Maximum entropy principle for Kaniadakis statistics and networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/30641 |
Resumo: | In this Letter we investigate a connection between Kaniadakis power-law statistics and networks. By following the maximum entropy principle, we maximize the Kaniadakis entropy and derive the optimal degree distribution of complex networks. We show that the degree distribution follows P(k) =P0 expκ (−k/ηκ ) with expκ (x) = (√1 + κ2x2 + κx)1/κ , and |κ| < 1. In order to check our approach we study a preferential attachment growth model introduced by Soares et al. [Europhys. Lett. 70 (2005) 70] and a growing random network (GRN) model investigated by Krapivsky et al. [Phys. Rev. Lett. 85 (2000) 4629]. Our results are compared with the ones calculated through the Tsallis statistics |
id |
UFRN_fd7fc394e6050f8377f7449247ee4b91 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/30641 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Moreira, Darlan AraújoMacedo Filho, Antônio deSilva Junior, RaimundoSilva, Luciano Rodrigues da2020-11-23T21:20:26Z2020-11-23T21:20:26Z2013-05-03MACEDO FILHO, A.; MOREIRA, D.A.; SILVA, R.; SILVA, Luciano R. da. Maximum entropy principle for Kaniadakis statistics and networks. Physics Letters A, [S.L.], v. 377, n. 12, p. 842-846, maio 2013. Disponível em: https://www.sciencedirect.com/science/article/pii/S0375960113000984?via%3Dihub. Acesso em: 08 set. 2020. http://dx.doi.org/10.1016/j.physleta.2013.01.032.0375-9601https://repositorio.ufrn.br/handle/123456789/3064110.1016/j.physleta.2013.01.032ElsevierAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessGeneralized statisticsDegree distributionNetworksMaximum entropy principle for Kaniadakis statistics and networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn this Letter we investigate a connection between Kaniadakis power-law statistics and networks. By following the maximum entropy principle, we maximize the Kaniadakis entropy and derive the optimal degree distribution of complex networks. We show that the degree distribution follows P(k) =P0 expκ (−k/ηκ ) with expκ (x) = (√1 + κ2x2 + κx)1/κ , and |κ| < 1. In order to check our approach we study a preferential attachment growth model introduced by Soares et al. [Europhys. Lett. 70 (2005) 70] and a growing random network (GRN) model investigated by Krapivsky et al. [Phys. Rev. Lett. 85 (2000) 4629]. Our results are compared with the ones calculated through the Tsallis statisticsengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALMaximumEntropyPrinciple_MOREIRA_2013.pdfMaximumEntropyPrinciple_MOREIRA_2013.pdfapplication/pdf283615https://repositorio.ufrn.br/bitstream/123456789/30641/1/MaximumEntropyPrinciple_MOREIRA_2013.pdf8c6c82a6f73763936c27d2e7412a01abMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/30641/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30641/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTMaximumEntropyPrinciple_MOREIRA_2013.pdf.txtMaximumEntropyPrinciple_MOREIRA_2013.pdf.txtExtracted texttext/plain26074https://repositorio.ufrn.br/bitstream/123456789/30641/4/MaximumEntropyPrinciple_MOREIRA_2013.pdf.txt7b75f3528d41864141481ec07348bb4eMD54THUMBNAILMaximumEntropyPrinciple_MOREIRA_2013.pdf.jpgMaximumEntropyPrinciple_MOREIRA_2013.pdf.jpgGenerated Thumbnailimage/jpeg1769https://repositorio.ufrn.br/bitstream/123456789/30641/5/MaximumEntropyPrinciple_MOREIRA_2013.pdf.jpg07d3c36e647c770bd85bb99259899d45MD55123456789/306412020-11-29 04:45:18.271oai:https://repositorio.ufrn.br:123456789/30641Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-11-29T07:45:18Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Maximum entropy principle for Kaniadakis statistics and networks |
title |
Maximum entropy principle for Kaniadakis statistics and networks |
spellingShingle |
Maximum entropy principle for Kaniadakis statistics and networks Moreira, Darlan Araújo Generalized statistics Degree distribution Networks |
title_short |
Maximum entropy principle for Kaniadakis statistics and networks |
title_full |
Maximum entropy principle for Kaniadakis statistics and networks |
title_fullStr |
Maximum entropy principle for Kaniadakis statistics and networks |
title_full_unstemmed |
Maximum entropy principle for Kaniadakis statistics and networks |
title_sort |
Maximum entropy principle for Kaniadakis statistics and networks |
author |
Moreira, Darlan Araújo |
author_facet |
Moreira, Darlan Araújo Macedo Filho, Antônio de Silva Junior, Raimundo Silva, Luciano Rodrigues da |
author_role |
author |
author2 |
Macedo Filho, Antônio de Silva Junior, Raimundo Silva, Luciano Rodrigues da |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Moreira, Darlan Araújo Macedo Filho, Antônio de Silva Junior, Raimundo Silva, Luciano Rodrigues da |
dc.subject.por.fl_str_mv |
Generalized statistics Degree distribution Networks |
topic |
Generalized statistics Degree distribution Networks |
description |
In this Letter we investigate a connection between Kaniadakis power-law statistics and networks. By following the maximum entropy principle, we maximize the Kaniadakis entropy and derive the optimal degree distribution of complex networks. We show that the degree distribution follows P(k) =P0 expκ (−k/ηκ ) with expκ (x) = (√1 + κ2x2 + κx)1/κ , and |κ| < 1. In order to check our approach we study a preferential attachment growth model introduced by Soares et al. [Europhys. Lett. 70 (2005) 70] and a growing random network (GRN) model investigated by Krapivsky et al. [Phys. Rev. Lett. 85 (2000) 4629]. Our results are compared with the ones calculated through the Tsallis statistics |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013-05-03 |
dc.date.accessioned.fl_str_mv |
2020-11-23T21:20:26Z |
dc.date.available.fl_str_mv |
2020-11-23T21:20:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MACEDO FILHO, A.; MOREIRA, D.A.; SILVA, R.; SILVA, Luciano R. da. Maximum entropy principle for Kaniadakis statistics and networks. Physics Letters A, [S.L.], v. 377, n. 12, p. 842-846, maio 2013. Disponível em: https://www.sciencedirect.com/science/article/pii/S0375960113000984?via%3Dihub. Acesso em: 08 set. 2020. http://dx.doi.org/10.1016/j.physleta.2013.01.032. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/30641 |
dc.identifier.issn.none.fl_str_mv |
0375-9601 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.physleta.2013.01.032 |
identifier_str_mv |
MACEDO FILHO, A.; MOREIRA, D.A.; SILVA, R.; SILVA, Luciano R. da. Maximum entropy principle for Kaniadakis statistics and networks. Physics Letters A, [S.L.], v. 377, n. 12, p. 842-846, maio 2013. Disponível em: https://www.sciencedirect.com/science/article/pii/S0375960113000984?via%3Dihub. Acesso em: 08 set. 2020. http://dx.doi.org/10.1016/j.physleta.2013.01.032. 0375-9601 10.1016/j.physleta.2013.01.032 |
url |
https://repositorio.ufrn.br/handle/123456789/30641 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/30641/1/MaximumEntropyPrinciple_MOREIRA_2013.pdf https://repositorio.ufrn.br/bitstream/123456789/30641/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/30641/3/license.txt https://repositorio.ufrn.br/bitstream/123456789/30641/4/MaximumEntropyPrinciple_MOREIRA_2013.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/30641/5/MaximumEntropyPrinciple_MOREIRA_2013.pdf.jpg |
bitstream.checksum.fl_str_mv |
8c6c82a6f73763936c27d2e7412a01ab 4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 7b75f3528d41864141481ec07348bb4e 07d3c36e647c770bd85bb99259899d45 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832902905528320 |