Avaliação de plataformas para o reconhecimento de placas veiculares brasileiras

Detalhes bibliográficos
Autor(a) principal: Amaral, Carlos Ivan Santos do
Data de Publicação: 2021
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
Texto Completo: https://repository.ufrpe.br/handle/123456789/4268
Resumo: Com a crescente quantidade de veículos particulares no Brasil se faz cada vez mais necessário melhores métodos de gestão e fiscalização da frota veicular. As placas veiculares (PV) são objetos únicos e obrigatórios com o objetivo de identificar o veículo assim como seu proprietário. É recomendável que a coleta eficiente das informações presentes nas placas veiculares sejam realizadas por meio de sistemas automatizados para a detecção e reconhecimento de PV. Estes sistemas são fundamentais para se realizar a fiscalização e a gestão de diferentes atividades relacionadas ao tráfego de veículos. Neste sentido, este trabalho apresenta um estudo que identifica métodos de detecção e reconhecimento de PV com algoritmos baseados em aprendizagem de máquina. Para a produção desse experimento, sucedeu a coleta de um banco de imagens de veículos em praças de pedágio que estão localizadas no município de Cabo de Santo Agostinho - PE e fazem acesso ao Complexo Industrial Portuário Governador Eraldo Gueiros - SUAPE. O objetivo desse trabalho foi prover uma comparação entre o serviço de visão computacional da Microsoft Azure para detecção de objetos PV em conjunto com os serviços de Reconhecimento Óptico de Caracteres (Optical Character Recognition - OCR) da Google Vision com o algoritmo de Aprendizagem Profunda YOLO v4. O resultado do experimento expôs que em condições semelhantes de configurações em ambos dos modelos estudados, o YOLO v4 apresentou melhor desempenho, obtendo uma taxa de 92% de precisão na detecção e reconhecimento de placas veiculares.
id UFRPE_3d382eff80c284b7795e6ded74c35793
oai_identifier_str oai:dspace:123456789/4268
network_acronym_str UFRPE
network_name_str Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
repository_id_str https://v2.sherpa.ac.uk/id/repository/10612
spelling Avaliação de plataformas para o reconhecimento de placas veiculares brasileirasAprendizado do computadorVisão ComputacionalAutomóveisPlacasCom a crescente quantidade de veículos particulares no Brasil se faz cada vez mais necessário melhores métodos de gestão e fiscalização da frota veicular. As placas veiculares (PV) são objetos únicos e obrigatórios com o objetivo de identificar o veículo assim como seu proprietário. É recomendável que a coleta eficiente das informações presentes nas placas veiculares sejam realizadas por meio de sistemas automatizados para a detecção e reconhecimento de PV. Estes sistemas são fundamentais para se realizar a fiscalização e a gestão de diferentes atividades relacionadas ao tráfego de veículos. Neste sentido, este trabalho apresenta um estudo que identifica métodos de detecção e reconhecimento de PV com algoritmos baseados em aprendizagem de máquina. Para a produção desse experimento, sucedeu a coleta de um banco de imagens de veículos em praças de pedágio que estão localizadas no município de Cabo de Santo Agostinho - PE e fazem acesso ao Complexo Industrial Portuário Governador Eraldo Gueiros - SUAPE. O objetivo desse trabalho foi prover uma comparação entre o serviço de visão computacional da Microsoft Azure para detecção de objetos PV em conjunto com os serviços de Reconhecimento Óptico de Caracteres (Optical Character Recognition - OCR) da Google Vision com o algoritmo de Aprendizagem Profunda YOLO v4. O resultado do experimento expôs que em condições semelhantes de configurações em ambos dos modelos estudados, o YOLO v4 apresentou melhor desempenho, obtendo uma taxa de 92% de precisão na detecção e reconhecimento de placas veiculares.With the growing number of private vehicles in Brazil, better methods for managing and inspecting the vehicle fleet is becoming increasingly necessary. License plates (LP) are unique and mandatory objects with the purpose of identifying the vehicle as well as its owner. It is recommended that the efficient collection of information on license plates be performed by automated systems for LP detection and recognition. These systems are fundamental for the supervision and management of different activities related to vehicle traffic. In this regard, this paper presents a study that identifies methods for LP detection and recognition with algorithms based on machine learning and deep learning. To produce this experiment, we succeeded in collecting an image bank of vehicles in toll plazas that are located in the municipality of Cabo de Santo Agostinho - PE and provide access to the Governador Eraldo Gueiros Port Industrial Complex - SUAPE. The objective of this work was to provide a comparison between Microsoft Azure's computer vision service for LP object detection in conjunction with Google Vision's Optical Character Recognition (OCR) services with the YOLO v4 Deep Learning algorithm. The result of the experiment showed that under similar configuration conditions in both models studied, YOLO v4 performed better, achieving a 92% precision rate in license plate detection and recognition.BrasilGarrozi, Cícerohttp://lattes.cnpq.br/8099840025648951http://lattes.cnpq.br/0488054917286587Amaral, Carlos Ivan Santos do2023-03-29T23:11:17Z2023-03-29T23:11:17Z2021-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesis23 f.application/pdfAMARAL, Carlos Ivan Santos do. Avaliação de plataformas para o reconhecimento de placas veiculares brasileiras. 2021. 23 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, 2021.https://repository.ufrpe.br/handle/123456789/4268porAtribuição-CompartilhaIgual 4.0 Internacional (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/deed.pt_BRopenAccessinfo:eu-repo/semantics/openAccessreponame:Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)instname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPE2023-03-29T23:11:28Zoai:dspace:123456789/4268Repositório InstitucionalPUBhttps://repository.ufrpe.br/oai/requestrepositorio.sib@ufrpe.bropendoar:https://v2.sherpa.ac.uk/id/repository/106122023-03-29T23:11:28Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.none.fl_str_mv Avaliação de plataformas para o reconhecimento de placas veiculares brasileiras
title Avaliação de plataformas para o reconhecimento de placas veiculares brasileiras
spellingShingle Avaliação de plataformas para o reconhecimento de placas veiculares brasileiras
Amaral, Carlos Ivan Santos do
Aprendizado do computador
Visão Computacional
Automóveis
Placas
title_short Avaliação de plataformas para o reconhecimento de placas veiculares brasileiras
title_full Avaliação de plataformas para o reconhecimento de placas veiculares brasileiras
title_fullStr Avaliação de plataformas para o reconhecimento de placas veiculares brasileiras
title_full_unstemmed Avaliação de plataformas para o reconhecimento de placas veiculares brasileiras
title_sort Avaliação de plataformas para o reconhecimento de placas veiculares brasileiras
author Amaral, Carlos Ivan Santos do
author_facet Amaral, Carlos Ivan Santos do
author_role author
dc.contributor.none.fl_str_mv Garrozi, Cícero
http://lattes.cnpq.br/8099840025648951
http://lattes.cnpq.br/0488054917286587
dc.contributor.author.fl_str_mv Amaral, Carlos Ivan Santos do
dc.subject.por.fl_str_mv Aprendizado do computador
Visão Computacional
Automóveis
Placas
topic Aprendizado do computador
Visão Computacional
Automóveis
Placas
description Com a crescente quantidade de veículos particulares no Brasil se faz cada vez mais necessário melhores métodos de gestão e fiscalização da frota veicular. As placas veiculares (PV) são objetos únicos e obrigatórios com o objetivo de identificar o veículo assim como seu proprietário. É recomendável que a coleta eficiente das informações presentes nas placas veiculares sejam realizadas por meio de sistemas automatizados para a detecção e reconhecimento de PV. Estes sistemas são fundamentais para se realizar a fiscalização e a gestão de diferentes atividades relacionadas ao tráfego de veículos. Neste sentido, este trabalho apresenta um estudo que identifica métodos de detecção e reconhecimento de PV com algoritmos baseados em aprendizagem de máquina. Para a produção desse experimento, sucedeu a coleta de um banco de imagens de veículos em praças de pedágio que estão localizadas no município de Cabo de Santo Agostinho - PE e fazem acesso ao Complexo Industrial Portuário Governador Eraldo Gueiros - SUAPE. O objetivo desse trabalho foi prover uma comparação entre o serviço de visão computacional da Microsoft Azure para detecção de objetos PV em conjunto com os serviços de Reconhecimento Óptico de Caracteres (Optical Character Recognition - OCR) da Google Vision com o algoritmo de Aprendizagem Profunda YOLO v4. O resultado do experimento expôs que em condições semelhantes de configurações em ambos dos modelos estudados, o YOLO v4 apresentou melhor desempenho, obtendo uma taxa de 92% de precisão na detecção e reconhecimento de placas veiculares.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-14
2023-03-29T23:11:17Z
2023-03-29T23:11:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv AMARAL, Carlos Ivan Santos do. Avaliação de plataformas para o reconhecimento de placas veiculares brasileiras. 2021. 23 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, 2021.
https://repository.ufrpe.br/handle/123456789/4268
identifier_str_mv AMARAL, Carlos Ivan Santos do. Avaliação de plataformas para o reconhecimento de placas veiculares brasileiras. 2021. 23 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, 2021.
url https://repository.ufrpe.br/handle/123456789/4268
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Atribuição-CompartilhaIgual 4.0 Internacional (CC BY-SA 4.0)
https://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR
openAccess
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribuição-CompartilhaIgual 4.0 Internacional (CC BY-SA 4.0)
https://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR
openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 23 f.
application/pdf
dc.publisher.none.fl_str_mv Brasil
publisher.none.fl_str_mv Brasil
dc.source.none.fl_str_mv reponame:Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
collection Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
repository.name.fl_str_mv Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv repositorio.sib@ufrpe.br
_version_ 1809277168481468416