Avaliação de algoritmo de clusterização para segmentação de nuvens de pontos 3D

Detalhes bibliográficos
Autor(a) principal: Melo, Davi de Almeida
Data de Publicação: 2022
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
Texto Completo: https://repository.ufrpe.br/handle/123456789/4301
Resumo: As tecnologias 3D têm sido exploradas nas diversas áreas da indústria. Com essas tecnologias são executadas funções como visualização, instrumentação, controle, simulação, treinamento, planejamento, documentação, entre outros. A partir disso, novos tipos de mídia foram introduzidos a esse contexto industrial. Como exemplo, existem as nuvens de pontos, que trata-se de um conjunto de pontos distribuídos num modelo tridimensional da realidade. Elas, geralmente, são construídas através da atuação de um scanner e podem conter em cada um de seus pontos as características de um objeto como localização, cor, reflectância e entre outros aspectos. Dado que as nuvens de pontos irão representar peças, equipamentos, tubulações, máquinas, áreas, e estruturas no contexto industrial, conseguir segmentar as nuvens de pontos e possibilitar uma melhor visualização das partes separadas da mesma estrutura é uma ferramenta proveitosa. Além disso, dentre as funções das tecnologias 3D apresentadas, a segmentação de nuvens de pontos perpassa de forma direta e indireta as áreas de visualização, instrumentação e controle. Portanto, verificada a importância da segmentação de nuvens de pontos, o objetivo desta monografia é avaliar dois algoritmos de clusterização para segmentação de nuvens de pontos 3D. São eles, o DBSCAN e o K-means. Ambos estão categorizados como algoritmos de clusterização por meio aprendizagem de máquina não supervisionada. Após a avaliação, foram constatadas as diferenças entre cada algoritmo. Verificou-se um melhor desempenho por parte do K- means quando se trata de dados dispersos e o equivalente para o DBSCAN quando se referem a distribuição de dados com certa distância entre os clusters.
id UFRPE_c987cb04a93a65173505018dbdbc5ca7
oai_identifier_str oai:dspace:123456789/4301
network_acronym_str UFRPE
network_name_str Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
repository_id_str https://v2.sherpa.ac.uk/id/repository/10612
spelling Avaliação de algoritmo de clusterização para segmentação de nuvens de pontos 3Dautomaçãoclusterizaçãosegmentaçãonuvem de pontosAs tecnologias 3D têm sido exploradas nas diversas áreas da indústria. Com essas tecnologias são executadas funções como visualização, instrumentação, controle, simulação, treinamento, planejamento, documentação, entre outros. A partir disso, novos tipos de mídia foram introduzidos a esse contexto industrial. Como exemplo, existem as nuvens de pontos, que trata-se de um conjunto de pontos distribuídos num modelo tridimensional da realidade. Elas, geralmente, são construídas através da atuação de um scanner e podem conter em cada um de seus pontos as características de um objeto como localização, cor, reflectância e entre outros aspectos. Dado que as nuvens de pontos irão representar peças, equipamentos, tubulações, máquinas, áreas, e estruturas no contexto industrial, conseguir segmentar as nuvens de pontos e possibilitar uma melhor visualização das partes separadas da mesma estrutura é uma ferramenta proveitosa. Além disso, dentre as funções das tecnologias 3D apresentadas, a segmentação de nuvens de pontos perpassa de forma direta e indireta as áreas de visualização, instrumentação e controle. Portanto, verificada a importância da segmentação de nuvens de pontos, o objetivo desta monografia é avaliar dois algoritmos de clusterização para segmentação de nuvens de pontos 3D. São eles, o DBSCAN e o K-means. Ambos estão categorizados como algoritmos de clusterização por meio aprendizagem de máquina não supervisionada. Após a avaliação, foram constatadas as diferenças entre cada algoritmo. Verificou-se um melhor desempenho por parte do K- means quando se trata de dados dispersos e o equivalente para o DBSCAN quando se referem a distribuição de dados com certa distância entre os clusters.3D technologies have been explored in many industrial fields. With those technologies functions such as visualization, instrumentation, control, simulation, training, planning, documentation, and more are performed. From that, new types of media were introduced to the industrial context. For instance, the point clouds, which is a set of points distributed on a tridimensional model of reality. They are often built through the operation of a scanner and may contain the characteristics of an object, such as localization, color, reflectance and more in every one of its points. Given that the point clouds represent pieces, equipments, piping, machines, areas and structures in the industrial context, a useful tool is to segment the point clouds and enable a better visualization of separate parts of the same structure. Furthermore, among the presented 3D technologies, point cloud segmentation permeates directly and indirectly the fields of visualization, instrumentation, and control. Thus, verified the importance of the point cloud segmentation, the goal of this monography is to assess two clustering algorithms for 3D point cloud segmentation. They are the DBSCAN and the K-means. Both are categorized as clustering algorithms through unsupervised machine learning. After the assessment, the differences between each algorithm were found. The K-means was verified to have better performance when it comes to disperse data and the equivalent to the DBSCAN when it comes to data distribution with a certain distance between the clusters.BrasilFerreira, Felipe Alberto Barbosa Simãohttp://lattes.cnpq.br/3528552393951602http://lattes.cnpq.br/9939255113143786Melo, Davi de Almeida2023-03-31T17:58:40Z2023-03-31T17:58:40Z2022-10-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesis45p.application/pdfMELO, Davi de Almeida. Avaliação de algoritmo de clusterização para segmentação de nuvens de pontos 3D. 2022. 45f. Trabalho de Conclusão de Curso (Tecnólogo em Automação Industrial) - Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de Pernambuco, 2023.https://repository.ufrpe.br/handle/123456789/4301poratribution - non commercial - no derivs 4.0 Brazilcreativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BRopenAccessinfo:eu-repo/semantics/openAccessreponame:Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)instname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPE2023-03-31T17:58:49Zoai:dspace:123456789/4301Repositório InstitucionalPUBhttps://repository.ufrpe.br/oai/requestrepositorio.sib@ufrpe.bropendoar:https://v2.sherpa.ac.uk/id/repository/106122023-03-31T17:58:49Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.none.fl_str_mv Avaliação de algoritmo de clusterização para segmentação de nuvens de pontos 3D
title Avaliação de algoritmo de clusterização para segmentação de nuvens de pontos 3D
spellingShingle Avaliação de algoritmo de clusterização para segmentação de nuvens de pontos 3D
Melo, Davi de Almeida
automação
clusterização
segmentação
nuvem de pontos
title_short Avaliação de algoritmo de clusterização para segmentação de nuvens de pontos 3D
title_full Avaliação de algoritmo de clusterização para segmentação de nuvens de pontos 3D
title_fullStr Avaliação de algoritmo de clusterização para segmentação de nuvens de pontos 3D
title_full_unstemmed Avaliação de algoritmo de clusterização para segmentação de nuvens de pontos 3D
title_sort Avaliação de algoritmo de clusterização para segmentação de nuvens de pontos 3D
author Melo, Davi de Almeida
author_facet Melo, Davi de Almeida
author_role author
dc.contributor.none.fl_str_mv Ferreira, Felipe Alberto Barbosa Simão
http://lattes.cnpq.br/3528552393951602
http://lattes.cnpq.br/9939255113143786
dc.contributor.author.fl_str_mv Melo, Davi de Almeida
dc.subject.por.fl_str_mv automação
clusterização
segmentação
nuvem de pontos
topic automação
clusterização
segmentação
nuvem de pontos
description As tecnologias 3D têm sido exploradas nas diversas áreas da indústria. Com essas tecnologias são executadas funções como visualização, instrumentação, controle, simulação, treinamento, planejamento, documentação, entre outros. A partir disso, novos tipos de mídia foram introduzidos a esse contexto industrial. Como exemplo, existem as nuvens de pontos, que trata-se de um conjunto de pontos distribuídos num modelo tridimensional da realidade. Elas, geralmente, são construídas através da atuação de um scanner e podem conter em cada um de seus pontos as características de um objeto como localização, cor, reflectância e entre outros aspectos. Dado que as nuvens de pontos irão representar peças, equipamentos, tubulações, máquinas, áreas, e estruturas no contexto industrial, conseguir segmentar as nuvens de pontos e possibilitar uma melhor visualização das partes separadas da mesma estrutura é uma ferramenta proveitosa. Além disso, dentre as funções das tecnologias 3D apresentadas, a segmentação de nuvens de pontos perpassa de forma direta e indireta as áreas de visualização, instrumentação e controle. Portanto, verificada a importância da segmentação de nuvens de pontos, o objetivo desta monografia é avaliar dois algoritmos de clusterização para segmentação de nuvens de pontos 3D. São eles, o DBSCAN e o K-means. Ambos estão categorizados como algoritmos de clusterização por meio aprendizagem de máquina não supervisionada. Após a avaliação, foram constatadas as diferenças entre cada algoritmo. Verificou-se um melhor desempenho por parte do K- means quando se trata de dados dispersos e o equivalente para o DBSCAN quando se referem a distribuição de dados com certa distância entre os clusters.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-05
2023-03-31T17:58:40Z
2023-03-31T17:58:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MELO, Davi de Almeida. Avaliação de algoritmo de clusterização para segmentação de nuvens de pontos 3D. 2022. 45f. Trabalho de Conclusão de Curso (Tecnólogo em Automação Industrial) - Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de Pernambuco, 2023.
https://repository.ufrpe.br/handle/123456789/4301
identifier_str_mv MELO, Davi de Almeida. Avaliação de algoritmo de clusterização para segmentação de nuvens de pontos 3D. 2022. 45f. Trabalho de Conclusão de Curso (Tecnólogo em Automação Industrial) - Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de Pernambuco, 2023.
url https://repository.ufrpe.br/handle/123456789/4301
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv atribution - non commercial - no derivs 4.0 Brazil
creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BR
openAccess
info:eu-repo/semantics/openAccess
rights_invalid_str_mv atribution - non commercial - no derivs 4.0 Brazil
creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BR
openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 45p.
application/pdf
dc.publisher.none.fl_str_mv Brasil
publisher.none.fl_str_mv Brasil
dc.source.none.fl_str_mv reponame:Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
collection Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE)
repository.name.fl_str_mv Repositório institucional da Universidade Federal Rural de Pernambuco (UFRPE) (RI-UFRPE) - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv repositorio.sib@ufrpe.br
_version_ 1809277152268386304