MODELS GENERATED BY MULTIPLE REGRESSION IN FILLING METEOROLOGICAL DATA FAILURES IN AN AUTOMATIC METEOROLOGICAL STATION IN ALAGOAS

Detalhes bibliográficos
Autor(a) principal: Araújo Neto, Renato Américo
Data de Publicação: 2020
Outros Autores: Nascimento, Jonathan Willyan dos Santos, Oliveira, Francisco Freire de, Rebelo, Gil Rafael Pacífico, Silva, Francisco de Assis de Lima, Carvalho, André Luiz de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Geama
Texto Completo: https://www.journals.ufrpe.br/index.php/geama/article/view/2830
Resumo: The objective of this study was to evaluate the multiple regression method to fill in the faults of the following meteorological variables: Average Air Temperature (Tmean), Relative Humidity (RHmean), and Rain Precipitation (Prec). Multiple regression was considered using different models, through the different cofactors evaluated (varying Tmean, RHmean, Dew Point, Pressure and Prec), generating four different multiple regression models for each meteorological variable studied. The models were statistically compared by Mean Absolute Error (MAE), Pearson's coefficient (r), agreement index (d) and Camargo and Sentelhas index (c). The results presented showed that multiple regression can be reliably used in Tmean, RHmean in Models 2, 3 and 4 (R> 0.90). The Precipitation variable had a coefficient of determination below 50% (R2 <0.50) and Model 2 obtained a p value greater than 1% in the Intercept (p = 0.012) and in the Pressure cofactor (p = 0.015). It cannot be used to correct Rainfall faults. Model 2 (except for Prec) presented better statistical coefficients and can be used to correct faults in the automatic station of Maceió, Alagoas.
id UFRPE-3_8aa89c123694c06f9abf78bc51c22e42
oai_identifier_str oai:ojs.10.0.7.8:article/2830
network_acronym_str UFRPE-3
network_name_str Revista Geama
repository_id_str
spelling MODELS GENERATED BY MULTIPLE REGRESSION IN FILLING METEOROLOGICAL DATA FAILURES IN AN AUTOMATIC METEOROLOGICAL STATION IN ALAGOASCorrectionFailuresMeteorologyStatistic RegressionThe objective of this study was to evaluate the multiple regression method to fill in the faults of the following meteorological variables: Average Air Temperature (Tmean), Relative Humidity (RHmean), and Rain Precipitation (Prec). Multiple regression was considered using different models, through the different cofactors evaluated (varying Tmean, RHmean, Dew Point, Pressure and Prec), generating four different multiple regression models for each meteorological variable studied. The models were statistically compared by Mean Absolute Error (MAE), Pearson's coefficient (r), agreement index (d) and Camargo and Sentelhas index (c). The results presented showed that multiple regression can be reliably used in Tmean, RHmean in Models 2, 3 and 4 (R> 0.90). The Precipitation variable had a coefficient of determination below 50% (R2 <0.50) and Model 2 obtained a p value greater than 1% in the Intercept (p = 0.012) and in the Pressure cofactor (p = 0.015). It cannot be used to correct Rainfall faults. Model 2 (except for Prec) presented better statistical coefficients and can be used to correct faults in the automatic station of Maceió, Alagoas.Geama Journal - Environmental SciencesRevista Geama2020-08-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.journals.ufrpe.br/index.php/geama/article/view/2830Geama Journal - Environmental Sciences; Vol. 6 No. 2 (2020); 4-10Revista Geama; v. 6 n. 2 (2020); 4-102447-0740reponame:Revista Geamainstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEenghttps://www.journals.ufrpe.br/index.php/geama/article/view/2830/482483733Copyright (c) 2020 Revista Geamainfo:eu-repo/semantics/openAccessAraújo Neto, Renato AméricoNascimento, Jonathan Willyan dos SantosOliveira, Francisco Freire deRebelo, Gil Rafael PacíficoSilva, Francisco de Assis de LimaCarvalho, André Luiz de2020-08-29T10:48:03Zoai:ojs.10.0.7.8:article/2830Revistahttps://www.journals.ufrpe.br/index.php/geamaPUBhttps://www.journals.ufrpe.br/index.php/geama/oaijosemachado@ufrpe.br2447-07402447-0740opendoar:2020-08-29T10:48:03Revista Geama - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.none.fl_str_mv MODELS GENERATED BY MULTIPLE REGRESSION IN FILLING METEOROLOGICAL DATA FAILURES IN AN AUTOMATIC METEOROLOGICAL STATION IN ALAGOAS
title MODELS GENERATED BY MULTIPLE REGRESSION IN FILLING METEOROLOGICAL DATA FAILURES IN AN AUTOMATIC METEOROLOGICAL STATION IN ALAGOAS
spellingShingle MODELS GENERATED BY MULTIPLE REGRESSION IN FILLING METEOROLOGICAL DATA FAILURES IN AN AUTOMATIC METEOROLOGICAL STATION IN ALAGOAS
Araújo Neto, Renato Américo
Correction
Failures
Meteorology
Statistic Regression
title_short MODELS GENERATED BY MULTIPLE REGRESSION IN FILLING METEOROLOGICAL DATA FAILURES IN AN AUTOMATIC METEOROLOGICAL STATION IN ALAGOAS
title_full MODELS GENERATED BY MULTIPLE REGRESSION IN FILLING METEOROLOGICAL DATA FAILURES IN AN AUTOMATIC METEOROLOGICAL STATION IN ALAGOAS
title_fullStr MODELS GENERATED BY MULTIPLE REGRESSION IN FILLING METEOROLOGICAL DATA FAILURES IN AN AUTOMATIC METEOROLOGICAL STATION IN ALAGOAS
title_full_unstemmed MODELS GENERATED BY MULTIPLE REGRESSION IN FILLING METEOROLOGICAL DATA FAILURES IN AN AUTOMATIC METEOROLOGICAL STATION IN ALAGOAS
title_sort MODELS GENERATED BY MULTIPLE REGRESSION IN FILLING METEOROLOGICAL DATA FAILURES IN AN AUTOMATIC METEOROLOGICAL STATION IN ALAGOAS
author Araújo Neto, Renato Américo
author_facet Araújo Neto, Renato Américo
Nascimento, Jonathan Willyan dos Santos
Oliveira, Francisco Freire de
Rebelo, Gil Rafael Pacífico
Silva, Francisco de Assis de Lima
Carvalho, André Luiz de
author_role author
author2 Nascimento, Jonathan Willyan dos Santos
Oliveira, Francisco Freire de
Rebelo, Gil Rafael Pacífico
Silva, Francisco de Assis de Lima
Carvalho, André Luiz de
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Araújo Neto, Renato Américo
Nascimento, Jonathan Willyan dos Santos
Oliveira, Francisco Freire de
Rebelo, Gil Rafael Pacífico
Silva, Francisco de Assis de Lima
Carvalho, André Luiz de
dc.subject.por.fl_str_mv Correction
Failures
Meteorology
Statistic Regression
topic Correction
Failures
Meteorology
Statistic Regression
description The objective of this study was to evaluate the multiple regression method to fill in the faults of the following meteorological variables: Average Air Temperature (Tmean), Relative Humidity (RHmean), and Rain Precipitation (Prec). Multiple regression was considered using different models, through the different cofactors evaluated (varying Tmean, RHmean, Dew Point, Pressure and Prec), generating four different multiple regression models for each meteorological variable studied. The models were statistically compared by Mean Absolute Error (MAE), Pearson's coefficient (r), agreement index (d) and Camargo and Sentelhas index (c). The results presented showed that multiple regression can be reliably used in Tmean, RHmean in Models 2, 3 and 4 (R> 0.90). The Precipitation variable had a coefficient of determination below 50% (R2 <0.50) and Model 2 obtained a p value greater than 1% in the Intercept (p = 0.012) and in the Pressure cofactor (p = 0.015). It cannot be used to correct Rainfall faults. Model 2 (except for Prec) presented better statistical coefficients and can be used to correct faults in the automatic station of Maceió, Alagoas.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-29
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.journals.ufrpe.br/index.php/geama/article/view/2830
url https://www.journals.ufrpe.br/index.php/geama/article/view/2830
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://www.journals.ufrpe.br/index.php/geama/article/view/2830/482483733
dc.rights.driver.fl_str_mv Copyright (c) 2020 Revista Geama
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Revista Geama
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Geama Journal - Environmental Sciences
Revista Geama
publisher.none.fl_str_mv Geama Journal - Environmental Sciences
Revista Geama
dc.source.none.fl_str_mv Geama Journal - Environmental Sciences; Vol. 6 No. 2 (2020); 4-10
Revista Geama; v. 6 n. 2 (2020); 4-10
2447-0740
reponame:Revista Geama
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Revista Geama
collection Revista Geama
repository.name.fl_str_mv Revista Geama - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv josemachado@ufrpe.br
_version_ 1809218600474509312