Uso de Machine Learning para identificação de solicitação de teste de confirmação em projeto de teste de software

Detalhes bibliográficos
Autor(a) principal: Santos, Victor Leuthier dos
Data de Publicação: 2022
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
Texto Completo: https://repository.ufrpe.br/handle/123456789/4211
Resumo: Um estudo recente publicado pela Cambridge Judge Business School descobriu que os desenvolvedores perdem 620 milhões de horas por ano depurando falhas de software, o que acaba custando às empresas aproximadamente US$ 61 bilhões por ano. Este processo de depuração se torna ainda mais complexo e custoso às organizações quando o desenvolvedor não possui acesso aos recursos necessários. Utilizando a biblioteca TPOT como ferramenta de Auto Machine Learning para encontrar a melhor pipeline de um modelo foram analisados comentários do Jira afim de identificar pedidos de reteste por parte de desenvolvedores para os testadores de uma empresa. Foi construído um modelo para criação da ferramenta chamada “Preste atenção ao reteste ou Pay attention to retest” - PATRE, que utiliza Aprendizado de Máquina (Machine Learning) para identificação automática de pedido de teste de confirmação, otimizando assim a rotina dos profissionais envolvidos no desenvolvimento do software. O classificador gerado após 5 gerações foi o GradientBoostingClassifier e obteve uma precisão de 0.562, e um recall de 0.529, enquanto o f1-score encontrado foi de cerca de 0.545. Enquanto que o classificador escolhido pelo TPOT após 20 gerações foi o StackingEstimator obteve os seguintes resultados: precisão de 0.48, recall de 0.735 e f1-score de 0.581. Mostrando a influência direta do número de gerações na qualidade do modelo e do classificador final. Nenhuma informação ou dado confidencial foi utilizado para a realização deste trabalho.
id UFRPE_7f48bd9822d58a9b0f560084b6b396f9
oai_identifier_str oai:dspace:123456789/4211
network_acronym_str UFRPE
network_name_str Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
repository_id_str https://v2.sherpa.ac.uk/id/repository/10612
spelling Uso de Machine Learning para identificação de solicitação de teste de confirmação em projeto de teste de softwareAprendizado do computadorDesenvolvimento de softwareTestesUm estudo recente publicado pela Cambridge Judge Business School descobriu que os desenvolvedores perdem 620 milhões de horas por ano depurando falhas de software, o que acaba custando às empresas aproximadamente US$ 61 bilhões por ano. Este processo de depuração se torna ainda mais complexo e custoso às organizações quando o desenvolvedor não possui acesso aos recursos necessários. Utilizando a biblioteca TPOT como ferramenta de Auto Machine Learning para encontrar a melhor pipeline de um modelo foram analisados comentários do Jira afim de identificar pedidos de reteste por parte de desenvolvedores para os testadores de uma empresa. Foi construído um modelo para criação da ferramenta chamada “Preste atenção ao reteste ou Pay attention to retest” - PATRE, que utiliza Aprendizado de Máquina (Machine Learning) para identificação automática de pedido de teste de confirmação, otimizando assim a rotina dos profissionais envolvidos no desenvolvimento do software. O classificador gerado após 5 gerações foi o GradientBoostingClassifier e obteve uma precisão de 0.562, e um recall de 0.529, enquanto o f1-score encontrado foi de cerca de 0.545. Enquanto que o classificador escolhido pelo TPOT após 20 gerações foi o StackingEstimator obteve os seguintes resultados: precisão de 0.48, recall de 0.735 e f1-score de 0.581. Mostrando a influência direta do número de gerações na qualidade do modelo e do classificador final. Nenhuma informação ou dado confidencial foi utilizado para a realização deste trabalho.BrasilMonteiro, Cleviton Vinicius Fonsêcahttp://lattes.cnpq.br/8817589533156593http://lattes.cnpq.br/9362573782715504Albuquerque Junior, Gabriel Alves dehttp://lattes.cnpq.br/1399502815770584Santos, Victor Leuthier dos2023-03-23T23:17:20Z2023-03-23T23:17:20Z2022-06-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesis33 f.application/pdfSANTOS, Victor Leuthier dos. Uso de Machine Learning para identificação de solicitação de teste de confirmação em projeto de teste de software. 2022. 33 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, 2022.https://repository.ufrpe.br/handle/123456789/4211porAtribuição-NãoComercial-CompartilhaIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BRopenAccessinfo:eu-repo/semantics/openAccessreponame:Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)instname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPE2023-03-23T23:17:33Zoai:dspace:123456789/4211Repositório InstitucionalPUBhttps://repository.ufrpe.br/oai/requestrepositorio.sib@ufrpe.bropendoar:https://v2.sherpa.ac.uk/id/repository/106122023-03-23T23:17:33Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.none.fl_str_mv Uso de Machine Learning para identificação de solicitação de teste de confirmação em projeto de teste de software
title Uso de Machine Learning para identificação de solicitação de teste de confirmação em projeto de teste de software
spellingShingle Uso de Machine Learning para identificação de solicitação de teste de confirmação em projeto de teste de software
Santos, Victor Leuthier dos
Aprendizado do computador
Desenvolvimento de software
Testes
title_short Uso de Machine Learning para identificação de solicitação de teste de confirmação em projeto de teste de software
title_full Uso de Machine Learning para identificação de solicitação de teste de confirmação em projeto de teste de software
title_fullStr Uso de Machine Learning para identificação de solicitação de teste de confirmação em projeto de teste de software
title_full_unstemmed Uso de Machine Learning para identificação de solicitação de teste de confirmação em projeto de teste de software
title_sort Uso de Machine Learning para identificação de solicitação de teste de confirmação em projeto de teste de software
author Santos, Victor Leuthier dos
author_facet Santos, Victor Leuthier dos
author_role author
dc.contributor.none.fl_str_mv Monteiro, Cleviton Vinicius Fonsêca
http://lattes.cnpq.br/8817589533156593
http://lattes.cnpq.br/9362573782715504
Albuquerque Junior, Gabriel Alves de
http://lattes.cnpq.br/1399502815770584
dc.contributor.author.fl_str_mv Santos, Victor Leuthier dos
dc.subject.por.fl_str_mv Aprendizado do computador
Desenvolvimento de software
Testes
topic Aprendizado do computador
Desenvolvimento de software
Testes
description Um estudo recente publicado pela Cambridge Judge Business School descobriu que os desenvolvedores perdem 620 milhões de horas por ano depurando falhas de software, o que acaba custando às empresas aproximadamente US$ 61 bilhões por ano. Este processo de depuração se torna ainda mais complexo e custoso às organizações quando o desenvolvedor não possui acesso aos recursos necessários. Utilizando a biblioteca TPOT como ferramenta de Auto Machine Learning para encontrar a melhor pipeline de um modelo foram analisados comentários do Jira afim de identificar pedidos de reteste por parte de desenvolvedores para os testadores de uma empresa. Foi construído um modelo para criação da ferramenta chamada “Preste atenção ao reteste ou Pay attention to retest” - PATRE, que utiliza Aprendizado de Máquina (Machine Learning) para identificação automática de pedido de teste de confirmação, otimizando assim a rotina dos profissionais envolvidos no desenvolvimento do software. O classificador gerado após 5 gerações foi o GradientBoostingClassifier e obteve uma precisão de 0.562, e um recall de 0.529, enquanto o f1-score encontrado foi de cerca de 0.545. Enquanto que o classificador escolhido pelo TPOT após 20 gerações foi o StackingEstimator obteve os seguintes resultados: precisão de 0.48, recall de 0.735 e f1-score de 0.581. Mostrando a influência direta do número de gerações na qualidade do modelo e do classificador final. Nenhuma informação ou dado confidencial foi utilizado para a realização deste trabalho.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-06
2023-03-23T23:17:20Z
2023-03-23T23:17:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SANTOS, Victor Leuthier dos. Uso de Machine Learning para identificação de solicitação de teste de confirmação em projeto de teste de software. 2022. 33 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, 2022.
https://repository.ufrpe.br/handle/123456789/4211
identifier_str_mv SANTOS, Victor Leuthier dos. Uso de Machine Learning para identificação de solicitação de teste de confirmação em projeto de teste de software. 2022. 33 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, 2022.
url https://repository.ufrpe.br/handle/123456789/4211
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BR
openAccess
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BR
openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 33 f.
application/pdf
dc.publisher.none.fl_str_mv Brasil
publisher.none.fl_str_mv Brasil
dc.source.none.fl_str_mv reponame:Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
collection Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
repository.name.fl_str_mv Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv repositorio.sib@ufrpe.br
_version_ 1809277163772313600