, [s.l.], v. 5, p. 16297-16313, 2017. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/access.2017.2728720. Disponível em: https://ieeexplore.ieee.org/document/8004443. Acesso em: 27 jul. 2020.1678-765Xhttps://repositorio.ufrn.br/handle/123456789/48874This paper presents the NPi-Cluster, an energy proportional computing cluster that automatically powers ON or OFF the number of running machines according to the actual processing demand. A theoretical model is proposed, discussed, and implemented on a cluster composed of Raspberry Pi computer boards designed and built in order to test the proposed system architecture. Experimental results show adequate performance of the proposed platform when compared with other web servers running on traditional server architectures, but with considerably less power consumption. The power consumption of the entire cluster is about 14 W when running at maximum performance. In this situation, the system is able to handle more than 450 simultaneous requests, with about 1000 transactions per second, making it possible to be used as a server capable of handling real web workloads with acceptable quality of service. When the requests demand is reduced to a minimum, the power consumption is dynamically reduced until less than 2 W. Additionally, the proposed cluster architecture also provides high availability by reducing single points of failure on the systemThis paper presents the NPi-Cluster, an energy proportional computing cluster that automatically powers ON or OFF the number of running machines according to the actual processing demand. A theoretical model is proposed, discussed, and implemented on a cluster composed of Raspberry Pi computer boards designed and built in order to test the proposed system architecture. Experimental results show adequate performance of the proposed platform when compared with other web servers running on traditional server architectures, but with considerably less power consumption. The power consumption of the entire cluster is about 14 W when running at maximum performance. In this situation, the system is able to handle more than 450 simultaneous requests, with about 1000 transactions per second, making it possible to be used as a server capable of handling real web workloads with acceptable quality of service. When the requests demand is reduced to a minimum, the power consumption is dynamically reduced until less than 2 W. Additionally, the proposed cluster architecture also provides high availability by reducing single points of failure on the systemInstitute of Electrical and Electronics EngineersAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessEnergy efficiencyScalabilityQuality of serviceDistributed computingLow power electronicsNPi-Cluster: a Low Power Energy-Proportional Computing Cluster Architectureinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALNPi_Cluster_ALowPower_BULAMARQUI_2017.pdfNPi_Cluster_ALowPower_BULAMARQUI_2017.pdfArtigoapplication/pdf7327866https://repositorio.ufrn.br/bitstream/123456789/48874/1/NPi_Cluster_ALowPower_BULAMARQUI_2017.pdfc79052c71ac2d67812fbecaaad20911cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/48874/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/48874/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/488742022-07-29 12:37:08.677oai:https://repositorio.ufrn.br:123456789/48874Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-07-29T15:37:08Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
NPi-Cluster: a Low Power Energy-Proportional Computing Cluster Architecture |
title |
NPi-Cluster: a Low Power Energy-Proportional Computing Cluster Architecture |
spellingShingle |
NPi-Cluster: a Low Power Energy-Proportional Computing Cluster Architecture Filho, Sebastião Emidio Alves Energy efficiency Scalability Quality of service Distributed computing Low power electronics |
title_short |
NPi-Cluster: a Low Power Energy-Proportional Computing Cluster Architecture |
title_full |
NPi-Cluster: a Low Power Energy-Proportional Computing Cluster Architecture |
title_fullStr |
NPi-Cluster: a Low Power Energy-Proportional Computing Cluster Architecture |
title_full_unstemmed |
NPi-Cluster: a Low Power Energy-Proportional Computing Cluster Architecture |
title_sort |
NPi-Cluster: a Low Power Energy-Proportional Computing Cluster Architecture |
author |
Filho, Sebastião Emidio Alves |
author_facet |
Filho, Sebastião Emidio Alves Burlamaqui, Aquiles Medeiros Filgueira Aroca, Rafael Vidal Gonçalves, Luiz Marcos Garcia |
author_role |
author |
author2 |
Burlamaqui, Aquiles Medeiros Filgueira Aroca, Rafael Vidal Gonçalves, Luiz Marcos Garcia |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Filho, Sebastião Emidio Alves Burlamaqui, Aquiles Medeiros Filgueira Aroca, Rafael Vidal Gonçalves, Luiz Marcos Garcia |
dc.subject.por.fl_str_mv |
Energy efficiency Scalability Quality of service Distributed computing Low power electronics |
topic |
Energy efficiency Scalability Quality of service Distributed computing Low power electronics |
description |
This paper presents the NPi-Cluster, an energy proportional computing cluster that automatically powers ON or OFF the number of running machines according to the actual processing demand. A theoretical model is proposed, discussed, and implemented on a cluster composed of Raspberry Pi computer boards designed and built in order to test the proposed system architecture. Experimental results show adequate performance of the proposed platform when compared with other web servers running on traditional server architectures, but with considerably less power consumption. The power consumption of the entire cluster is about 14 W when running at maximum performance. In this situation, the system is able to handle more than 450 simultaneous requests, with about 1000 transactions per second, making it possible to be used as a server capable of handling real web workloads with acceptable quality of service. When the requests demand is reduced to a minimum, the power consumption is dynamically reduced until less than 2 W. Additionally, the proposed cluster architecture also provides high availability by reducing single points of failure on the system |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-08-09 |
dc.date.accessioned.fl_str_mv |
2022-07-29T15:37:06Z |
dc.date.available.fl_str_mv |
2022-07-29T15:37:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ALVES FILHO, Sebastiao Emidio; BURLAMAQUI, Aquiles Medeiros Filgueira; AROCA, Rafael Vidal; GONCALVES, Luiz Marcos Garcia. NPi-Cluster: a low power energy-proportional computing cluster architecture. Ieee Access, [s.l.], v. 5, p. 16297-16313, 2017. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/access.2017.2728720. Disponível em: https://ieeexplore.ieee.org/document/8004443. Acesso em: 27 jul. 2020. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/48874 |
dc.identifier.issn.none.fl_str_mv |
1678-765X |
identifier_str_mv |
ALVES FILHO, Sebastiao Emidio; BURLAMAQUI, Aquiles Medeiros Filgueira; AROCA, Rafael Vidal; GONCALVES, Luiz Marcos Garcia. NPi-Cluster: a low power energy-proportional computing cluster architecture. Ieee Access, [s.l.], v. 5, p. 16297-16313, 2017. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/access.2017.2728720. Disponível em: https://ieeexplore.ieee.org/document/8004443. Acesso em: 27 jul. 2020. 1678-765X |
url |
https://repositorio.ufrn.br/handle/123456789/48874 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/48874/1/NPi_Cluster_ALowPower_BULAMARQUI_2017.pdf https://repositorio.ufrn.br/bitstream/123456789/48874/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/48874/3/license.txt |
bitstream.checksum.fl_str_mv |
c79052c71ac2d67812fbecaaad20911c 4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832935276118016 |