Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) |
Texto Completo: | https://repository.ufrpe.br/handle/123456789/5455 |
Resumo: | A explicabilidade é essencial para que os usuários entendam, confiem e gerenciem com eficiência sistemas computacionais que utilizam inteligência artificial. Desta forma, assim como a assertividade, entender como se deu o processo decisório dos modelos é fundamental. Embora existam trabalhos que se concentrem na explicabilidade de algoritmos de inteligência artificial, é importante destacar que, até onde sabemos, nenhum deles analisou os trade-offs entre desempenho e explicabilidade de forma abrangente. Nesse sentido, esta pesquisa tem como objetivo preencher essa lacuna, investigando tanto algoritmos transparentes, como Arvore de Decisão e Regressão Logística, quanto algoritmos opacos, como Floresta Aleatória e Máquina de Vetores de Suporte, a fim de avaliar os trade-offs entre desempenho e explicabilidade. Os resultados revelam que os algoritmos opacos apresentam uma baixa explicabilidade e não têm uma boa performance quanto ao tempo de resposta devido á sua complexidade, contudo são mais assertivos. Em contra partida, os algoritmos transparentes possuem uma explicabilidade mais efetiva e uma melhor performance quanto ao tempo de resposta, porém, em nossos experimentos, observamos que a acurácia obtida foi menor do que a acurácia dos modelos opacos. |
id |
UFRPE_a062b2cf43c4f05a6f3ac6b872a9b167 |
---|---|
oai_identifier_str |
oai:dspace:123456789/5455 |
network_acronym_str |
UFRPE |
network_name_str |
Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) |
repository_id_str |
https://v2.sherpa.ac.uk/id/repository/10612 |
spelling |
Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidadeSistemas de computaçãoInteligência artificialAlgorítmos computacionaisA explicabilidade é essencial para que os usuários entendam, confiem e gerenciem com eficiência sistemas computacionais que utilizam inteligência artificial. Desta forma, assim como a assertividade, entender como se deu o processo decisório dos modelos é fundamental. Embora existam trabalhos que se concentrem na explicabilidade de algoritmos de inteligência artificial, é importante destacar que, até onde sabemos, nenhum deles analisou os trade-offs entre desempenho e explicabilidade de forma abrangente. Nesse sentido, esta pesquisa tem como objetivo preencher essa lacuna, investigando tanto algoritmos transparentes, como Arvore de Decisão e Regressão Logística, quanto algoritmos opacos, como Floresta Aleatória e Máquina de Vetores de Suporte, a fim de avaliar os trade-offs entre desempenho e explicabilidade. Os resultados revelam que os algoritmos opacos apresentam uma baixa explicabilidade e não têm uma boa performance quanto ao tempo de resposta devido á sua complexidade, contudo são mais assertivos. Em contra partida, os algoritmos transparentes possuem uma explicabilidade mais efetiva e uma melhor performance quanto ao tempo de resposta, porém, em nossos experimentos, observamos que a acurácia obtida foi menor do que a acurácia dos modelos opacos.Explainability is essential for users to efficiently understand, trust, and manage computer systems that use artificial intelligence. Thus, as well as assertiveness, understanding how the decision-making process of the models occurred is fundamental. While there are studies that focus on the explainability of artificial intelligence algorithms, it is important to highlight that, as far as we know, none of them have comprehensively analyzed the trade-offs between performance and explainability. In this sense, this research aims to fill this gap by investigating both transparent algorithms, such as Decision Tree and Logistic Regression, and opaque algorithms, such as Random Forest and Support Vector Machine, in order to evaluate the trade-offs between performance and explainability. The results reveal that opaque algorithms have a low explanability and do not perform well regarding response time due to their complexity, but are more assertive. On the other hand, transparent algorithms have a more effective explainability and better performance regarding response time, but in our experiments, we observed that accuracy obtained was lower than the accuracy of opaque models.BrasilAndrade, Ermeson Carneiro dehttp://lattes.cnpq.br/3963132175829207http://lattes.cnpq.br/2466077615273972Silva, Douglas Véras ehttp://lattes.cnpq.br/2969243668455081Assis, André Carlos Santos de2024-01-19T17:49:54Z2024-01-19T17:49:54Z2023-08-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesis15 f.application/pdfASSIS, André Carlos Santos de. Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade. 2023. 15 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, 2023.https://repository.ufrpe.br/handle/123456789/5455porhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt-brAtribuição-NãoComercial-SemDerivações 4.0 Internacionalinfo:eu-repo/semantics/openAccessreponame:Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)instname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPE2024-01-19T17:50:33Zoai:dspace:123456789/5455Repositório InstitucionalPUBhttps://repository.ufrpe.br/oai/requestrepositorio.sib@ufrpe.bropendoar:https://v2.sherpa.ac.uk/id/repository/106122024-01-19T17:50:33Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.none.fl_str_mv |
Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade |
title |
Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade |
spellingShingle |
Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade Assis, André Carlos Santos de Sistemas de computação Inteligência artificial Algorítmos computacionais |
title_short |
Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade |
title_full |
Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade |
title_fullStr |
Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade |
title_full_unstemmed |
Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade |
title_sort |
Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade |
author |
Assis, André Carlos Santos de |
author_facet |
Assis, André Carlos Santos de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Andrade, Ermeson Carneiro de http://lattes.cnpq.br/3963132175829207 http://lattes.cnpq.br/2466077615273972 Silva, Douglas Véras e http://lattes.cnpq.br/2969243668455081 |
dc.contributor.author.fl_str_mv |
Assis, André Carlos Santos de |
dc.subject.por.fl_str_mv |
Sistemas de computação Inteligência artificial Algorítmos computacionais |
topic |
Sistemas de computação Inteligência artificial Algorítmos computacionais |
description |
A explicabilidade é essencial para que os usuários entendam, confiem e gerenciem com eficiência sistemas computacionais que utilizam inteligência artificial. Desta forma, assim como a assertividade, entender como se deu o processo decisório dos modelos é fundamental. Embora existam trabalhos que se concentrem na explicabilidade de algoritmos de inteligência artificial, é importante destacar que, até onde sabemos, nenhum deles analisou os trade-offs entre desempenho e explicabilidade de forma abrangente. Nesse sentido, esta pesquisa tem como objetivo preencher essa lacuna, investigando tanto algoritmos transparentes, como Arvore de Decisão e Regressão Logística, quanto algoritmos opacos, como Floresta Aleatória e Máquina de Vetores de Suporte, a fim de avaliar os trade-offs entre desempenho e explicabilidade. Os resultados revelam que os algoritmos opacos apresentam uma baixa explicabilidade e não têm uma boa performance quanto ao tempo de resposta devido á sua complexidade, contudo são mais assertivos. Em contra partida, os algoritmos transparentes possuem uma explicabilidade mais efetiva e uma melhor performance quanto ao tempo de resposta, porém, em nossos experimentos, observamos que a acurácia obtida foi menor do que a acurácia dos modelos opacos. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-18 2024-01-19T17:49:54Z 2024-01-19T17:49:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ASSIS, André Carlos Santos de. Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade. 2023. 15 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, 2023. https://repository.ufrpe.br/handle/123456789/5455 |
identifier_str_mv |
ASSIS, André Carlos Santos de. Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade. 2023. 15 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, 2023. |
url |
https://repository.ufrpe.br/handle/123456789/5455 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt-br Atribuição-NãoComercial-SemDerivações 4.0 Internacional info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt-br Atribuição-NãoComercial-SemDerivações 4.0 Internacional |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
15 f. application/pdf |
dc.publisher.none.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Brasil |
dc.source.none.fl_str_mv |
reponame:Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) |
collection |
Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) |
repository.name.fl_str_mv |
Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
repositorio.sib@ufrpe.br |
_version_ |
1809277160315158528 |