Numerical simulation of nanoparticles assisted laser photothermal therapy: a comparison of the P1‐approximation and discrete ordinate methods

Detalhes bibliográficos
Autor(a) principal: Maurente, André Jesus Soares
Data de Publicação: 2016
Outros Autores: Bruno, Alexandre Barbosa, Lamien, Bernard, Orlande, Helcio R. B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/31817
Resumo: Photothermal therapy (PTT) with combined use of laser radiation and photon absorber nanoparticles is a promising technique to treat cancer. Treatment planning and devising appropriate protocols for cancer photo thermal therapy require the computational simulation of coupled physical phenomena, such as radiation, conduction, and blood perfusion. The P1-approximation is a numerical method to solve radiation heat transfer which features the advantage of being computationally fast and, therefore, desirable for PTT simulations. However, the method is known to become inaccurate under certain conditions. In this study, the P1-approximation and the accurate discrete ordinate method were applied to solve a set of test problems idealized to portray conditions encountered in PTT. The test problems were one-dimensional, and the radiation scattering was assumed as isotropic. Tissues composed by layers with different properties were considered, including cases in which gold nanoparticles were embedded in the tissue to increase photon absorption. For the problems considered here, the P1-approximation and discrete ordinate method results presented quite good agreement for the time-dependent temperature distribution, which is the quantity of interest in PTT
id UFRN_fe64432f1aa1e53946706d73995a5cf2
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/31817
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Maurente, André Jesus SoaresBruno, Alexandre BarbosaLamien, BernardOrlande, Helcio R. B.2021-03-11T21:18:00Z2021-03-11T21:18:00Z2016-05-05BRUNO, Alexandre B.; MAURENTE, André; LAMIEN, Bernard; ORLANDE, Helcio R. B.. Numerical simulation of nanoparticles assisted laser photothermal therapy: a comparison of the p1-approximation and discrete ordinate methods. Journal of The Brazilian Society of Mechanical Sciences And Engineering, [S.L.], v. 39, n. 2, p. 621-630, 5 maio 2016. Disponível em: https://link.springer.com/article/10.1007/s40430-016-0553-3. Acesso em: 22 out. 2020. http://dx.doi.org/10.1007/s40430-016-0553-3.1678-58781806-3691https://repositorio.ufrn.br/handle/123456789/3181710.1007/s40430-016-0553-3SpringerAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessPhotothermal therapyHeat transfer simulationCoupled radiation-conduction-blood perfusionP1-approximationDiscrete ordinate methodNumerical simulation of nanoparticles assisted laser photothermal therapy: a comparison of the P1‐approximation and discrete ordinate methodsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePhotothermal therapy (PTT) with combined use of laser radiation and photon absorber nanoparticles is a promising technique to treat cancer. Treatment planning and devising appropriate protocols for cancer photo thermal therapy require the computational simulation of coupled physical phenomena, such as radiation, conduction, and blood perfusion. The P1-approximation is a numerical method to solve radiation heat transfer which features the advantage of being computationally fast and, therefore, desirable for PTT simulations. However, the method is known to become inaccurate under certain conditions. In this study, the P1-approximation and the accurate discrete ordinate method were applied to solve a set of test problems idealized to portray conditions encountered in PTT. The test problems were one-dimensional, and the radiation scattering was assumed as isotropic. Tissues composed by layers with different properties were considered, including cases in which gold nanoparticles were embedded in the tissue to increase photon absorption. For the problems considered here, the P1-approximation and discrete ordinate method results presented quite good agreement for the time-dependent temperature distribution, which is the quantity of interest in PTTengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/31817/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/31817/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53ORIGINALNumerical simulation of nanoparticles_Bruno_2017.pdfNumerical simulation of nanoparticles_Bruno_2017.pdfapplication/pdf1417824https://repositorio.ufrn.br/bitstream/123456789/31817/1/Numerical%20simulation%20of%20nanoparticles_Bruno_2017.pdf89d158480ad4ab030ea09e6ada8b5d16MD51TEXTNumerical simulation of nanoparticles_Bruno_2017.pdf.txtNumerical simulation of nanoparticles_Bruno_2017.pdf.txtExtracted texttext/plain38862https://repositorio.ufrn.br/bitstream/123456789/31817/4/Numerical%20simulation%20of%20nanoparticles_Bruno_2017.pdf.txt5fe70f2876f30b3c678b9bf275f7d4faMD54THUMBNAILNumerical simulation of nanoparticles_Bruno_2017.pdf.jpgNumerical simulation of nanoparticles_Bruno_2017.pdf.jpgGenerated Thumbnailimage/jpeg1824https://repositorio.ufrn.br/bitstream/123456789/31817/5/Numerical%20simulation%20of%20nanoparticles_Bruno_2017.pdf.jpg98535c2aba2cdc069faa257ab5b6a0efMD55123456789/318172021-03-14 05:46:10.821oai:https://repositorio.ufrn.br:123456789/31817Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-03-14T08:46:10Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Numerical simulation of nanoparticles assisted laser photothermal therapy: a comparison of the P1‐approximation and discrete ordinate methods
title Numerical simulation of nanoparticles assisted laser photothermal therapy: a comparison of the P1‐approximation and discrete ordinate methods
spellingShingle Numerical simulation of nanoparticles assisted laser photothermal therapy: a comparison of the P1‐approximation and discrete ordinate methods
Maurente, André Jesus Soares
Photothermal therapy
Heat transfer simulation
Coupled radiation-conduction-blood perfusion
P1-approximation
Discrete ordinate method
title_short Numerical simulation of nanoparticles assisted laser photothermal therapy: a comparison of the P1‐approximation and discrete ordinate methods
title_full Numerical simulation of nanoparticles assisted laser photothermal therapy: a comparison of the P1‐approximation and discrete ordinate methods
title_fullStr Numerical simulation of nanoparticles assisted laser photothermal therapy: a comparison of the P1‐approximation and discrete ordinate methods
title_full_unstemmed Numerical simulation of nanoparticles assisted laser photothermal therapy: a comparison of the P1‐approximation and discrete ordinate methods
title_sort Numerical simulation of nanoparticles assisted laser photothermal therapy: a comparison of the P1‐approximation and discrete ordinate methods
author Maurente, André Jesus Soares
author_facet Maurente, André Jesus Soares
Bruno, Alexandre Barbosa
Lamien, Bernard
Orlande, Helcio R. B.
author_role author
author2 Bruno, Alexandre Barbosa
Lamien, Bernard
Orlande, Helcio R. B.
author2_role author
author
author
dc.contributor.author.fl_str_mv Maurente, André Jesus Soares
Bruno, Alexandre Barbosa
Lamien, Bernard
Orlande, Helcio R. B.
dc.subject.por.fl_str_mv Photothermal therapy
Heat transfer simulation
Coupled radiation-conduction-blood perfusion
P1-approximation
Discrete ordinate method
topic Photothermal therapy
Heat transfer simulation
Coupled radiation-conduction-blood perfusion
P1-approximation
Discrete ordinate method
description Photothermal therapy (PTT) with combined use of laser radiation and photon absorber nanoparticles is a promising technique to treat cancer. Treatment planning and devising appropriate protocols for cancer photo thermal therapy require the computational simulation of coupled physical phenomena, such as radiation, conduction, and blood perfusion. The P1-approximation is a numerical method to solve radiation heat transfer which features the advantage of being computationally fast and, therefore, desirable for PTT simulations. However, the method is known to become inaccurate under certain conditions. In this study, the P1-approximation and the accurate discrete ordinate method were applied to solve a set of test problems idealized to portray conditions encountered in PTT. The test problems were one-dimensional, and the radiation scattering was assumed as isotropic. Tissues composed by layers with different properties were considered, including cases in which gold nanoparticles were embedded in the tissue to increase photon absorption. For the problems considered here, the P1-approximation and discrete ordinate method results presented quite good agreement for the time-dependent temperature distribution, which is the quantity of interest in PTT
publishDate 2016
dc.date.issued.fl_str_mv 2016-05-05
dc.date.accessioned.fl_str_mv 2021-03-11T21:18:00Z
dc.date.available.fl_str_mv 2021-03-11T21:18:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv BRUNO, Alexandre B.; MAURENTE, André; LAMIEN, Bernard; ORLANDE, Helcio R. B.. Numerical simulation of nanoparticles assisted laser photothermal therapy: a comparison of the p1-approximation and discrete ordinate methods. Journal of The Brazilian Society of Mechanical Sciences And Engineering, [S.L.], v. 39, n. 2, p. 621-630, 5 maio 2016. Disponível em: https://link.springer.com/article/10.1007/s40430-016-0553-3. Acesso em: 22 out. 2020. http://dx.doi.org/10.1007/s40430-016-0553-3.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/31817
dc.identifier.issn.none.fl_str_mv 1678-5878
1806-3691
dc.identifier.doi.none.fl_str_mv 10.1007/s40430-016-0553-3
identifier_str_mv BRUNO, Alexandre B.; MAURENTE, André; LAMIEN, Bernard; ORLANDE, Helcio R. B.. Numerical simulation of nanoparticles assisted laser photothermal therapy: a comparison of the p1-approximation and discrete ordinate methods. Journal of The Brazilian Society of Mechanical Sciences And Engineering, [S.L.], v. 39, n. 2, p. 621-630, 5 maio 2016. Disponível em: https://link.springer.com/article/10.1007/s40430-016-0553-3. Acesso em: 22 out. 2020. http://dx.doi.org/10.1007/s40430-016-0553-3.
1678-5878
1806-3691
10.1007/s40430-016-0553-3
url https://repositorio.ufrn.br/handle/123456789/31817
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/31817/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/31817/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/31817/1/Numerical%20simulation%20of%20nanoparticles_Bruno_2017.pdf
https://repositorio.ufrn.br/bitstream/123456789/31817/4/Numerical%20simulation%20of%20nanoparticles_Bruno_2017.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/31817/5/Numerical%20simulation%20of%20nanoparticles_Bruno_2017.pdf.jpg
bitstream.checksum.fl_str_mv 4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
89d158480ad4ab030ea09e6ada8b5d16
5fe70f2876f30b3c678b9bf275f7d4fa
98535c2aba2cdc069faa257ab5b6a0ef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832823939366912