Compreensão de mecanismos fenotípicos e genotípicos relacionados à produção de β-lactamases do tipo AmpC em Enterobacteriaceae
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/9732 |
Resumo: | A produção de β-lactamase tipo AmpC em Enterobacteriaceae é relatada em todo o mundo e tem grande importância clínica e epidemiológica devido à restrição terapêutica, dificuldade de detecção, disseminação de AmpC plasmidiais e mutação do gene natural ocasionando multirresistência aos antimicrobianos, no caso de produtores de ESAC (AmpC de Espectro Estendido). Neste estudo, foi realizado um ensaio inicial de pesquisa da produção de AmpC considerando dois grupos de enterobactérias, suspeitamente produtoras da enzima, 18 isoladas de amostras clínicas humanas (FFUP - Portugal) e 20 de leite mastítico bovino (UFRRJ - Brasil), respectivamente. Posteriormente, 238 cepas de Escherichia coli, provenientes de fazendas leiteiras brasileiras, foram investigadas quanto à produção de AmpC segundo as metodologias fenotípicas e bioquímicas previamente desenvolvidas, além da pesquisa genotípica por PCR (ACC, AmpC universal, ampR, CIT, CMY, DHA, EBC, MOX e FOX). O sequenciamento do promotor e do gene inteiro ampC foi realizado em 12 cepas para avaliar mutações referentes à super produção da enzima e produção de ESAC. Todas as cepas de origem humana se mostraram fenotipicamente produtoras de AmpC sendo confirmadas em 72,2% delas pelo teste de inibição com ácido borônico (AB) e pI 9 em 44,5%. A técnica de PCR revelou: AmpC universal em 83,4% das cepas, CIT em 66,7%, CMY em 16,7% e DHA em 55,6%. Apesar de 61,1% destas cepas apresentarem suspeita de ampC plasmidial, apenas em 38,9% foi confirmada a presença do elemento móvel. Não foi possível observar a inibição completa pela cloxacilina nem nas doadoras nem nas receptoras. Dentre os 20 cepas de enterobactérias de origem animal, apenas uma cepa de Proteus mirabilis demonstrou características fenotípicas de produtora de AmpC cuja transferência do gene foi confirmada por conjugação. Possivelmente, as demais cepas tenham perdido o plasmídeo de resistência durante o transporte à FFUP, o que justificaria a suspeita inicial de produção da enzima. Dentre as 238 cepas de E. coli, 11,76% apresentou diminuída suscetibilidade à cefoxitina, característica de pAmpC ou super produtoras de AmpC ou ESAC. Não houve confirmação da produção de AmpC por inibição com cloxacilina, por AB nem pela determinação de MIC. Foi possível confirmar a ausência de pAmpC por PCR e também por conjugação. Frente a estes resultados, 2 cepas suspeitas de super produzirem a enzima e 4 suspeitos de produzirem ESAC foram analisadas quanto à mutações na região promotora e verificou-se que 3 cepas (2 suspeitos) possuem mutações na região promotora (-1, +58) sugerindo o mecanismo de super produção de AmpC. O sequenciamento do gene inteiro demonstrou mutações responsáveis pelas variações de aminoácidos nas regiões do Ω loop (191, 209) e R2 (298, 300, 304). Todas as cepas analisadas apresentaram variações nas regiões responsáveis pela maior flexibilidade da enzima propiciando a hidrólise de outros β-lactâmicos, como o cefepime. Desta forma, o estudo permitiu um importante levantamento de dados epidemiológicos sobre os genes de resistência em enterobacterias circulantes no hospital português estudado e detectou-se, pela primeira vez, mutações sugestivas de super produção de AmpC e produção de ESAC em E. coli provenientes de amostras circulantes no rebanho bovino brasileiro |
id |
UFRRJ-1_0405802bb8f1d9d8d54957e0a5c40294 |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/9732 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Santiago, Gabrielli StefaninniCoelho, Shana de Mattos de Oliveira05466821705http://lattes.cnpq.br/3212438357088121Ferreira, Helena Maria Neto6054634 (Cartão Cidadão, Portugal)Coelho, Irene da Silva04435579693Souza, Miliane Moreira Soares deBonelli, RaquelPribul, Bruno RochaRossi, Ciro César33241070832http://lattes.cnpq.br/41449610083728902023-12-21T18:43:16Z2023-12-21T18:43:16Z2017-02-21SANTIAGO, Gabrielli Stefaninni. Compreensão de mecanismos fenotípicos e genotípicos relacionados à produção de β-lactamases do tipo AmpC em Enterobacteriaceae. 2017. 90 f. Tese (Programa de Pós-Graduação em Ciências Veterinárias). Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2017.https://rima.ufrrj.br/jspui/handle/20.500.14407/9732A produção de β-lactamase tipo AmpC em Enterobacteriaceae é relatada em todo o mundo e tem grande importância clínica e epidemiológica devido à restrição terapêutica, dificuldade de detecção, disseminação de AmpC plasmidiais e mutação do gene natural ocasionando multirresistência aos antimicrobianos, no caso de produtores de ESAC (AmpC de Espectro Estendido). Neste estudo, foi realizado um ensaio inicial de pesquisa da produção de AmpC considerando dois grupos de enterobactérias, suspeitamente produtoras da enzima, 18 isoladas de amostras clínicas humanas (FFUP - Portugal) e 20 de leite mastítico bovino (UFRRJ - Brasil), respectivamente. Posteriormente, 238 cepas de Escherichia coli, provenientes de fazendas leiteiras brasileiras, foram investigadas quanto à produção de AmpC segundo as metodologias fenotípicas e bioquímicas previamente desenvolvidas, além da pesquisa genotípica por PCR (ACC, AmpC universal, ampR, CIT, CMY, DHA, EBC, MOX e FOX). O sequenciamento do promotor e do gene inteiro ampC foi realizado em 12 cepas para avaliar mutações referentes à super produção da enzima e produção de ESAC. Todas as cepas de origem humana se mostraram fenotipicamente produtoras de AmpC sendo confirmadas em 72,2% delas pelo teste de inibição com ácido borônico (AB) e pI 9 em 44,5%. A técnica de PCR revelou: AmpC universal em 83,4% das cepas, CIT em 66,7%, CMY em 16,7% e DHA em 55,6%. Apesar de 61,1% destas cepas apresentarem suspeita de ampC plasmidial, apenas em 38,9% foi confirmada a presença do elemento móvel. Não foi possível observar a inibição completa pela cloxacilina nem nas doadoras nem nas receptoras. Dentre os 20 cepas de enterobactérias de origem animal, apenas uma cepa de Proteus mirabilis demonstrou características fenotípicas de produtora de AmpC cuja transferência do gene foi confirmada por conjugação. Possivelmente, as demais cepas tenham perdido o plasmídeo de resistência durante o transporte à FFUP, o que justificaria a suspeita inicial de produção da enzima. Dentre as 238 cepas de E. coli, 11,76% apresentou diminuída suscetibilidade à cefoxitina, característica de pAmpC ou super produtoras de AmpC ou ESAC. Não houve confirmação da produção de AmpC por inibição com cloxacilina, por AB nem pela determinação de MIC. Foi possível confirmar a ausência de pAmpC por PCR e também por conjugação. Frente a estes resultados, 2 cepas suspeitas de super produzirem a enzima e 4 suspeitos de produzirem ESAC foram analisadas quanto à mutações na região promotora e verificou-se que 3 cepas (2 suspeitos) possuem mutações na região promotora (-1, +58) sugerindo o mecanismo de super produção de AmpC. O sequenciamento do gene inteiro demonstrou mutações responsáveis pelas variações de aminoácidos nas regiões do Ω loop (191, 209) e R2 (298, 300, 304). Todas as cepas analisadas apresentaram variações nas regiões responsáveis pela maior flexibilidade da enzima propiciando a hidrólise de outros β-lactâmicos, como o cefepime. Desta forma, o estudo permitiu um importante levantamento de dados epidemiológicos sobre os genes de resistência em enterobacterias circulantes no hospital português estudado e detectou-se, pela primeira vez, mutações sugestivas de super produção de AmpC e produção de ESAC em E. coli provenientes de amostras circulantes no rebanho bovino brasileiroCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESThe production of AmpC-type β-lactamase in Enterobacteriaceae is reported worldwide and has great clinical and epidemiological importance due to the therapeutic restriction, detection difficulty, dissemination of plasmid AmpC and mutation of the natural gene causing multidrug resistance in the case of ESAC producers (Extended Spectrum AmpC). In this study, AmpC production was carried out considering two groups of enterobacteria, suspected of producing the enzyme: 18 strains from human clinical specimens (FFUP - Portugal) and 20 from bovine mastitic milk (UFRRJ - Brazil), respectively. After this, a total of 238 Escherichia coli from brazilian dairy farms were used to detect AmpC according to previously developed phenotypic and biochemical methodologies, and by PCR (ACC, AmpC universal, ampR, CIT, CMY, DHA, EBC , MOX and FOX). Sequencing of the promoter and the entire ampC gene was performed on 12 strains to evaluate mutations related to AmpC overproduction and ESAC production. All isolates of human origin were phenotypically expressed as AmpC producers and were confirmed in 72.2% by the inhibition test with boronic acid (AB) and pI 9 in 44.5%. The PCR technique revealed: AmpC universal in 83.4%, CIT in 66.7%, CMY in 16.7% and DHA in 55.6%. Although 61.1% of these isolates suspected plasmidial ampC only 38.9% presented the mobile element. Complete inhibition by cloxacillin could not be observed in either donor or recipient. Of the 20 animal enterobacteria isolates, only one Proteus mirabilis demonstrated phenotypic characteristics of AmpC producer whose gene transfer was confirmed by conjugation. Possibly, the other isolates lost the resistance plasmid during transport to the FFUP, which would justify the initial suspicion of enzyme production. Among the 238 E. coli, 11.76% presented decreased susceptibility to cefoxitin, characteristic of pAmpC or super producers of AmpC or ESAC. There was no confirmation of AmpC production by inhibition with cloxacillin and AB nor by MIC determination. The absence of pAmpC was confirmed by PCR and also by conjugation. Two isolates suspected of overproducing the enzyme and 4 ESAC suspects were analyzed for the promoter region and entire gene. Three isolates (2 suspects) were found to have mutations at the promoter region (-1, +58) confirming the overproduction of AmpC. Entire gene sequencing demonstrated mutations responsible for amino acid variations in the Ω loop regions (191, 209) and R2 (298, 300, 304). All the analyzed strains presented variations in the regions responsible for the greater flexibility of the enzyme, propitiating the hydrolysis of other β-lactams, such as cefepime. Thus, the study allowed an important survey of epidemiological data on resistance genes in circulating enterobacteria in the studied portuguese hospital and it is the first report of mutations suggesting overproduction of AmpC and ESAC detection in E. coli in brazilian cattle dairy samplesapplication/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciências VeterináriasUFRRJBrasilInstituto de VeterináriaESACconjugaçãopAmpCponto isoelétricopromotor de AmpCAmpC promoterconjugationisoelectric pointMicrobiologiaCompreensão de mecanismos fenotípicos e genotípicos relacionados à produção de β-lactamases do tipo AmpC em EnterobacteriaceaeComprehension of phenotypic and genotypic mechanisms related to AmpC β-lactamase-producing Enterobacteriaceaeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisABRAHAM, E. P. and CHAIN, E. 1940. An enzyme from bacteria able to destroy penicillin. Nature 146:837. ADLER, H.; FENNER, L.; WALTER, P.; HOHLER, D.; SCHULTHEISS, E.; OEZCAN, S.; FREI, R. Plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes: prevalence at a Swiss university hospital and occurrence of the different molecular types in Switzerland. Journal of Antimicrobial Chemotherapy 61(2):457-8. AL-BAYSSARI, C.; DABOUSSI, F.; HAMZE, M.; ROLAIN, J.M. 2015. Detection of expanded-spectrum β-lactamases in Gram-negative bacteria in the 21st century. Expert Review of Anti-Infective Therapy 13(9):1139-58. ALBRECHTOVA, K.; PAPOUSEK, I.; NYS, H.; PAULY, M.; ANOH, E.; MOSSOUN, A.; DOLEJKA, M.; MASARIKOVA, M.; METZGER, S.; COUACY-HYMANN, E.; AKOUA-KOFFI, C.; WITTIG, R. M.; KLIMES, J.; CIZEK, A.; LEENDERTZ, F. H.; LITERAK, I 2014. Low Rates of Antimicrobial-Resistant Enterobacteriaceae in Wildlife in Tai National Park, Coˆte d’Ivoire, Surrounded by Villages with High Prevalence of Multiresistant ESBL-Producing Escherichia coli in People and Domestic Animals. PLOS ONE | DOI:10.1371/journal.pone.0113548. ALTSCHUL, S.F.; MADDEN, T.L.; SCHAFFER, A.A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D.J. 1997.Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research 25:3389-3402. ALVAREZ, M.; TRAN, J. H.; CHOW, N.; JACOBY, G. A. 2004. Epidemiology of Conjugative Plasmid-Mediated AmpC β-Lactamases in the United States. Antimicrobial Agents and Chemotherapy 48(2):533-537. AM, A-E.; MOHAMED, M.E.; AWADALLAH, M. A. 2009. Potential airborne microbial hazards for workers on dairy and beef cattle farms in Egypt. Veterinaria Italiana 45(2):275-285. AMADOR, P. P.; FERNANDES, R. M.; PRUDÊNCIO, M. C.; BARRETO, M. P.; DUARTE, I. M. 2015. Antibiotic resistance in wastewater: Ocorrence and fate of Enterobacteriaceae producers of Class A and Class C β-lactamses. Journal of Environmental Science and Health 50:26-39. AMBLER, R. P. 1980. The structure of β-lactamases. Philosophical Transactions of the Royal Society B: Biological 289(1036):321-331. AMMENOUCHE, N.; DUPONT, H.; MAMMERI, H. 2014. Characterization of a novel AmpC β-lactamase produced by a carbapenem-resistant Cedecea davisae clinical isolate. Antimicrobial Agents and Chemotherapy 58(11):6942-5. ANDRADE, L. N.; NOVAIS, A.; STEGANI, L.; FERREIRA, J.; RIBEIRO, T.; DARINI, A. L.; PEIXE, L. 2015. High diversity of population structure, virulence factors and mobile genetic elements in CTX-M-, SHV- and CMY-producing extraintestinal Escherichia coli isolates from large hospitals in Brazil. ECCMID, Copenhagen, Dinamarca. ANVISA. Agência Nacional de Vigilância Sanitária. Nota Técnica Nº 01/2013. Medidas de Prevenção e Controle de Infecções por Enterobactérias Multirresistentes. Disponível em: <http://portal.anvisa.gov.br/wps/wcm/connect/ea4d4c004f4ec3b98925d9d785749fbd/Microsoft+Word++NOTA+T%C3%89CNICA+ENTEROBACTERIAS+17+04+2013(1).pdf?MOD=AJPERES> Acessado em 20/06/13. ARAGÓN, L.M.; MIRELIS, B.; MIRÓ, MATA, C.; GÓMEZ, C.; RIVERA, A.; COLL, P.; NAVARRO, F. 2008. Increase in β-lactam-resistant Proteus mirabilis strains due to CTX-M- 71 and CMY-type as well as new VEB- and inhibitor-resistant TEM-type β-lactamases. Journal of Antimicrobial Chemotherapy 61:1029–1032. AZIMI, L.; ERAJIYAN, G.; TALEBI, M.; OWILIA, P.; BINA, M.; SHOJAIE, A.; LARI, A. R. 2015. Phenotypic and Molecular Characterization of Plasmid Mediated AmpC among Clinical Isolates of Klebsiella pneumoniae Isolated from Different Hospitals in Tehran. Journal of Clinical and Diagnostic Research 9(4): DC01-DC03. BALAKRISHNAN, S.; ANTONY, P. X.; MUKHOPADHYAY, H. K.; PILLAI, R. M.; THANISLASS, J.; PADMANABAN, V.; SRINIVAS, M. V. 2016. Genetic characterization of fluoroquinolone-resistant Escherichia coli associated with bovine mastitis in India. Veterinary World 9(7):705-9. BARNAUD, G.; LABIA, R.; RASKINE, L.; PORS, M. J. S.; PHILIPPON, A.; ARLET, G. 2001. Extension of resistance to cefepime and cefpirome associated to a six amino acid deletion in the H-10 helix of the cephalosporinase of an Enterobacter cloacae clinical isolate. FEMS Microbiology Letters 195:185-190. BARLOW, M. ; HALL, B.G. 2002. Origin and evolution of the AmpC β-lactamases of Citrobacter freundii. Antimicrobial Agents and Chemotherapy 46(5):1190-1198. BAUERNFEIND, A.; CHONG, Y.; SCHWEIGHART, S. 1989. Extended broad spectrum β-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 17(5):316-321. BAUERNFEIND, A.; STEMPLINGER, I.; JUNGWIRTH, T.; ERNST, S.; CASELLAS, J. M. 1996. Sequences of β-lactamase genes enconding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other beta-lactamases. Antimicrobial Agents and Chemotherapy 40(2):509-513. BERRAZEG M, JEANNOT K, NTSOGO ENGUÉNÉ VY, BROUTIN I, LOEFFERT S, FOURNIER D, PLÉSIAT P. 2015. Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrobial Agents and Chemotherapy 59:6248–6255. BIANCHINI, V.; BORELLA, L.; BENEDETTI, V.; PARISI, A.; MICCOLUPO, A.; SANTORO, E.; RECORDATI, C.; LUINIA, M. 2014. Prevalence in Bulk Tank Milk and Epidemiology of Campylobacter jejuni in Dairy Herds in Northern Italy. Applied and Environmental Microbiology 80(6):1832–1837. BLACK, J. A.; MOLAND, E. S.; THOMSON, K. S. 2005. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. Journal of Clinical Microbiology 43(7):3110-3113. BOBROWSKI, M. .; MATTHEW, G.; BARTH, P. T.; DATTA, N.; GRINTER, N. J.; JACOB, A. E.; KONTOMICHALOU, P.; DALE, J. W.; SMITH, J. T. 1976. Plasmid-Determined β-Lactamase Indistinguishable from the Chromosomal β-Lactamase of Escherichia coli. Journal of Bacteriology 125(1):149-157. BOGAERTS, P.; HUANG, T.-D.; BOUCHAHROUF, W.; BAURAING, C.; BERHIN, C.; GARCH, F. E.; GLUPCZYNSKI, Y.; COMPATH STUDY GROUP. 2015. Characterization of ESBL- and AmpC-Producing Enterobacteriaceae from Diseased Companion Animals in Europe. Microbial Drug Resistance 21(6):643-50. BÖRJESSON, S.; EGERVÄM, M.; LINDBLAD, M.; ENGLUND, S. 2013. High occurrence of extended-spectrum β-lactamase (ESBL) and transferable AmpC β-lactamase producing Escherichia coli on domestic chicken meat in Sweden. Applied Environmental Microbiology 79(7): 2463–2466. BORTOLAIA, V., HANSEN, K. H.; NIELSEN, C. A.; FRITSCHE, T. R.; GUARDABASSI, L. 2014. High diversity of plasmids harbouring blaCMY-2 among clinical Escherichia coli 72 isolates from humans and companion animals in the upper Midwestern USA. Journal of Antimicrobial Chemotherapy 69: 1492–1496. BOTELHO, L. A. B.; KRAYCHETE, G. B.; COSTA E SILVA, J. L.; REGIS, D. V. V.; PICÃO, R. C.; MOREIRA, B. M.; BONELLI, R. R. 2015. Widespread distribution of CTX-M and plasmid-mediated AmpC β-lactamases in Escherichia coli from Brazilian chicken meat. Memórias do Instituto Oswaldo Cruz 110(2): 249-254. BRADFORD, P. A.; URBAN, C.; MARIANO, N.; PROJAN, S. J.; RAHAL, J. J.; BUSH, K. 1997. Imipenem Resistance in Klebsiella pneumoniae Is Associated with the Combination of ACT-1, a Plasmid-Mediated AmpC β-Lactamase, and the Loss of an Outer Membrane Protein. Antimicrobial Agents and Chemotherpy 41(3):563-569. BRET, L.; CHANAL-CLARIS, C.; SIROT, D.; CHAIBI, E. B.; LABIA, R.; SIROT, J. 1998. Chromosomally Encoded AmpC-Type β-Lactamase in a Clinical Isolate of Proteus mirabilis. Antimicrobial Agents and Chemotherapy 42(5):1110-1114. BRINÃS, L.; ZARAZAGA, M.; SAENZ, Y.; RUIZ-LARREA, F.; TORRES, C. 2002. β-Lactamases in Ampicillin-Resistant Escherichia coli Isolates from Foods, Humans, and Healthy Animals. Antimicrobial Agents and Chemotherapy 46(10):3156-3163. BROWN, J. R. e LIVESAY, D. R. 2015. Flexibility correlation between active site regions is conserved across four AmpC β-lactamases enzymes. PLoS ONE 10(5): e0125832. BUSH, K.; JACOBY, G.A.; MEDEIROS, A.A. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrobial Agents and Chemotherapy 39(6):1211-1233. BUSH, K.; JACOBY, G.A. 2010. Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy 54(3):969-976. CAINE, L-A.; NWODO, U. U.; OKOH, A. I.; NDIP, R. N.; GREEN, E. 2014. Occurrence of Virulence Genes Associated with Diarrheagenic Escherichia coliIsolated from Raw Cow’s Milk from Two Commercial Dairy Farms in the Eastern Cape Province, South Africa. International Journal of Environmental Research and Public Health 11(11): 11950–11963. CANTARELLI, V. V.; INAMINE, R.; BRODT, T. C. Z.; SECCHI, C.; CAVALCANTE, B. C.; PEREIRA, F. S. 2007. Utility of the Ceftazidime-Imipenem Antagonism Test (CIAT) to Detect and Confirm the Presence of Inducible AmpC β-Lactamases Among Enterobacteriaceae. The Brazilian Journal of Infectious Diseases 11(2):237-239. CALTAGIRONE, M.; BITAR, I.; PIAZZA, A.; SPALLA, M.; NUCLEO, E.; NAVARA, A.; MIGLIAVACCA, R. 2015. Detection of na IncA/C plasmid enconding VIM-4 and CMY-4 β-lactamases in Klebsiella oxytoca and Citrobacter koseri from na impatient cardiac rehabilitation unit. New Microbiologica 38: 387-392. CAROFF, N.; ESPAZE, E.; GAUTREAU, D.; RICHET, H.; REYNAUD, A. 2000. Analysis of the effects of -42 and -32 ampC promoter mutations in clinical isolates of Escherichia coli hyperproducing AmpC. Journal of Antimicrobial Chemotherapy 45:783-788. CARVALHO, L.A. Embrapa gado de leite: sistema de produção. Disponível na internet. www.cnpgl.embrapa.br/sistema/cerrado.html. Acesso em 16 set. 2009. CASPERMEYER, J. 2016. MEGA Evolutionary Software re-Engineered to Handle Today’s Big Data Demands. Mol. Biol. Evol. 33 (7): 1887. CEJAS, D.; CANIFIA, L. F.; QUINTEROS, M.; GIOVANAKIS, M.; VAY, C.; LASCIALANDARE, S.; MUTTI, D.; PAGNIEZ, G.; ALMUZARA, M.; GUTKIND, G.; RADICE, M. 2012. Plasmid-Encoded AmpC (pAmpC) in Enterobacteriaceae: epidemiology of microorganisms and resistance markers. Revista Argentina de Microbiología 44: 182-186. CIORBA, V.; ODONE, A.; VERONESI, L.; PASQUARELLA, C.; SIGNORELLI, C. 2015. Antibiotic resistance as a major public health concern: epidemiology and economic impact. Annali di Igiene: medicina preventiva e di comunità. 27(3):562-579. 73 CLATWORTHY, A. E.; PIERSON, E.; HUNG, D. T. Targeting virulence: a new paradigm for antimicrobial therapy. Nature Chemical Biology 3(9):541-8. CLSI 2014 Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informal Supplement. CLSI document M100-S22. Clinical and Laboratory Standards Institute,Wayne, PA. CLSI 2013. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Second Informational Suplemment – fourth edition. CLSI document VET01-A4. Clinical and Laboratory Standards Institute,Wayne, PA. CONCEIÇÃO, T.; FARIA, N.; LITO, L.; CRISTINO, J. M.; SALGADO, M. J.; DUARTE, A. 2004. Diversity of chromosomal AmpC β-lactamases from Enterobacter cloacae isolates in a Portuguese hospital. FEMS Microbiology Letters 230:197-202. CORVEC, S.; CAROFF, N.; ESPAZE, E.; MARRAILLAC, J.; REYNAUD, A. 2002. -11 Mutation in the ampC Promoter Increasing Resistance to β-Lactams in a Clinical Escherichia coli Strain. Antimicrobial Agents and Chemotherapy 46(10):3265-3267. COTTELL, J. L.; SAW, H. T. H.; WEBBER, M. A.; PIDDOCK, L. J. V. 2014. Functional genomics to identify the factors contributing to successful persistence and global spread of an antibiotic resistance plasmid. BMC Microbiology 14:1-8. COUDRON, P. E. 2005. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. Journal of Clinical Microbiology 43(8):4163–4167. DAEF, E. A. e ELSHERBINY, N. M. 2012. Clinical and Microbiological Profile of Nosocomial Infections in Adult Intensive Care Units at Assiut University Hospitals, Egypt. Journal of American Science 8(12):1239-1250. DAHYOT, S.; BROUTIN, I.; CHAMPS, C.; GUILLON, H.; MAMMERI, H. 2013. Contribution of asparagine 346 residue to the carbapenemase activity of CMY-2 b-lactamase. FEMS Microbiology Letters 345:147–153. DALLENNE, C.; COSTA, A.; DECRE, D.; FAVIER, C.; ARLET, G. 2010. Developmento of a set of multiplex PCR assays for the detection of genes enconding important β-lactamases in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy 65:490-495. D’ANDREA, M. M.; NUCLEO, , E.; LUZZARO, F.; GIANI, T.; MIGLIAVACCA, R.; VAILATI, F.; KROUMOVA, V.; PAGANI, L.; ROSSOLINI, G. M. 2006. CMY-16, a Novel Acquired AmpC-Type β-Lactamase of the CMY/LAT Lineage in Multifocal Monophyletic Isolates of Proteus mirabilis from Northern Italy. Antimicrobial Agents and Chemotherapy 50(2):618–624. da SILVA DIAS, R.C.; BORGES-NETO, A. A.; D’ALMEIDA FERRAIUOLI, G. I.; de-OLIVEIRA, M. P.; RILEY, L. W.; MOREIRA, B.M. 2008. Prevalence of AmpC and other β-lactamases in enterobacteria at a large urban university hospital in Brazil. Diagnostic Microbiology and Infectious Diseases 60(1):79-87. DAVID, L. e PATERSON, M. D. 2006. Resistance in Gram-Negative Bacteria: Enterobacteriaceae. The American Journal of Medicine 119(6A):S20–S28. DIAS, R. C. S.; BORGES-NETO, A. A.; FERRAIUOLI, G. I. D.; de-OLIVEIRA, M. P.; RILEY, L. W.; MOREIRA, B. M. 2008. Prevalence of AmpC and other β-lactamases in enterobacteria at a large urban university hospital in Brazil. Diagnostic Microbiology and Infectious Disease 60(1): 79–87. DIAS, D. J. A. 2009. Estudo dos principais mecanismos de resistência aos antibióticos β-lactâmicos em bactérias patogênicas de Gram negativo. Dissertação (Genética Molecular e Biomedicina). Universidade Nova de Lisboa. 74 DIERIKX, C. M.; van der GOOT, J. A.;, SMITH, H. E.; KANT, A.; MEVIUS, D.J. 2013. Presence of ESBL/AmpC-producing Escherichia coli in the broiler production pyramid: a descriptive study. PLoS One 8(11):e79005. DING, H.; YANG, Y.; LU, Q.; WANG, Y.; CHEN, Y.; DENG, L.; WANG, A.; DENG, Q.; ZHANG, H.; WANG, C.; LIU, L.; XU, X.; WANG, L., SHEN, X. 2008. The prevalence of plasmid-mediated AmpC β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from five children's hospitals in China. European Journal of Clinical Microbiology and Infectious Diseases 27(10):915-21. DEUTSCH R. F.; ROSS, J. W.; NAILOR, M. D. 2015. Carbapenem-Resistant Enterobacteriaceae: A Case Series of Infections at Hartford Hospital. Connecticut Medicine 79 (5):269-275. DUNNE, W. M. Jr e HARDIN,D. J. 2005. Use of several inducer and substrate antibiotic combinations in a disk approximation assay format to screen for AmpC induction in patient isolates of Pseudomonas aeruginosa, Enterobacter spp., Citrobacter spp., and Serratia spp. Journal of Clinical Microbiology 43(12):5945-9. DUSE, A.; WALLER, K. P.; EMANUELSON, U.; UNNERSTAD, H. E.; PERSSON, Y.; BENGTOSSON, B. 2015. Risk factors for antimicrobial resistance in fecal Escherichia coli from preweaned dairy calves. Journal of Dairy Science 98 :500–516. EGERVÄRN, M.; BÖRJESSON, S.; BYFORS, S.; FINN, M.; KAIPE, C; ENGLUND, S.; LINDBLAD, M. 2014. Escherichia coli with extended-spectrum β-lactamases or transferable AmpC β-lactamases and Salmonella on meat imported into Sweden. International Journal of Food Microbiology 171:8-14. FENG, Y.; YANG, P.; XIE, Y.; WANG, X.; McNALLY, A.; ZONG, Z. 2015. Escherichia coli of sequence type 3835 carrying bla NDM-1, bla CTX-M-15, bla CMY-42 and bla SHV-12. Scientific Report 5:12275. FÉRIA, C.; FERREIRA, E.; CORREIA, J. D.; GONÇALVES, J.; CANIÇA, M. 2002. Patterns and mechanisms of resistance to β-lactams and β-lactamase inhibitors in uropathogenic Escherichia coli isolated from dogs in Portugal. Journal of Antimicrobial Chemotherapy 49:77-85. FERNANDES, M. R.; McCULLOCH, J.A.; VIANELLO, M. A.; MOURA, Q.; PÉREZ-CHAPARRO, P. J.; ESPOSITO, F.; SARTORI, L.; DROPA, M.; MATTÉ, M. H.; LIRA, D. P. A.; MAMIZUKA, E. M.; LINCOPAN, N. 2016. First Report of the Globally Disseminated IncX4 Plasmid Carrying the mcr-1 Gene in a Colistin-Resistant Escherichia coli ST101 isolated from a Human Infection in Brazil. Antimicrobial Agents and Chemotherapy doi:10.1128/AAC.01325-16. FERREIRA, M. R. A.; FREITAS FILHO, E. G.; PINTO, J. F. N.; DIAS, M.; MOREIRA, C. N. 2014. Isolation, prevalence, and risk factors for infection by shiga toxin-producing Escherichia coli (STEC) in dairy cattle. Tropical Animal Health and Prodution.46(4):635-9. FLEMING, A. 1929. On the antibacterial action of culture of Penicillium, with special reference to their use in the isolation of B. influenza. British Journal of Experimental Pathology 10:226-236. FLORES-MIRELES, A. L.; WALKER, J. N.; CAPARON, M.; HULTGREN, S. J. 2015. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology 13(5): 269-284. FREITAS, F.; MACHADO, E.; RIBEIRO, T. G.; NOVAIS, A.; PEIXE, L. 2014. Long-term dissemination of acquired AmpC β-lactamases among Klebsiella spp. and Escherichia coli in Portuguese clinical settings. European Journal of Clinical Microbiology and Infectious Diseases 33:551–558. 75 GARCÍA-COBOS, S.; KOCK, R.; MELLMANN, A.; FRENZEL, J.; FRIEDRICH, A. W.; ROSSEN, J. W. A. 2015. Molecular Typing of Enterobacteriaceae from Pig Holdings in North-Western Germany Reveals Extended- Spectrum and AmpC β-Lactamases Producing but no Carbapenem Resistant Ones. PLoS One 10(7):e0134533. GASPAR, G. G.; BELLISSIMO-RODRIGUES, F.; ANDRADE, L. N.; DARINI, A. L.; MARTINEZ, R. 2015. Induction and nosocomial dissemination of carbapenem and polymyxin-resistant Klebsiella pneumoniae. Revista da Sociedade Brasileira de Medicina Tropical 48(4):483-487. GHAROUT-SAIT, A.; TOUATI, A.; GUILLARD, T.; BRASME, L.; de CHAMPS, C. 2015. Molecular characterization and epidemiology of cefoxitin resistance among Enterobacteriaceae lacking inducible chromosomal ampC genes from hospitalized and non-hospitalized patients in Algeria: description of new sequence type in Klebsiella pneumoniae isolates. The Brazilian Journal of Infectious Diseases 19(2):187-95. GHATAK, S.; SINGHA, A.; SEM, A.; GUHA, C.; AHUJA, A.; BHATTACHARJEE,U.; DAS, S.; PRADHAN, N. R.; PURO, K.; JANA, C.; DEY, T. K.; PRASHANTKUMAR, K. L.; DAS, A.; SHAKUNTALA, I.; BISWAS, U.; JANA, P. S. 2013. Detection of New Delhi Metallo-β-Lactamase and Extended-Spectrum β-Lactamase Genes in Escherichia coli Isolated from Mastitic Milk Samples. Transboundary and Emerging Diseases 60(5):385–389. GIACOMETTI, F.; BONILAURI, P.; SERRAINO, A.; PELI, A.; AMATISTE, S.; ARRIGONI, N.; BIANCHI, M.; BILEI, S.; CASCONE, G.; COMIN, D.; DAMINELLI, P.; DECASTELLI, L.; FUSTINI, M.; MION, R.; PETRUZZELLI, A.; ROSMINI, R.; RUGNA, G.; TAMBA, M.; TONUCCI, F.; BOLZONI, G. 2013. Four-Year Monitoring of Foodborne Pathogens in Raw Milk Sold by Vending Machines in Italy. Journal of Food Protection 11:1824-1993. GOLDSTEIN, F. W. 2002. Cephalosporinase induction and cephalosporin resistance: a longstanding misinterpretation. Clinical Microbiology and Infection 8(12):823-5. GONÇALVES, D. F. M. 2008. β-lactamases de espectro alargado em Enterobacteriaceae da flora fecal de idosos. Dissertação. Universidade de Aveiro. GONÇALVES, D. F. M. 2013. Escherichia coli e Klebsiella pneumoniae, das ESBL’s às Carbapenemases, colonização fecal e infeção – Influência da população idosa numa região do Norte de Portugal. Tese. Universidade do Porto. GUÉRIN, F.; ISNARD, C.; CATTOIR, V.; GLARD, J.C. Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex. Antimicrobial Agents and Chemotherapy 59(12):7753-7761. HAENNI, M.; CHÂTRE, P.; MADEC, J. 2014. Emergence of Escherichia coli producing extended-spectrum AmpC β-lactamases (ESAC) in animals. Front Microbiol. 5. HALDORSEN, B.; AASNAES, B.; DAHL, K. H.; HANSSEN, A.-M.; SIMONSEN, G. S.; WALSH, T. R.; SUNDSFJORD, A.; LUNDBLAD, E. W. 2008. The AmpC phenotype in Norwegian clinical isolates of Escherichia coli is associated with an acquired ISEcp1-like ampC element or hyperproduction of the endogenous AmpC. Journal of Antimicrobial Chemotherapy 62:694–702. HALL, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95-98. HAMMERUM, A. M.; LARSEN, J.; ANDERSEN, V. D.; LESTER, C. H.; SKYTTE, T. S. S.; HANSEN, F.; OLSEN, S. S.; MORDHORST, H.; SKOV, R. L.; AARESTRUP, F. M.; AGERS, Y. 2014. Characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third- or fourth-generation cephalosporins. Antimicrobial Agents and Chemotherapy 7: 1-8. 76 HANSON, N.D. e SANDERS, C.C. 1999. Regulation of Inducible AmpC β-lactamase Expression Among Enterobacteriaceae. Current Pharmaceutical Design 5:881-894. HERNÁNDEZ, J. R.; CONEJO, M. C.; PASCUAL, A. 2010. Actividad comparativa del ertapenem frente a Klebsiella pneumoniae productor de betalactamasas de espectro extendido o β-lactamasas de AmpC plasmídicas: efecto inóculo y papel de la pérdida de porinas. Enfermedades Infecciosas y Microbiologia Clinica 28(1):27–30. HERRERO-FRESNO, A.; LARSEN, I.; OLSEN, J. E. 2015. Genetic relatedness of commensal Escherichia coli from nursery pigs in intensive pig production in Denmark and molecular characterization of genetically different strains. Journal of Applied Microbiology 119(2):342-353. HOFFMANN, S. A.; PIERETTI, G.G.; FIORINI, A.; PATUSSI, E. V.; CARDOSO, R. F.; MIKCHA, J. M. G. 2014. Genes and Genetic Diversity of Escherichia coli Isolated from Pasteurized Cow Milk in Brazil. Journal of Food Science 79(6):M1175–M1180. HOGARDT, M.; PROBA, P.; MISCHLER, D.; CUNY, C.; KEMPF, V. A.; HEUDORF, U. 2015. Current prevalence of multidrug-resistant organisms in long-term care facilities in the Rhine-Main district, Germany, 2013. Euro Surveill 20(26):pii=21171. HOMMA, T.; NUXOLL, A.; GANDT, A. B.; EBNER, P.; ENGELS, I.; SCHNEIDER, T.; GÖTZ, F.; LEWIS, K.; CONLON, B. P. 2016. Dual Targeting of Cell Wall Precursors by Teixobactin Leads to Cell Lysis. Antimicrobial Agents and Chemotherapy 60(11):6510-6517. HONORÉ, N.; NICOLAS, M. H.; COLE, S. T. 1986. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. The EMBO Journal 5(13):3709-3714. HORDIJK, J.; SCHOORMANS, A.; KWAKEMAAK, M.; DUIM, B.; BROENS,E.; DIERIKX, C.; MEVIUS, D.; WAGENAAR, J. A. 2013. High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Frontiers in Microbiology 4: 242. HSIEH, W.-S.; WANG, N.-Y.; FENG, J.-A.; WENG, L.-C.; WU, H.-H. Identification of DHA-23, a novel plasmid-mediated and inducible AmpC β-lactamase from Enterobacteriaceae in Northern Taiwan. Frontiers in Microbiology 6:436. HUSICKOVA, V.; CEKANOVA, L.; CHROMA, M.; HTOUTOU-SEDLAKOVA, M.; HRICOVA, K.; KOLAR, M. 2012. Carriage of ESBL- and AmpC-positive Enterobacteriaceae in the gastrointestinal tract of community subjects and hospitalized patients in the Czech Republic. Biomedical Papers of the Medical Faculty of the University Palacky Olomouc Czech Republic 156(4):348–353. HUJER, A. M.; PAGE, M. G. P.; HELFAND, M. S.; YEISER, B.; BONOMO, R. A. 2002. Development of a Sensitive and Specific Enzyme-Linked Immunosorbent Assay for Detecting and Quantifying CM-2 and SHV-β-Lactamases. Journal of Clinical Microbiology 40(6):1947-1957. IABADENE, H.; MESSAI, Y.; AMMARI, H.; ALOUACHE, S.; VERDET, C.; BAKOUR, R.; ARLET, G 2009. Prevalence of plasmid-mediated AmpC β-lactamases among Enterobacteriaceae in Algiers hospitals. Internacional Journal of Antimicrobial Agents 34(4):340-2. IBRAHIMAGIC, A.; BEDENIC, B.; KAMBEROVIC, F.; UZONOVI, S. 2015. High prevalence of CTX-M-15 and first report of CTX-M-3, CTX-M-22, CTX-M-28 and plasmid-mediated AmpC β-lactamase producing Enterobacteriaceae causing urinary tract infections in Bosnia and Herzegovina in hospital and community settings. Journal of Infection and Chemotherapy 21, p.363-369. ILLIAQUER, M.; CAROFF, N.; BÉRNER, P.; AUBIN, G. G.; JUVIN, M.-E.; LEPELLETIER, D.; REYNAUD, A.; CORVEC, S. 2012. Occurrence and molecular 77 characterization of Klebsiella pneumoniae ST37 clinical isolates producing plasmid-mediated AmpC recovered over a 3-year period. Diagnostic Microbiology and Infectious Disease 74: 95–97. INGT, B.; LASKAR, M. A.;CHOUDHURY, S.; MAURYA, A. P.; PAUL, D.; TALUKDAR, A. D.; CHOUDHURY, M. D.; DHAR, D.; CHAKRAVARTY, A.; BHATTACHARJEE, A. 2017. Molecular and in silico analysis of a new plasmid-mediated AmpC β-lactamase (CMH-2) in clinical isolates of Klebsiella pneumoniae. Infection, Genetics and Evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 48:34-39. JACOBY, G.A. e TRAN, J. 1999. Sequence of the MIR-1 β-Lactamase Gene. Antimicrobial Agents and Chemotherapy 43(7):1759-1760. JACOBY, G. A. 2009. AmpC β-lactamases. Clinical Microbiology Reviews 22(1):161-182. JAURIN, B. e GRUNDSTROM, T. 1981. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from tha of β-lactamases of the penicillinase type. Procedings of the National Academy of Science USA 78(8):4897-49901. JIANG, X.; ZHANG, Z.; LI, M..; ZHOU, D.; RUAN, F.; LU, Y. 2006. Detection of Extended-Spectrum β-Lactamases in Clinical Isolates of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 50(9):2990–2995. JIN, K. ; SAM, L. H.; PO, K. H. L.; LIN, D.; ZADEH, E. H. G.; CHEN, S.; YAN, Y.; LI, X. 2016. Total synthesis of teixobactin. Nature. Communications 7:12394. JONES, C. H.; TUCKMAN, M.; KEENEY, D.; RUZIN, A.; BRADFORD, P. A. 2009. Characterization and Sequence Analysis of Extended-Spectrum-β-Lactamase-Encoding Genes from Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates Collected during Tigecycline Phase 3 Clinical Trials. Antimicrobial Agents and Chemoterapy 53(2):465-475. JONES-DIAS, D.; MANAGEIRO, V.; FERREIRA, E.; LOURO, D.; ANTIBIOTIC RESISTANCE SURVEILLANCE PROGRAM IN PORTUGAL (ARSIP) PARTICIPANTS; CANIÇA, M. 2014. Diversity of Extended-Spectrum and Plasmid-Mediated AmpC β-Lactamases in Enterobacteriaceae Isolates from Portuguese Health Care Facilities. Journal of Microbiology 52( 6):496–503. JORGENSEN, R. L.; NIELSEN, J. B.; FRIIS-MOLLER, A.; FJELDSOE-NIELSEN, H.; SCHONNING, K. 2010. Prevalence and molecular characterization of clinical isolates of Escherichia coli expressing an AmpC phenotype. Antimicrobial Chemotherapy 65: 460–464. KAMEYAMA, M.; YABATA, J.; NOMURA, Y.; TOMINAGA, K. 2015. Detection of CMY-2 AmpC β-lactamase-producing enterohemorrhagic Escherichia coli O157:H7 from outbreak strains in a nursery school in Japan. Journal of Infection and Chemotherapy 21(7):544-546. KANG, H. Y.; KIM, J.; SEOL, S. Y.; LEE, Y. C.; LEE, J. C.; CHO, D. T. 2009. Characterization of conjugative plasmids carrying antibiotic resistance genes encoding 16S rRNA methylase, extended-spectrum β-lactamase, and/or plasmid-mediated AmpC β-lactamase. Journal of Microbiology 47(1):68-75. KAO, C.-C.; LIU, M.-F.; LIN, C.-F.; HUANF, Y.-C.; LIU, P.-Y.; CHANG, C.-W.; SHI, Z.-Y. 2010. Antimicrobial Susceptibility and Multiplex PCR Screening of AmpC Genes From Isolates of Enterobacter cloacae, Citrobacter freundii, and Serratia marcescens. Journal of Microbiology, Immunology and Infection 43(3):180–187. KATEREGGA, J. N.; KANTUME, R.; ATUHAIRE, C.; LUBOWA, M. N.; NDUKUI, J. G. 2015. Phenotypic expression and prevalence of ESBL-producing Enterobacteriaceae in samples collected from patients in various wards of Mulago Hospital, Uganda. BMC Pharmacology and Toxicology 16(14):1-6. 78 KIM, S.-H.; WEI, C. –I. 2007. Expression of AmpC β-lactamase in Enterobacter cloacae isolated from retail ground beef, cattle farm and processing facilities. Journal of Applied Microbiology 103:400–408. KIM, J. Y.; JUNG, H. I.; AN, Y, H. et al. 2006. Structural basis for the extended substrate spectrum of CMY-10, a plasmid-encoded class C β-lactamase. Molecular Microbiology 60(4):907–916. KNOTHE, H.; SHAH, P.; KRCMERY, V.; ANTAL, M.; MITSUHASHI, S. 1983. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 11(6):315-7. KONEMAN, W.E.; ALLEN, S.D.; JANDA, W.M.; SCHRECKENBERGER, P.C.; WINN, JR.W.C. As Enterobacteriaceae. In: KONEMAN, E. W. Diagnóstico microbiológico – texto e atlas colorido. 6. ed. Rio de Janeiro: Editora Médica e Científica, p.263-329, 2012. LALAK, A.; WASYL, D.; ZAJAC, M.; SKARZYNSKA, M.; HOSZOWSKI, A.; SAMCIK, I.; WOZNIAKOWSKI, G.; SZULOWSKI, K. 2016. Mechanisms of cephalosporin resistance in indicator Escherichia coli isolated from food animals. Veterinary Microbiology pii:S0378-1135(16)30023-2. LEIMBACH, A.; POEHLEIN, A.; WITTEN, A.; WELLNITZ, O.; SHPIGEL, N.; PETZL, W.; ZERBE, H.; DANIEL, R.; DOBRINDT, U. 2016. Whole-Genome Draft Sequences of Six Commensal Fecal and Six Mastitis-Associated Escherichia coli Strains of Bovine Origin. Genome Announcements 4(4):pii: e00753-16. LEIZA, M. G.; PEREZ-DIAZ, J.C.; AYALA, J.; CASELLAS, J. M.; MARTINEZ-BELTRAN, J.; BUSH, K.; BAQUERO, F. 1994. Gene Sequence and Biochemical Characterization of FOX-1 from Kiebsiella pneumoniae, a new AmpC-Type Plasmid-Mediated 1-Lactamase with Two Molecular Variants. Antimicrobial Agents and Chemotherapy 38(9): 2150-2157. LI, Y.; LI, Q.; DU, Y.; JIANG, X.; TANG, J.; WANG, J.; LI, G.; JIANG, Y. 2008. Prevalence of Plasmid-Mediated AmpC β-Lactamases in a Chinese University Hospital from 2003 to 2005: First Report of CMY-2-Type AmpC β-Lactamase Resistance in China. Journal of Clinical Microbiology 46(4): 1317–1321. LIEBANA, E.; BATCHELOR, M.; HOPKINS, K.L.; CLIFTON-HADLEY, F. A.; TEALE, C. J.; FOSTER, A.; BARKER, L.; THRELFALL, E. J.; DAVIES, R. H. 2006. Longitudinal Farm Study of Extended-Spectrum β-Lactamase-Mediated Resistance. Journal of Clinical Microbiology 1630-1634. LIEBANA, E.; CARATTOLI, A.; COQUE, T. M.; HASMAN, H.; MAGIORAKOS, A.; MEVIUS, D.; PEIXE, L.; POIREL, L.; SCHURPBACH-REGULA, G.; TORNEKE, K.; TORREN-EDO, J.; TORRES, C.; THRELFALL, J. 2013. Public Health Risks of Enterobacterial Isolates Producing Extended-Spectrum β-Lactamases or AmpC β-Lactamases in Food and Food-Producing Animals: An EU Perspective of Epidemiology, Analytical Methods, Risk Factors, and Control Options. Clinical Infectious Diseases 56(7):1030-1037. LING, L.L.; SCHNEIDER, T.; PEOPLES, A.J. et al., 2015. A new antibiotic kills pathogens without detectable resistance. Nature 517:455- 359. LIU, Y.-Y.; WANG, Y.; WALSH, T. R. et al. 2015. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infectious Diseases 16(2):161-8. LIVERMORE, D. M. e WOODFORD, N. 2006. The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. TRENDS in Microbiology 14(9):413-420. LONCARIC I.; STALDER G.L.; MEHINAGIC K.; ROSENGARTEN R.; HOELZL F.; et al. 2013. Comparison of ESBL – And AmpC Producing Enterobacteriaceae and Methicillin- 79 Resistant Staphylococcus aureus (MRSA) Isolated from Migratory and Resident Population of Rooks (Corvus frugilegus) in Austria. PLoS ONE 8(12): e84048. LUNA, C. M.; RODRIGUEZ-NORIEGA, E.; BAVESTRELLO, L.; GUZMÁN-BLANCO, M. 2014. Review Article – Gram-Negative Infections in Adult Intensive Care Units of Latin America and the Caribbean. Critical Care Research and Practice Article ID 480463, 12 pages. MALEKI, A. 2015. High Prevalence of AmpC β-Lactamases in Clinical Isolates of Escherichia coli in Ilam, Iran. Osong Public Health and Research Perspectives (2015), http://dx.doi.org/10.1016/j.phrp.2015.02.001 MAMMERI, H.; NAZIC, H.; NAAS, T.; POIREL, L.; LÉOTARD, S.; NORDMANN, P. 2004. AmpC β-Lactamase in an Escherichia coli Clinical Isolate Confers Resistance to Expanded-Spectrum Cephalosporins. Antimicrobial Agents and Chemotherapy 48(10):4050–4053. MAMMERI, H.; POIREL, L.; FORTINEAU, N.; NORDMANN, P. 2006. Naturally Occurring Extended-Spectrum Cephalosporinases in Escherichia coli. Antimicrobial Agents and Chemotherapy 50(7):2573-2576. MAMMERI, H.; POIREL, L.; NORDMANN, P. 2007. Extension of the hydrolysis spectrum of AmpC β-lactamase of Escherichia coli due to amino acid insertion in the H-10 helix. Journal of Antimicrobial Chemotherapy 60:490–494. MAMMERI, H.; NORDMANN, P.; BERKANI, A.; EB, F. 2008. Contribution of extended-spectrum AmpC(ESAC) β-lactamases to carbapenem resistance in Escherichia coli. FEMS Microbiology Letters 282:238–240. MANN, C.M. e MARKHAM, J.L. 1998. A new method for determining the minimum inhibitory concentration of essential oils. Journal Applied Microbiology 84:538-544. MANAGEIRO, V.; FERREIRA, E.; PINTO, M.; FONSECA, F.; FERREIRA, M.; BONNET, R.; CANIÇA, M. 2015. Two novel CMY-2-type β-lactamases encountered in clinical Escherichia coli isolates. Annals of Clinical Microbiology and Antimicrobials 14:12. MANOHARAN, A.; SUGUMAR, M.; KUMAR, A.; JOSE, H.; MATHAI, D.; ICMR-ESBL STUDY GROUP. 2012. Phenotypic & molecular characterization of AmpC β-lactamases among Escherichia coli, Klebsiella spp. & Enterobacter spp. from five Indian Medical Centers. Indian Journal of Medical Research 135:359-364. MARSIK, F.J.; NAMBIAR, S. 2011. Review of carbapenemases and AmpC-β-lactamases. The Pediatric Infectious Disease Journal 30(12):1094-1095. MARTÍNEZ-ROJAS, D. D. D. 2009. β-lactamasas tipo AmpC: generalidades y métodos para detección fenotípica. Revista de La Sociedad Venezolana de Microbiología 29(2):78-83. MATA, C.; MIRÓ, E.; ALVARADO, A.; GARCILLÁN-BARCIA, M. P.; TOLEMAN, M.; WALSH, T. R.; CRUZ, F.; NAVARRO, F. 2012. Plasmid typing and genetic context of AmpC β-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes: findings from a Spanish hospital 1999–2007. Journal of Antimicrobial Chemotherapy 67: 115–122. MATA, C.; NAVARRO, F.; MIRÓ, E.; WALSH, T. R.; MIRELIS, B.; TOLEMAN, M. 2011. Prevalence of SXT/R391-like integrative and conjugative elements carrying blaCMY-2 in Proteus mirabilis. Journal of Antimicrobial Chemotherapy 66: 2266–2270. MATA, C.; MIRÓ, E.; RIVERA, A.; MIRELIS, B.; COLL, P.; NAVARRO, F. 2010. Prevalence of acquired AmpC β-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes at a Spanish hospital from 1999 to 2007. Clinical Microbiology and Infection 16:472-476. MATTHEW, M.; HARRIS, A. N.; MARSHALL, M. J.; ROSS, G. W. 1975. The use of analytical isoelectric focusing for detection and identification of β-lactamases . Journal of General Microbiology 88:169-178. 80 MAZUREK, J.; PUSZ, P.; BOK, E.; STOSIK, M.; BALDY-CHUDZIK, K. 2013. Phenotypic and Genotypic Characteristics of Antibiotic Resistance in Escherichia coli Populations Isolated from Farm Animals with Diferent Exposure to Antimicrobial Agents. Polish Journal of Microbiology 62(2):173–179. McGANN, P.; SNESRUDI, E.; MAYBANK, R.; COREY, B.; ONG, A. C.; CLIFFORD, R.; HINKLE, M.; WHITMAN, T.; LESHO, E.; SCHAECHERS, K. E. 2016. Escherichia coli Harboring mcr-1 and blaCTX-M on a Novel IncF Plasmid: First report of 2 mcr-1 in the USA. Antimicrobial Agents and Chemotherapy 60(7):4420-1. MEDHANIE, G.A.; PEARL, D. L.; McEWEN, S. A.; GUERIN, M. T.; JARDINE, C.M.; SCHROCK, J.; LeJEUNE, J. T. 2014. A longitudinal study of feed contamination by European starling excreta in Ohio dairy farms (2007–2008). Journal of Dairy Science 97 :5230–5238 . MEHRAD, B.; CLARK, N. M.; ZHANEL, G. G.; LYNCH, J. P. 2015. Antimicrobial Resistance in Hospital-Acquired Gram-Negative Bacterial Infections. Chest. 147(5):1413-1421. MESSAI, Y.; BENHASSINE, T.; NAIM, M.; PAUL, G.; BAKOUR, R. 2006. Prevalence of β-lactams resistance among Escherichia coli clinical isolates from a hospital in Algiers. Revista Española de Quimioterapia 19(2):144-151. MIRÓ, E.; AGÜERO, J.; LARROSA, M. N.; FERNÁNCEZ, A.; CONEJO, M. C.; BOU, G.; GONZÁLEZ-LOPEZ, J. J.; LARA, N.; MARTÍNEZ-MARTÍNEZ, L.; OLIVER, A.; ARACIL, B.; OTEO, J.; PASCUAL, A.; RODRÍGUEZ-BAÑO, J.; ZAMORANO, L.; NAVARRO, F. 2013. Prevalence and molecular epidemiology of acquired AmpC β-lactamases and carbapenemases in Enterobacteriaceae isolates from 35 hospitals in Spain. European Journal of Clinical Microbiology & Infectious Diseases 32(2), p.253–259. MO, S. S.; SLETTEMEAS, J. S.; BERG, E. S.; NORSTROM, M.; SUNDE, M. 2016. Plasmid and Host Strain Characteristics of Escherichia coli Resistant to Extended-Spectrum Cephalosporins in the Norwegian Broiler Production. PLoS One 11(4):e0154019. MOHAMUDHA, P. R.; HARISH, B. N.; PARIJA, S. C. 2012. Molecular description of plasmid-mediated AmpC β-lactamases among nosocomial isolates of Escherichia coli & Klebsiella pneumoniae from six different hospitals in India. Indian Journal of Medical Research 135:114-9. MOROSINI, M. I.; AYALA, J. A.; BAQUERO, F.; MARTÍNEZ, J. L.; BLÁZQUEZ, J. 2000. Biological cost of AmpC production for Salmonella enterica serotype Typhimurium. Antimicrobial Agents and Chemotherapy 44(11):3137-43. NASSER, U.; HALDORSEN, G.; SIMONSEN, S.; SUNDSFJORD, A. 2010. Sporadic occurrence of CMY-2-producing multidrug-resistant Escherichia coli of ST-complexes 38 and 448, and ST131 in Norway. Clinical Microbiology and Infection 16: 171–178. NASIM, K.; ELSAYED, S.; PITOUT, J. D. D.; CONLY, J.; CHURCH, D. L.; GREGSON, D. B. 2004. New Method for Laboratory Detection of AmpC β-Lactamases in Escherichia coli and Klebsiella pneumoniae. Journal of Clinical Microbiology 42(10):4799-4802. NEDJAI, S.; BARGUIGUA, A.; DJAHMI, N.; JAMALI, L.; ZEROUALI, K.; DEKHIL, M.; TIMINOUNI, M. 2012. Prevalence and characterization of extended spectrum β-lactamases in Klebsiella-Enterobacter-Serratia group bacteria, in Algeria. Médecine et Maladies Infectieuses 42(1):20-9. NELSON, E. C. e ELISHA, B. G. 1999. Molecular Basis of AmpC Hyperproduction in Clinical Isolates of Escherichia coli. Antimicrobial Agents and Chemotherapy 43(4):957-959. NELSON, D. L. e COX, M. 2002. Capítulo 5: Lehninger – Princípios de Bioquímica. 3ed. São Paulo: Sarvier. 81 NGUYEN, D. P.; NGUYEN, T. A. D.; LE, T. H.; TRAN, N. M. D.; NGO, T. P.; DANG, V. C.; KAWAI, T. ; KANKI, M.; KAWAHARA, R.; JINNAI, M.; YONOGI, S.; HIRAI, Y.; YAMAMOTO, Y.; KUMEDA, Y. 2016. Dissemination of Extended-Spectrum β-Lactamase- and AmpC β-Lactamase-Producing Escherichia coli within the Food Distribution System of Ho Chi Minh City, Vietnam. BioMed Research International 2016 :9 pages http://dx.doi.org/10.1155/2016/8182096. NÓBREGA, D. B.; GUIDUCE, M. V. S.; GUIMARÃES, F. F.; RIBOLI, D. F.; CUNHA, M .L. R. S.; LANGONI, H.; PANTOJA, J. C. F.; LUCHEIS, S. B. 2013. Molecular epidemiology and extended-spectrum β-lactamases production of Klebsiella pneumoniae isolated from three dairy herds. Pesquisa Veterinária Brasileira 33(7). NORDMANN, P.; MAMMERI, H. 2007. Extended-spectrum cephalosporinases: structure, detection and epidemiology. Future Microbiology 2(3):297-307. NUKAGA, M.; HARUTA, S.; TANIMOTO, K.; KOGURE, K.; TANIGUCHI, K.; TAMAKI, M; SAWAI, T. 1995. Molecular Evolution of a Class C β-Lactamase Extending Its Substrate Specificity. The Journal of Biological Chemistry 270(11):5729-5735. NHUNGA, P. H. 2007. Phylogeny and species identification of the family Enterobacteriaceae based on dnaJ sequences. Diagnostic Microbiology and Infectious Disease 58:153–161. OLSSON, O.; BERGSTROM, S.; LINDBERG, F. P.; NORMARK, S. 1983. ampC β-lactamase hyperproduction in Escherichia coli: Natural ampicillin resistance generated by horizontal chromossomal DNA transfer from Shigella. Procedings of the National Academy of Science USA 80:7556-7560. PAPAGIANNITSIS, C.C.; KOTSAKIS, S.D.; GNIADKOWSKI, T.M.; MIRIAGOU, V.; HRABAK, J. 2014. Identification of CMY-2-Type Cephalosporinases in Clinical Isolates of Enterobacteriaceae by MALDI-TOF MS. Antimicrobial Agents and Chemotherapy 58(5):2952-2957. PAPANICOLAOU, G. A.; MEDEIROS, A. A.; JACOBY, G. A. 1990. Novel Plasmid-Mediated 1-Lactamase (MIR-1) Conferring Resistance to Oxyimino- and ot-Methoxy 1-Lactams in Clinical Isolates of Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy 34(11):2200-2209. PARMAR, A.; IYER, A.; VINCENT, C. S.; LYSEBETTEN, D. V.; PRIOR, S. H.; MADDER, A.; TAYLOR, E. J.; SINGH, I. 2016. Efficient total syntheses and biological activities of two teixobactin analogues. Chemistry Communications 52:6060-6063. PAVEZ, M.; NEVES, P.; DROPA, M.; MATTÉ, M. H.; GRINBAUM, R. S.; ELMOR DE ARAÚJO, M. R.; MAMIZUKA, E. M.; LINCOPAN, N. 2008. Emergence of carbapenem-resistant Escherichia coli producing CMY-2-type AmpC β-lactamase in Brazil. Journal of Medical Microbiology 57(Pt 12):1590-2. PÉREZ-PÉREZ, F.J. and HANSON, N.F. 2002. Detection of Plasmid-Mediated AmpC- β-Lactamase Genes in Clinical Isolates by Using Multiplex PCR. Journal of Clinical Microbiology 40(6):2153-2162. PETER-GETZLAFF, S.; POLSFUSS, S.; POLEDICA, M.; HOMBACH, M.; GIGER, J.; BÖTTGER, E. C.; ZBINDEN, R.; BLOEMBERG, G. V. 2011. Detection of AmpC β-lactamase in Escherichia coli: comparison of three phenotypic confirmation assays and genetic analysis. Journal of Clinical Microbiology 49(8):2924-2932. PHILIPPON, A.; ARLET, G.; JACOBY, G.A. 2002. Plasmid-Determined AmpC-Type β-Lactamases. Antimicrobial Agents and Chemotherapy 46(1):1-11. PIRES, J.; TARACILA, M.; BETHEL, C. R.; DOI, Y.; KASRAIAN, S.; TINGUELY, R.; SENDI, P.; BONOMO, R. A.; ENDIMIANI, A. 2015. In vivo Evolution of CMY-2 to CMY-33 β-Lactamase in Escherichia coli ST131: Characterization of an Acquired Extended- 82 Spectrum AmpC (ESAC) Conferring Resistance to Cefepime. Antimicrobial Agents and Chemotherapy 59(12):7483-7488. POLSFUSS, S.; BLOEMBERG, G. V.; GIGER, J.; MEYER, V.; BÖTTGER, E. C.; HOMBACH, M. 2011. Practical approach for reliable detection of AmpC β-lactamase-producing Enterobacteriacea. Journal of Clinical Microbiology 49(8):2798-2803. POWER, P.; GALLENI, M.; AYALA, J. A.; GUTKIND, G. 2006. Biochemical and Molecular Characterization of Three New Variants of AmpC β-Lactamases from Morganella morganii. Antimicrobial Agents and Chemotherapy 50(3):962–967. PRADHAN, N. P.; BHAT, S. M.; GHADAGE, D. P. 2014. Nosocomial infections in the medical ICU: a retrospective study highlighting their prevalence, microbiological profile and impacto n ICU stay and mortality. Journal of Association Physicians of India 62 (10):18-21. PRATT, C. W e CORNELY, K. 2006. Capítulo 4: Bioquímica Essencial. 1 ed. Rio de Janeiro: Guanabara Koogan. RANDALL, L.; HEINRICH, K.; HORTON, R.; BRUNTON, L.; SHARMAN, M.; BAILEY-HORNE, V.; SHARMA, M.; McLAREN, I.; COLDHAM, N.; TEALE, C.; JONES, J. 2014. Detection of antibiotic residues and association of cefquinome residues with the occurrence of Extended-Spectrum β-Lactamase (ESBL)-producing bacteria in waste milk samples from dairy farms in England and Walesin 2011. Research in Veterinary Science 96(1):15–24. RASKO, D.A.; SPERANDIO, V. 2010. Anti-virulence strategies to combat bacteria-mediated disease. Nature Reviews Drug Discovery 9:117-128. RAPOPORT, M.; MONZANI, V.; PASTERAN, F.; MORVAY, L.; FACCONE, D.; PETRONI, A.; GALAS, M. 2008. CMY-2-type plasmid-mediated AmpC β-lactamase finally emerging in Argentina. International Journal of Antimicrobial Agents 31(4):385-387. RAYAMAJHI, N.; KANF, S. G.; LEE, D. Y.; KANG, M .L.; LEE, S. I.; PARK, K. Y.; LEE, H. S.; YOO, H. S. 2008. Characterization of TEM-, SHV- and AmpC-type β-lactamases from cephalosporinresistant Enterobacteriaceae isolated from swine. International Journal of Food Microbiology 124:183-187. RASKO, D.A.; SPERANDIO, V. 2010. Anti-virulence strategies to combat bacteria-mediated disease. Nature Reviews Drug Discovery 9:117-128. REICH, F.; ATANASSOVA, V.; KLEIN, G. 2013. Extended-Spectrum β-Lactamase– and AmpC-Producing Enterobacteria in Healthy Broiler Chickens, Germany. Emerging Infectious Diseases Journal 19(8): 1253–1259. REISBIG, M. D. e HANSON, N. D. 2004. Promoter Sequences Necessary for High-Level Expression of the Plasmid-Associated AmpC Β-Lactamase Gene blaMIR-1. Antimicrobial Agents and Chemotherapy 48(11): 4177-4182. RHIMI-MAHJOUBI, F.; BERNIER, M.; ARLET, G.; JEMAA, Z. B.; JOUVE, P.; HAMMAMI, A.; PHILIPPON, A. 2002. Mise em évidence de la céphalosporinase plasmidique ACC-1 dans différentes entérobactéries (Klebsiella pneumoniae, Proteus mirabilis, Salmonella) isolées dam um hospital tuisien (Sfax 19987-2000). Pathologie Biologie 50:7-11.RODRÍGUEZ, I.; BAROWNICK, W.; HELMUTH, R.; MENDOZA, C.; RODICIO, M. R.; SCHROETER, A.; GUERRA, B. 2009. Extended-spectrum β-lactamases and AmpC β-lactamases in ceftiofur-resistant Salmonella enterica isolates from food and livestock obtained in Germany during 2003–07. Journal of Antimicrobial Chemotherapy 64:301–309. ROCHE, C.; BOO, T. W.; WALSH, F.; CROWLEY, B. 2008. Detection and molecular characterisation of plasmidic AmpC β-lactamases in Klebsiella pneumoniae isolates from a tertiary-care hospital in Dublin, Ireland. Clinical Microbiology and Infection 14(6):616-8. RODRÍGUEZ, I.; BAROWNICK, W.; HELMUTH, R.; MENDOZA, M. C.; RODICIO, M. R.; SCHROETER, A.; GUERRA, B. 2009. Extended-spectrum β-lactamases and AmpC β- 83 lactamases in ceftiofur-resistant Salmonella enterica isolates from food and livestock obtained in Germany during 2003-07. Journal of Antimicrobial Chemotherapy 64:301-309. RODRÍGUEZ-MARTÍNEZ, J. M.; FERNÁNDEZ-ECHAURI, P.; FERNÁNDEZ-CUENCA, F.; ALBA, P. D.; BRIALES, A.; PASCUAL, A. 2012. Genetic characterization of an extended-spectrum AmpC cephalosporinase with hydrolysing activity against fourth-generation cephalosporins in a clinical isolate of Enterobacter aerogenes selected in vivo. Journal of Antimicrobial Chemotherapy 67(1):64-68. RODRÍGUEZ-MARTÍNEZ, J. M.; POIREL, L.; NORDMANN, P. 2009. Extended-Spectrum Cephalosporinases in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 53(5):1766-1771. RUPPÉ, E.; BIDET, P.; VERDET, C.; ARLET, G.; BINGEN, E. 2006. First Detection of the Ambler Class C 1 AmpC β-Lactamase in Citrobacter freundii by a New, Simple Double-Disk Synergy Test. Journal of Clinical Microbiology 44(11):4204–4207. RUSSOTTO, V.; CORTEGIANI, A.; GRAZIANO, G.; SAPORITO, L.; RAINERI, S. M.; MAMMINA, C.; GIARRATANO, A. 2015. Bloodstream infections in intensive care unit patients: distribuition and antibiotic resistance of bactéria. Infection and Drug Resistance 8:287–296. SAID, L. B.; JOUINI, A.; ALONSO, C. A.; KLIBI, N.; DZIRI, R.; BOUDABOUS, A.; SLAMA, K. B.; TORRES, C. 2016. Characteristics of extended-spectrum β-lactamase (ESBL)- and pAmpC β-lactamase-producing Enterobacteriaceae of water samples in Tunisia. Science of the Total Environment 550:1103–1109. SANTIAGO, G. S. 2013. Caracterização da resistência antimicrobiana e estudo fenogenotípico da produção de β-lactamases em enterobactérias associadas à etiologia da mastite bovina. Dissertação (Ciências Veterinárias). Universidade Federal Rural do Rio de Janeiro. SANTIAGO, G. S.; LASAGNO, M. C.; ALENCAR, T. A.; RIBEIRO, L.; DUBENCZUK, F. C.; OLIVA, M. S.; SOUZA, M. M. S.; COELHO, S. M. O. 2015. AmpC β-lactamase production in enterobacteria associated with bovine mastitis in Brazil. African Journal of Microbiology Research 9(8):503-508. SANTOS, J. M.; FREIRE, P.; VICENTE, M.; ARRAIANO, C. M. 1999. The stationary-phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Molecular Microbiology, 32(4):789-798. SANTOS, J. M; LOBO, M.; MATOS, A. P.A.; PEDRO, M.A.; ARRAIANO, C. M. 2002. The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Molecular Microbiology, 45 (6):1729-1740. SANZ, S.; OLARTE, C.; MARTÍNEZ-OLARTE, R.; NAVAJAS-BENITO, E. V.; ALONSO, C. A.; HIDALGO-SANZ, S.; SOMALO, S.; TORRES, C. 2015. Airborne dissemination of Escherichia coli in a dairy cattle farm and its environment. International Journal of Food Microbiology 197:40-44. SCHMIDTKE, A. J.; HANSON, N. D. 2006. Model System to Evaluate the Effect of ampD Mutations on AmpC-Mediated β-Lactam Resistance. Antimicrobial Agents and Chemotherapy 50(6):2030-2037. SCHNEIDER, I.; MARKOVSKA, R.; MARTEVA-PROEVSKA, Y.; MITOV, I.; MARKOVA, B.; BAUERNFEIND, A. 2014. Detection of CMY-99, a Novel Acquired AmpC-Type β-Lactamase, and VIM-1 in Proteus mirabilis Isolates in Bulgaria. Antimicrobial Agents and Chemotherapy 58(1): 620–621. SCHUSTER, M.; SEXTON, D. J.; DIGGLE, S.P.; GREENBERG, E.P. 2013. Acyl-homoserine lactone quorum sensing: from evolution to application. Annual Review of Microbiology 67:43-63. 84 SELLERA, F. P.; SABINO, C. P.; RIBEIRO, M. S.; GARGANO, R. G.; BENITES, N. R.; MELVILLE, P. A.; POGLIANI, F. C. 2015. In vitro photoinactivation of bovine mastitis related pathogens. Photodiagnosis and Phododynamic Therapy S1572-1000(15):30023-5. SHAHID, M.; MALIK, A.; AGRAWAL, M.; SINGHAL, S. 2004. Phenotypic detection of extended-spectrum and AmpC β-lactamases by a new spot-inoculation method and modified three-dimensional extract test: comparison with the conventional three-dimensional extract test. Journal of Antimicrobial Chemotherapy 54:684–687. SHI, W.; LI, K.; JI, Y.; JIANG, Q.; WANG, Y.; SHI, M.; MI, Z. 2013. Carbapenem and cefoxitin resistance of Klebsiella pneumoniae strains associated with porin OmpK36 loss and DHA-1 β-lactamase production. Brazilian Journal of Microbiology 44(2):435-442. SILVA, M. R. 2009. Padronização de método colorimétrico para avaliação de atividade biológica de substâncias sobre formas taquizoítas de Toxoplasma gondii, com a avaliação de triterpenos ácidos sobre o parasito. Dissertação (Biociências Aplicadas à Farmácia). Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo. SILVA, C. D. R.; SILVA Jr, M. 2015. Strategies for appropriate antibiotic use in intensive care unit review. Einstein (São Paulo), ahead of print Epub. SIMNER, P. J.; ZHANEL, G. G.; PITOUT, J.; TAILOR, F.; McCRACKEN, M.; MULVEY, M. R.; LAGACÉ-WIENS, P. R. S.; ADAM, H. J.; HOBAN, D. J.; THE CANADIAN ANTIMICROBIAL RESISTANCE ALLIANCE (CARA). 2011. Prevalence and characterization of extended-spectrum β-lactamase– and AmpC β-lactamase–producing Escherichia coli: results of the CANWARD 2007–2009 study. Diagnostic Microbiology and Infectious Disease 69: 326–334. SIU, L.K; LU, P.L.; CHEN, J.Y; LIN, F. M.; CHANG, S. C. 2003. High-Level Expression of AmpC _-Lactamase Due to Insertion of Nucleotides between _10 and _35 Promoter Sequences in Escherichia coli Clinical Isolates: Cases Not Responsive to Extended-Spectrum-Cephalosporin Treatment. Antimicrobial Agents and Chemotherapy 47(7):2138-2144. STAPLETON, P. J.; MURPHY, M.; McCALLION, N.; BRENNAN, M.; CUNNEY, R.; DREW, R. J. 2015. Outbreaks of extended spectrum beta-lactamase-producing Enterobacteriaceae in neonatal intensive care units: a systematic review. Archieves of Disease in Child Fetal Neonatal Edition pii: fetalneonatal-2015-308707. doi: 10.1136/archdischild-2015-308707. SOBIA, F..; SHAHID, M.; SINGH, A..; KHAN, H. M.; SHUKLA, I.; MALIK, A. 2011. Occurrence of blaampC in cefoxitin-resistant Escherichia coli and Klebsiella pneumoniae isolates from a North Indian tertiary care hospital. New Zealand Journal of Medical Laboratory Science 65(65):5-9. SOHN, S. G.; LEE, J.J.; SOHN, E. S.; KANG, L-W; LEE, S. H. 2008. Extension of the hydrolysis spectrum of AmpC β-lactamase of Escherichia coli due to amino acid insertion in the H-10 helix. Journal of Antimicrobial Chemotherapy 61:965-970. SONG, W.; LEE, H.; LEE, K.; JEONG, S. H.; BAE, I. K.; KIM, J.-S.; KWAK, H.- S. 2009. CTX-M-14 and CTX-M-15 enzymes are the dominant type of extended-spectrum b-lactamase in clinical isolates of Escherichia coli from Korea. Journal of Medical Microbiology 58:261–266. STEWARD, C.D.; RASHEED, J.K.; HUBERT, S. K.; BIDDLE, S. K.; RANEY, P. M.; ANDERSON, G. J.; WILLIAMS, P. P.; BRITTAIN, K. L.; OLIVER, A.; McGOWAN, J. E. Jr; TENOVER, F.C. 2001. Characterization of clinical isolates of Klebsiella pneumoniae from 19 laboratories using the National Committee dfor Clinical Laboratory Standards Extended-Spectrum B-lactamase detection methods. Journal of Clinical Microbiology 39(8):2864-2872. 85 SU, W. Y.; GOTTLIEB, T.; MERLINO, J. 2012. Optimal phenotypic testing of AmpC β-lactamases using boronic acid solutions. European Journal of Clinical Microbiology and Infectious Diseases 31:49–51. SUZUKI, S.; OHNISHI, M.; KAWANISHI, M.; AKIBA, M.; KURODA, M. 2016. Investigation of a plasmid genome database for colistinresistance gene mcr-1. Lancet Infect Dis. 16(3):284-5. THOMSON, K. S. 2001. Controversies about Extended-Spectrum and AmpC β-Lactamases. Emerging Infectious Diseases 7(2):333-336. TONDI, D.; CALÓ, S.; SHOICHET, B. K.; COSTI, M. P. 2010. Structural study of phenyl boronic acid derivatives as AmpC β-lactamase inhibitors. Bioorganic & Medicinal Chemistry Letters 20: 3416–3419. TORO-PEINADO, I.; MEDIAVILLA-GRADOLPHA, M. C.; TORMO-PALOP, N.; PALOP-BORRASA, B. 2015. Diagnostico microbiologico de lãs infecciones urinarias. Enfermedades Infecciosas y Microbiología Clinica 33 (Supl2): 32-39. TOTH, J. D. ; ACETO, H. W. ; RANKIN, S. C. ; DOU, Z. 2013. Short communication : Survey of animal-borne pathogens in the farm environment of 13 dairy operations. Journal of Dairy Science 96 : 5756-5761. TREVIÑO, M.; NAVARRO, D.; BARBEITO, G.; ARESES, P.; GARCÍA-RIESTRA, C.; REGUEIRO, B. J. 2012. Proteus mirabilis productor de AmpC plasmídica en el Área Sanitaria de Santiago de Compostela: prevalencia y caracterización molecular por rep-PCR y MALDI-TOF MS. Revista Española de Quimioterapia 25(2):122-128. VASQUES, M. R. G.; BELLO, A. R.; LAMAS, C. C.; PEREIRA, J. A. A. 2011. β-lactamase producing enterobacteria isolated from surveillance swabs of patients in a Cardiac Intensive Care Unit in Rio de Janeiro, Brazil. The Brazilian Journal of Infectious Diseases 15(1): 28-33. VERDET, C.; ARLET, G.; REDJEB, S. B.; HASSEN, A. B.; LAGRANGE, P. H.; PHILIPPON, A. 1998. Characterisation of CMY-4, an AmpC-type plasmid-mediated β-lactamase in a Tunisian clinical isolate of Proteus mirabilis. FEMS Microbiology Letters 169:235-240. VINGOPOULOU, E. L.; SIARKOU, V. L.; BATZIAS, G.; KALTSOGIANNIS, F.; SIANOU, E.; TZAVARAS, I.; KOUTINAS, A.; SARIDOMICHELAKIS, M. N.; SOFIANOU, V. L.; TZELEPI, E.; MIRIAGOU, V. 2014. Emergence and maintenance of multidrug-resistant Escherichia coli of canine origin harbouring a blaCMY-2-IncI1/ST65 plasmid and topoisomerase mutations. Journal of Antimicrobial Chemotherapy 69:2076-2080. VOETS, G.M.; PLATTEEL, T. N.; FLUIT, A. C.; SCHARRINGA, J.; SCHAPENDONK, C. M. et al. 2012. Population Distribution of β-Lactamase Conferring Resistance to Third-Generation Cephalosporins in Human Clinical Enterobacteriaceae in The Netherlands. PLoS ONE 7(12):e52102. VOETS, G. M.; FLUIT, A. C.; SCHARRINGA, J.; SCHAPENDONK, C.; van denMUNCKHOF, T.; LEVERSTEIN-van HALL, M. A.; STUART, J. C. 2013. Identical plasmid AmpC β-lactamase genes and plasmid types in E. coli isolates from patients and poultry meat in the Netherlands. International Journal of Food Microbiology 167: 359–362. WALTEMEYER, J. R. ; HENNINGS, R. ; HOOSTAL, M. J. 2014. Seasonal shifts in bacteria associated with Jersey cows on a small dairy farm and the potential for bedding choice and low levels of iodine use to inhibit mastitic pathogens. Preventive Veterinary Medicine 113(4):614-9. WOHLWEND, N.; ENDIMIANI, A.; FRANCEY, T.; PERRETEN, V. 2015. Third-generation-cephalosporin-resistant Klebsiella pneumoniae isolates from humans and companion animals in Switzerland: spread of a DHA-producing sequence type 11 clone in a veterinary setting. Antimicrobial Agents and Chemotherapy 59(5):2949-55. 86 WATERS, B. and MUSCEDERE, J. A 2015. Update on Ventilator-Associated Pneumonia: New Insights on Its Prevention, Diagnosis, and Treatment. Current Infectious Disease Report 17(8):496. WOHLWEND, N.; ENDIMIANI, A.; FRANCEY, T.; PERRETEN, V. 2015. Third generation-cephalosporin-resistant Klebsiella pneumoniae isolates from humans and companion animals in Switzerland: spread of a DHA-producing ST11 clone in the veterinary setting. Antimicrobial Agents and Chemotherapy (Online) doi:10.1128/AAC.04408-14. WU, G.; MICHAELA, J. D.; MAFURA, M. T. et al. 2013. Comparative Analysis of ESBL-Positive Escherichia coli Isolates from Animals and Humans from the UK, The Netherlands and Germany. PLoS ONE 8(9): e75392. doi:10.1371/journal.pone.0075392. YAGI, T.; WACHINO, J.; KUROKAWA, H.; SUZUKI, S.; YAMANE, K.; DOI, Y.; SHIBATA, N.; KATO, H.; SHIBAYAMA, K.; ARAKAWA, Y. 2005. Practical methods using boronic acid compounds for identification of class C β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Journal of Clinical Microbiology 43:2551-2558. YANG, W.; GAO, X.; WANG, B. 2003. Boronic Acid Compounds as Potential Pharmaceutical Agents. Medicinal Research Reviews 23(3): 346-368. YONG, D.; PARK, R.; YUM, J. H.; LEE, K.; CHOI, E. C.; CHONG, Y. 2002. Further modification of the Hodge test to screen AmpC β-lactamase (CMY-1)-producing strains of Escherichia coli and Klebsiella pneumoniae. Journal of Microbiological Methods 51:407– 410. YOON, Y. K.; CHEONG, H. W.; PAI, H.; ROH, K. H.; KIM, J. Y.; PARK, D. W.; SOHN, J. W.; LEE, S. E.; CHUN, B. C.; SIM, H. S.; KIM, M. J. 2011. Molecular analysis of a prolonged spread of Klebsiella pneumoniae co-producing DHA-1 and SHV-12 β-lactamases. The Journal of Microbiology 49(3): 363-368. YUSUF, I.; QABLI, S. M.; BALARABE, AL.; KABIR, A.; KABIR, M. R.; OLIVIA, E. S.; ABBAS, R. 2015. Detection of colistin resistant Klebsiella pneumoniae co-producing extended spectrum, AmpC β-lactamase and carbapenemase in a tertiary hospital in Nigeria. Antimicrobial Resistance and Infection Control 4(Suppl 1):P129. ZHANG, X.; LOU, D.; XU, Y.; SHANG, Y.; LI, D.; HUANG, X.; LI, Y.; HU, L.; WANG, L.; YU, F. 2013. First identification of coexistence of blaNDM-1 and blaCMY-42 among Escherichia coli ST167 clinical isolates. BMC Microbiology 13:282. ZENG, X.; LIN, J. 2013. β-lactamase induction and cell wall metabolism in Gram-negative bacteria. Frontiers in Microbiology 4.https://tede.ufrrj.br/retrieve/9546/2017%20-%20Gabrielli%20Stefaninni%20Santiago.pdf.jpghttps://tede.ufrrj.br/retrieve/15594/2017%20-%20Gabrielli%20Stefaninni%20Santiago.pdf.jpghttps://tede.ufrrj.br/retrieve/21896/2017%20-%20Gabrielli%20Stefaninni%20Santiago.pdf.jpghttps://tede.ufrrj.br/retrieve/28374/2017%20-%20Gabrielli%20Stefaninni%20Santiago.pdf.jpghttps://tede.ufrrj.br/retrieve/34788/2017%20-%20Gabrielli%20Stefaninni%20Santiago.pdf.jpghttps://tede.ufrrj.br/retrieve/41184/2017%20-%20Gabrielli%20Stefaninni%20Santiago.pdf.jpghttps://tede.ufrrj.br/retrieve/47586/2017%20-%20Gabrielli%20Stefaninni%20Santiago.pdf.jpghttps://tede.ufrrj.br/retrieve/53066/2017%20-%20Gabrielli%20Stefaninni%20Santiago.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/2646Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2019-04-12T15:05:49Z No. of bitstreams: 1 2017 - Gabrielli Stefaninni Santiago.pdf: 2547298 bytes, checksum: 5ed0a707d2a9c380f78038ba7a02152d (MD5)Made available in DSpace on 2019-04-12T15:05:49Z (GMT). No. of bitstreams: 1 2017 - Gabrielli Stefaninni Santiago.pdf: 2547298 bytes, checksum: 5ed0a707d2a9c380f78038ba7a02152d (MD5) Previous issue date: 2017-02-21info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2017 - Gabrielli Stefaninni Santiago.pdf.jpgGenerated Thumbnailimage/jpeg2507https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9732/1/2017%20-%20Gabrielli%20Stefaninni%20Santiago.pdf.jpga7e3342ad90ff2c90786aa2dc8ee20acMD51TEXT2017 - Gabrielli Stefaninni Santiago.pdf.txtExtracted Texttext/plain283665https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9732/2/2017%20-%20Gabrielli%20Stefaninni%20Santiago.pdf.txtcade996f3d84beb557a8306dfd338c5bMD52ORIGINAL2017 - Gabrielli Stefaninni Santiago.pdfGabrielli Stefaninni Santiagoapplication/pdf2547298https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9732/3/2017%20-%20Gabrielli%20Stefaninni%20Santiago.pdf5ed0a707d2a9c380f78038ba7a02152dMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9732/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/97322023-12-21 15:43:16.536oai:rima.ufrrj.br:20.500.14407/9732Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:43:16Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Compreensão de mecanismos fenotípicos e genotípicos relacionados à produção de β-lactamases do tipo AmpC em Enterobacteriaceae |
dc.title.alternative.eng.fl_str_mv |
Comprehension of phenotypic and genotypic mechanisms related to AmpC β-lactamase-producing Enterobacteriaceae |
title |
Compreensão de mecanismos fenotípicos e genotípicos relacionados à produção de β-lactamases do tipo AmpC em Enterobacteriaceae |
spellingShingle |
Compreensão de mecanismos fenotípicos e genotípicos relacionados à produção de β-lactamases do tipo AmpC em Enterobacteriaceae Santiago, Gabrielli Stefaninni ESAC conjugação pAmpC ponto isoelétrico promotor de AmpC AmpC promoter conjugation isoelectric point Microbiologia |
title_short |
Compreensão de mecanismos fenotípicos e genotípicos relacionados à produção de β-lactamases do tipo AmpC em Enterobacteriaceae |
title_full |
Compreensão de mecanismos fenotípicos e genotípicos relacionados à produção de β-lactamases do tipo AmpC em Enterobacteriaceae |
title_fullStr |
Compreensão de mecanismos fenotípicos e genotípicos relacionados à produção de β-lactamases do tipo AmpC em Enterobacteriaceae |
title_full_unstemmed |
Compreensão de mecanismos fenotípicos e genotípicos relacionados à produção de β-lactamases do tipo AmpC em Enterobacteriaceae |
title_sort |
Compreensão de mecanismos fenotípicos e genotípicos relacionados à produção de β-lactamases do tipo AmpC em Enterobacteriaceae |
author |
Santiago, Gabrielli Stefaninni |
author_facet |
Santiago, Gabrielli Stefaninni |
author_role |
author |
dc.contributor.author.fl_str_mv |
Santiago, Gabrielli Stefaninni |
dc.contributor.advisor1.fl_str_mv |
Coelho, Shana de Mattos de Oliveira |
dc.contributor.advisor1ID.fl_str_mv |
05466821705 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3212438357088121 |
dc.contributor.advisor-co1.fl_str_mv |
Ferreira, Helena Maria Neto |
dc.contributor.advisor-co1ID.fl_str_mv |
6054634 (Cartão Cidadão, Portugal) |
dc.contributor.advisor-co2.fl_str_mv |
Coelho, Irene da Silva |
dc.contributor.advisor-co2ID.fl_str_mv |
04435579693 |
dc.contributor.referee1.fl_str_mv |
Souza, Miliane Moreira Soares de |
dc.contributor.referee2.fl_str_mv |
Bonelli, Raquel |
dc.contributor.referee3.fl_str_mv |
Pribul, Bruno Rocha |
dc.contributor.referee4.fl_str_mv |
Rossi, Ciro César |
dc.contributor.authorID.fl_str_mv |
33241070832 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/4144961008372890 |
contributor_str_mv |
Coelho, Shana de Mattos de Oliveira Ferreira, Helena Maria Neto Coelho, Irene da Silva Souza, Miliane Moreira Soares de Bonelli, Raquel Pribul, Bruno Rocha Rossi, Ciro César |
dc.subject.por.fl_str_mv |
ESAC conjugação pAmpC ponto isoelétrico promotor de AmpC |
topic |
ESAC conjugação pAmpC ponto isoelétrico promotor de AmpC AmpC promoter conjugation isoelectric point Microbiologia |
dc.subject.eng.fl_str_mv |
AmpC promoter conjugation isoelectric point |
dc.subject.cnpq.fl_str_mv |
Microbiologia |
description |
A produção de β-lactamase tipo AmpC em Enterobacteriaceae é relatada em todo o mundo e tem grande importância clínica e epidemiológica devido à restrição terapêutica, dificuldade de detecção, disseminação de AmpC plasmidiais e mutação do gene natural ocasionando multirresistência aos antimicrobianos, no caso de produtores de ESAC (AmpC de Espectro Estendido). Neste estudo, foi realizado um ensaio inicial de pesquisa da produção de AmpC considerando dois grupos de enterobactérias, suspeitamente produtoras da enzima, 18 isoladas de amostras clínicas humanas (FFUP - Portugal) e 20 de leite mastítico bovino (UFRRJ - Brasil), respectivamente. Posteriormente, 238 cepas de Escherichia coli, provenientes de fazendas leiteiras brasileiras, foram investigadas quanto à produção de AmpC segundo as metodologias fenotípicas e bioquímicas previamente desenvolvidas, além da pesquisa genotípica por PCR (ACC, AmpC universal, ampR, CIT, CMY, DHA, EBC, MOX e FOX). O sequenciamento do promotor e do gene inteiro ampC foi realizado em 12 cepas para avaliar mutações referentes à super produção da enzima e produção de ESAC. Todas as cepas de origem humana se mostraram fenotipicamente produtoras de AmpC sendo confirmadas em 72,2% delas pelo teste de inibição com ácido borônico (AB) e pI 9 em 44,5%. A técnica de PCR revelou: AmpC universal em 83,4% das cepas, CIT em 66,7%, CMY em 16,7% e DHA em 55,6%. Apesar de 61,1% destas cepas apresentarem suspeita de ampC plasmidial, apenas em 38,9% foi confirmada a presença do elemento móvel. Não foi possível observar a inibição completa pela cloxacilina nem nas doadoras nem nas receptoras. Dentre os 20 cepas de enterobactérias de origem animal, apenas uma cepa de Proteus mirabilis demonstrou características fenotípicas de produtora de AmpC cuja transferência do gene foi confirmada por conjugação. Possivelmente, as demais cepas tenham perdido o plasmídeo de resistência durante o transporte à FFUP, o que justificaria a suspeita inicial de produção da enzima. Dentre as 238 cepas de E. coli, 11,76% apresentou diminuída suscetibilidade à cefoxitina, característica de pAmpC ou super produtoras de AmpC ou ESAC. Não houve confirmação da produção de AmpC por inibição com cloxacilina, por AB nem pela determinação de MIC. Foi possível confirmar a ausência de pAmpC por PCR e também por conjugação. Frente a estes resultados, 2 cepas suspeitas de super produzirem a enzima e 4 suspeitos de produzirem ESAC foram analisadas quanto à mutações na região promotora e verificou-se que 3 cepas (2 suspeitos) possuem mutações na região promotora (-1, +58) sugerindo o mecanismo de super produção de AmpC. O sequenciamento do gene inteiro demonstrou mutações responsáveis pelas variações de aminoácidos nas regiões do Ω loop (191, 209) e R2 (298, 300, 304). Todas as cepas analisadas apresentaram variações nas regiões responsáveis pela maior flexibilidade da enzima propiciando a hidrólise de outros β-lactâmicos, como o cefepime. Desta forma, o estudo permitiu um importante levantamento de dados epidemiológicos sobre os genes de resistência em enterobacterias circulantes no hospital português estudado e detectou-se, pela primeira vez, mutações sugestivas de super produção de AmpC e produção de ESAC em E. coli provenientes de amostras circulantes no rebanho bovino brasileiro |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-02-21 |
dc.date.accessioned.fl_str_mv |
2023-12-21T18:43:16Z |
dc.date.available.fl_str_mv |
2023-12-21T18:43:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTIAGO, Gabrielli Stefaninni. Compreensão de mecanismos fenotípicos e genotípicos relacionados à produção de β-lactamases do tipo AmpC em Enterobacteriaceae. 2017. 90 f. Tese (Programa de Pós-Graduação em Ciências Veterinárias). Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2017. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/9732 |
identifier_str_mv |
SANTIAGO, Gabrielli Stefaninni. Compreensão de mecanismos fenotípicos e genotípicos relacionados à produção de β-lactamases do tipo AmpC em Enterobacteriaceae. 2017. 90 f. Tese (Programa de Pós-Graduação em Ciências Veterinárias). Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2017. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/9732 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
ABRAHAM, E. P. and CHAIN, E. 1940. An enzyme from bacteria able to destroy penicillin. Nature 146:837. ADLER, H.; FENNER, L.; WALTER, P.; HOHLER, D.; SCHULTHEISS, E.; OEZCAN, S.; FREI, R. Plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes: prevalence at a Swiss university hospital and occurrence of the different molecular types in Switzerland. Journal of Antimicrobial Chemotherapy 61(2):457-8. AL-BAYSSARI, C.; DABOUSSI, F.; HAMZE, M.; ROLAIN, J.M. 2015. Detection of expanded-spectrum β-lactamases in Gram-negative bacteria in the 21st century. Expert Review of Anti-Infective Therapy 13(9):1139-58. ALBRECHTOVA, K.; PAPOUSEK, I.; NYS, H.; PAULY, M.; ANOH, E.; MOSSOUN, A.; DOLEJKA, M.; MASARIKOVA, M.; METZGER, S.; COUACY-HYMANN, E.; AKOUA-KOFFI, C.; WITTIG, R. M.; KLIMES, J.; CIZEK, A.; LEENDERTZ, F. H.; LITERAK, I 2014. Low Rates of Antimicrobial-Resistant Enterobacteriaceae in Wildlife in Tai National Park, Coˆte d’Ivoire, Surrounded by Villages with High Prevalence of Multiresistant ESBL-Producing Escherichia coli in People and Domestic Animals. PLOS ONE | DOI:10.1371/journal.pone.0113548. ALTSCHUL, S.F.; MADDEN, T.L.; SCHAFFER, A.A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D.J. 1997.Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research 25:3389-3402. ALVAREZ, M.; TRAN, J. H.; CHOW, N.; JACOBY, G. A. 2004. Epidemiology of Conjugative Plasmid-Mediated AmpC β-Lactamases in the United States. Antimicrobial Agents and Chemotherapy 48(2):533-537. AM, A-E.; MOHAMED, M.E.; AWADALLAH, M. A. 2009. Potential airborne microbial hazards for workers on dairy and beef cattle farms in Egypt. Veterinaria Italiana 45(2):275-285. AMADOR, P. P.; FERNANDES, R. M.; PRUDÊNCIO, M. C.; BARRETO, M. P.; DUARTE, I. M. 2015. Antibiotic resistance in wastewater: Ocorrence and fate of Enterobacteriaceae producers of Class A and Class C β-lactamses. Journal of Environmental Science and Health 50:26-39. AMBLER, R. P. 1980. The structure of β-lactamases. Philosophical Transactions of the Royal Society B: Biological 289(1036):321-331. AMMENOUCHE, N.; DUPONT, H.; MAMMERI, H. 2014. Characterization of a novel AmpC β-lactamase produced by a carbapenem-resistant Cedecea davisae clinical isolate. Antimicrobial Agents and Chemotherapy 58(11):6942-5. ANDRADE, L. N.; NOVAIS, A.; STEGANI, L.; FERREIRA, J.; RIBEIRO, T.; DARINI, A. L.; PEIXE, L. 2015. High diversity of population structure, virulence factors and mobile genetic elements in CTX-M-, SHV- and CMY-producing extraintestinal Escherichia coli isolates from large hospitals in Brazil. ECCMID, Copenhagen, Dinamarca. ANVISA. Agência Nacional de Vigilância Sanitária. Nota Técnica Nº 01/2013. Medidas de Prevenção e Controle de Infecções por Enterobactérias Multirresistentes. Disponível em: <http://portal.anvisa.gov.br/wps/wcm/connect/ea4d4c004f4ec3b98925d9d785749fbd/Microsoft+Word++NOTA+T%C3%89CNICA+ENTEROBACTERIAS+17+04+2013(1).pdf?MOD=AJPERES> Acessado em 20/06/13. ARAGÓN, L.M.; MIRELIS, B.; MIRÓ, MATA, C.; GÓMEZ, C.; RIVERA, A.; COLL, P.; NAVARRO, F. 2008. Increase in β-lactam-resistant Proteus mirabilis strains due to CTX-M- 71 and CMY-type as well as new VEB- and inhibitor-resistant TEM-type β-lactamases. Journal of Antimicrobial Chemotherapy 61:1029–1032. AZIMI, L.; ERAJIYAN, G.; TALEBI, M.; OWILIA, P.; BINA, M.; SHOJAIE, A.; LARI, A. R. 2015. Phenotypic and Molecular Characterization of Plasmid Mediated AmpC among Clinical Isolates of Klebsiella pneumoniae Isolated from Different Hospitals in Tehran. Journal of Clinical and Diagnostic Research 9(4): DC01-DC03. BALAKRISHNAN, S.; ANTONY, P. X.; MUKHOPADHYAY, H. K.; PILLAI, R. M.; THANISLASS, J.; PADMANABAN, V.; SRINIVAS, M. V. 2016. Genetic characterization of fluoroquinolone-resistant Escherichia coli associated with bovine mastitis in India. Veterinary World 9(7):705-9. BARNAUD, G.; LABIA, R.; RASKINE, L.; PORS, M. J. S.; PHILIPPON, A.; ARLET, G. 2001. Extension of resistance to cefepime and cefpirome associated to a six amino acid deletion in the H-10 helix of the cephalosporinase of an Enterobacter cloacae clinical isolate. FEMS Microbiology Letters 195:185-190. BARLOW, M. ; HALL, B.G. 2002. Origin and evolution of the AmpC β-lactamases of Citrobacter freundii. Antimicrobial Agents and Chemotherapy 46(5):1190-1198. BAUERNFEIND, A.; CHONG, Y.; SCHWEIGHART, S. 1989. Extended broad spectrum β-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 17(5):316-321. BAUERNFEIND, A.; STEMPLINGER, I.; JUNGWIRTH, T.; ERNST, S.; CASELLAS, J. M. 1996. Sequences of β-lactamase genes enconding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other beta-lactamases. Antimicrobial Agents and Chemotherapy 40(2):509-513. BERRAZEG M, JEANNOT K, NTSOGO ENGUÉNÉ VY, BROUTIN I, LOEFFERT S, FOURNIER D, PLÉSIAT P. 2015. Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrobial Agents and Chemotherapy 59:6248–6255. BIANCHINI, V.; BORELLA, L.; BENEDETTI, V.; PARISI, A.; MICCOLUPO, A.; SANTORO, E.; RECORDATI, C.; LUINIA, M. 2014. Prevalence in Bulk Tank Milk and Epidemiology of Campylobacter jejuni in Dairy Herds in Northern Italy. Applied and Environmental Microbiology 80(6):1832–1837. BLACK, J. A.; MOLAND, E. S.; THOMSON, K. S. 2005. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. Journal of Clinical Microbiology 43(7):3110-3113. BOBROWSKI, M. .; MATTHEW, G.; BARTH, P. T.; DATTA, N.; GRINTER, N. J.; JACOB, A. E.; KONTOMICHALOU, P.; DALE, J. W.; SMITH, J. T. 1976. Plasmid-Determined β-Lactamase Indistinguishable from the Chromosomal β-Lactamase of Escherichia coli. Journal of Bacteriology 125(1):149-157. BOGAERTS, P.; HUANG, T.-D.; BOUCHAHROUF, W.; BAURAING, C.; BERHIN, C.; GARCH, F. E.; GLUPCZYNSKI, Y.; COMPATH STUDY GROUP. 2015. Characterization of ESBL- and AmpC-Producing Enterobacteriaceae from Diseased Companion Animals in Europe. Microbial Drug Resistance 21(6):643-50. BÖRJESSON, S.; EGERVÄM, M.; LINDBLAD, M.; ENGLUND, S. 2013. High occurrence of extended-spectrum β-lactamase (ESBL) and transferable AmpC β-lactamase producing Escherichia coli on domestic chicken meat in Sweden. Applied Environmental Microbiology 79(7): 2463–2466. BORTOLAIA, V., HANSEN, K. H.; NIELSEN, C. A.; FRITSCHE, T. R.; GUARDABASSI, L. 2014. High diversity of plasmids harbouring blaCMY-2 among clinical Escherichia coli 72 isolates from humans and companion animals in the upper Midwestern USA. Journal of Antimicrobial Chemotherapy 69: 1492–1496. BOTELHO, L. A. B.; KRAYCHETE, G. B.; COSTA E SILVA, J. L.; REGIS, D. V. V.; PICÃO, R. C.; MOREIRA, B. M.; BONELLI, R. R. 2015. Widespread distribution of CTX-M and plasmid-mediated AmpC β-lactamases in Escherichia coli from Brazilian chicken meat. Memórias do Instituto Oswaldo Cruz 110(2): 249-254. BRADFORD, P. A.; URBAN, C.; MARIANO, N.; PROJAN, S. J.; RAHAL, J. J.; BUSH, K. 1997. Imipenem Resistance in Klebsiella pneumoniae Is Associated with the Combination of ACT-1, a Plasmid-Mediated AmpC β-Lactamase, and the Loss of an Outer Membrane Protein. Antimicrobial Agents and Chemotherpy 41(3):563-569. BRET, L.; CHANAL-CLARIS, C.; SIROT, D.; CHAIBI, E. B.; LABIA, R.; SIROT, J. 1998. Chromosomally Encoded AmpC-Type β-Lactamase in a Clinical Isolate of Proteus mirabilis. Antimicrobial Agents and Chemotherapy 42(5):1110-1114. BRINÃS, L.; ZARAZAGA, M.; SAENZ, Y.; RUIZ-LARREA, F.; TORRES, C. 2002. β-Lactamases in Ampicillin-Resistant Escherichia coli Isolates from Foods, Humans, and Healthy Animals. Antimicrobial Agents and Chemotherapy 46(10):3156-3163. BROWN, J. R. e LIVESAY, D. R. 2015. Flexibility correlation between active site regions is conserved across four AmpC β-lactamases enzymes. PLoS ONE 10(5): e0125832. BUSH, K.; JACOBY, G.A.; MEDEIROS, A.A. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrobial Agents and Chemotherapy 39(6):1211-1233. BUSH, K.; JACOBY, G.A. 2010. Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy 54(3):969-976. CAINE, L-A.; NWODO, U. U.; OKOH, A. I.; NDIP, R. N.; GREEN, E. 2014. Occurrence of Virulence Genes Associated with Diarrheagenic Escherichia coliIsolated from Raw Cow’s Milk from Two Commercial Dairy Farms in the Eastern Cape Province, South Africa. International Journal of Environmental Research and Public Health 11(11): 11950–11963. CANTARELLI, V. V.; INAMINE, R.; BRODT, T. C. Z.; SECCHI, C.; CAVALCANTE, B. C.; PEREIRA, F. S. 2007. Utility of the Ceftazidime-Imipenem Antagonism Test (CIAT) to Detect and Confirm the Presence of Inducible AmpC β-Lactamases Among Enterobacteriaceae. The Brazilian Journal of Infectious Diseases 11(2):237-239. CALTAGIRONE, M.; BITAR, I.; PIAZZA, A.; SPALLA, M.; NUCLEO, E.; NAVARA, A.; MIGLIAVACCA, R. 2015. Detection of na IncA/C plasmid enconding VIM-4 and CMY-4 β-lactamases in Klebsiella oxytoca and Citrobacter koseri from na impatient cardiac rehabilitation unit. New Microbiologica 38: 387-392. CAROFF, N.; ESPAZE, E.; GAUTREAU, D.; RICHET, H.; REYNAUD, A. 2000. Analysis of the effects of -42 and -32 ampC promoter mutations in clinical isolates of Escherichia coli hyperproducing AmpC. Journal of Antimicrobial Chemotherapy 45:783-788. CARVALHO, L.A. Embrapa gado de leite: sistema de produção. Disponível na internet. www.cnpgl.embrapa.br/sistema/cerrado.html. Acesso em 16 set. 2009. CASPERMEYER, J. 2016. MEGA Evolutionary Software re-Engineered to Handle Today’s Big Data Demands. Mol. Biol. Evol. 33 (7): 1887. CEJAS, D.; CANIFIA, L. F.; QUINTEROS, M.; GIOVANAKIS, M.; VAY, C.; LASCIALANDARE, S.; MUTTI, D.; PAGNIEZ, G.; ALMUZARA, M.; GUTKIND, G.; RADICE, M. 2012. Plasmid-Encoded AmpC (pAmpC) in Enterobacteriaceae: epidemiology of microorganisms and resistance markers. Revista Argentina de Microbiología 44: 182-186. CIORBA, V.; ODONE, A.; VERONESI, L.; PASQUARELLA, C.; SIGNORELLI, C. 2015. Antibiotic resistance as a major public health concern: epidemiology and economic impact. Annali di Igiene: medicina preventiva e di comunità. 27(3):562-579. 73 CLATWORTHY, A. E.; PIERSON, E.; HUNG, D. T. Targeting virulence: a new paradigm for antimicrobial therapy. Nature Chemical Biology 3(9):541-8. CLSI 2014 Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informal Supplement. CLSI document M100-S22. Clinical and Laboratory Standards Institute,Wayne, PA. CLSI 2013. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Second Informational Suplemment – fourth edition. CLSI document VET01-A4. Clinical and Laboratory Standards Institute,Wayne, PA. CONCEIÇÃO, T.; FARIA, N.; LITO, L.; CRISTINO, J. M.; SALGADO, M. J.; DUARTE, A. 2004. Diversity of chromosomal AmpC β-lactamases from Enterobacter cloacae isolates in a Portuguese hospital. FEMS Microbiology Letters 230:197-202. CORVEC, S.; CAROFF, N.; ESPAZE, E.; MARRAILLAC, J.; REYNAUD, A. 2002. -11 Mutation in the ampC Promoter Increasing Resistance to β-Lactams in a Clinical Escherichia coli Strain. Antimicrobial Agents and Chemotherapy 46(10):3265-3267. COTTELL, J. L.; SAW, H. T. H.; WEBBER, M. A.; PIDDOCK, L. J. V. 2014. Functional genomics to identify the factors contributing to successful persistence and global spread of an antibiotic resistance plasmid. BMC Microbiology 14:1-8. COUDRON, P. E. 2005. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. Journal of Clinical Microbiology 43(8):4163–4167. DAEF, E. A. e ELSHERBINY, N. M. 2012. Clinical and Microbiological Profile of Nosocomial Infections in Adult Intensive Care Units at Assiut University Hospitals, Egypt. Journal of American Science 8(12):1239-1250. DAHYOT, S.; BROUTIN, I.; CHAMPS, C.; GUILLON, H.; MAMMERI, H. 2013. Contribution of asparagine 346 residue to the carbapenemase activity of CMY-2 b-lactamase. FEMS Microbiology Letters 345:147–153. DALLENNE, C.; COSTA, A.; DECRE, D.; FAVIER, C.; ARLET, G. 2010. Developmento of a set of multiplex PCR assays for the detection of genes enconding important β-lactamases in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy 65:490-495. D’ANDREA, M. M.; NUCLEO, , E.; LUZZARO, F.; GIANI, T.; MIGLIAVACCA, R.; VAILATI, F.; KROUMOVA, V.; PAGANI, L.; ROSSOLINI, G. M. 2006. CMY-16, a Novel Acquired AmpC-Type β-Lactamase of the CMY/LAT Lineage in Multifocal Monophyletic Isolates of Proteus mirabilis from Northern Italy. Antimicrobial Agents and Chemotherapy 50(2):618–624. da SILVA DIAS, R.C.; BORGES-NETO, A. A.; D’ALMEIDA FERRAIUOLI, G. I.; de-OLIVEIRA, M. P.; RILEY, L. W.; MOREIRA, B.M. 2008. Prevalence of AmpC and other β-lactamases in enterobacteria at a large urban university hospital in Brazil. Diagnostic Microbiology and Infectious Diseases 60(1):79-87. DAVID, L. e PATERSON, M. D. 2006. Resistance in Gram-Negative Bacteria: Enterobacteriaceae. The American Journal of Medicine 119(6A):S20–S28. DIAS, R. C. S.; BORGES-NETO, A. A.; FERRAIUOLI, G. I. D.; de-OLIVEIRA, M. P.; RILEY, L. W.; MOREIRA, B. M. 2008. Prevalence of AmpC and other β-lactamases in enterobacteria at a large urban university hospital in Brazil. Diagnostic Microbiology and Infectious Disease 60(1): 79–87. DIAS, D. J. A. 2009. Estudo dos principais mecanismos de resistência aos antibióticos β-lactâmicos em bactérias patogênicas de Gram negativo. Dissertação (Genética Molecular e Biomedicina). Universidade Nova de Lisboa. 74 DIERIKX, C. M.; van der GOOT, J. A.;, SMITH, H. E.; KANT, A.; MEVIUS, D.J. 2013. Presence of ESBL/AmpC-producing Escherichia coli in the broiler production pyramid: a descriptive study. PLoS One 8(11):e79005. DING, H.; YANG, Y.; LU, Q.; WANG, Y.; CHEN, Y.; DENG, L.; WANG, A.; DENG, Q.; ZHANG, H.; WANG, C.; LIU, L.; XU, X.; WANG, L., SHEN, X. 2008. The prevalence of plasmid-mediated AmpC β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from five children's hospitals in China. European Journal of Clinical Microbiology and Infectious Diseases 27(10):915-21. DEUTSCH R. F.; ROSS, J. W.; NAILOR, M. D. 2015. Carbapenem-Resistant Enterobacteriaceae: A Case Series of Infections at Hartford Hospital. Connecticut Medicine 79 (5):269-275. DUNNE, W. M. Jr e HARDIN,D. J. 2005. Use of several inducer and substrate antibiotic combinations in a disk approximation assay format to screen for AmpC induction in patient isolates of Pseudomonas aeruginosa, Enterobacter spp., Citrobacter spp., and Serratia spp. Journal of Clinical Microbiology 43(12):5945-9. DUSE, A.; WALLER, K. P.; EMANUELSON, U.; UNNERSTAD, H. E.; PERSSON, Y.; BENGTOSSON, B. 2015. Risk factors for antimicrobial resistance in fecal Escherichia coli from preweaned dairy calves. Journal of Dairy Science 98 :500–516. EGERVÄRN, M.; BÖRJESSON, S.; BYFORS, S.; FINN, M.; KAIPE, C; ENGLUND, S.; LINDBLAD, M. 2014. Escherichia coli with extended-spectrum β-lactamases or transferable AmpC β-lactamases and Salmonella on meat imported into Sweden. International Journal of Food Microbiology 171:8-14. FENG, Y.; YANG, P.; XIE, Y.; WANG, X.; McNALLY, A.; ZONG, Z. 2015. Escherichia coli of sequence type 3835 carrying bla NDM-1, bla CTX-M-15, bla CMY-42 and bla SHV-12. Scientific Report 5:12275. FÉRIA, C.; FERREIRA, E.; CORREIA, J. D.; GONÇALVES, J.; CANIÇA, M. 2002. Patterns and mechanisms of resistance to β-lactams and β-lactamase inhibitors in uropathogenic Escherichia coli isolated from dogs in Portugal. Journal of Antimicrobial Chemotherapy 49:77-85. FERNANDES, M. R.; McCULLOCH, J.A.; VIANELLO, M. A.; MOURA, Q.; PÉREZ-CHAPARRO, P. J.; ESPOSITO, F.; SARTORI, L.; DROPA, M.; MATTÉ, M. H.; LIRA, D. P. A.; MAMIZUKA, E. M.; LINCOPAN, N. 2016. First Report of the Globally Disseminated IncX4 Plasmid Carrying the mcr-1 Gene in a Colistin-Resistant Escherichia coli ST101 isolated from a Human Infection in Brazil. Antimicrobial Agents and Chemotherapy doi:10.1128/AAC.01325-16. FERREIRA, M. R. A.; FREITAS FILHO, E. G.; PINTO, J. F. N.; DIAS, M.; MOREIRA, C. N. 2014. Isolation, prevalence, and risk factors for infection by shiga toxin-producing Escherichia coli (STEC) in dairy cattle. Tropical Animal Health and Prodution.46(4):635-9. FLEMING, A. 1929. On the antibacterial action of culture of Penicillium, with special reference to their use in the isolation of B. influenza. British Journal of Experimental Pathology 10:226-236. FLORES-MIRELES, A. L.; WALKER, J. N.; CAPARON, M.; HULTGREN, S. J. 2015. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology 13(5): 269-284. FREITAS, F.; MACHADO, E.; RIBEIRO, T. G.; NOVAIS, A.; PEIXE, L. 2014. Long-term dissemination of acquired AmpC β-lactamases among Klebsiella spp. and Escherichia coli in Portuguese clinical settings. European Journal of Clinical Microbiology and Infectious Diseases 33:551–558. 75 GARCÍA-COBOS, S.; KOCK, R.; MELLMANN, A.; FRENZEL, J.; FRIEDRICH, A. W.; ROSSEN, J. W. A. 2015. Molecular Typing of Enterobacteriaceae from Pig Holdings in North-Western Germany Reveals Extended- Spectrum and AmpC β-Lactamases Producing but no Carbapenem Resistant Ones. PLoS One 10(7):e0134533. GASPAR, G. G.; BELLISSIMO-RODRIGUES, F.; ANDRADE, L. N.; DARINI, A. L.; MARTINEZ, R. 2015. Induction and nosocomial dissemination of carbapenem and polymyxin-resistant Klebsiella pneumoniae. Revista da Sociedade Brasileira de Medicina Tropical 48(4):483-487. GHAROUT-SAIT, A.; TOUATI, A.; GUILLARD, T.; BRASME, L.; de CHAMPS, C. 2015. Molecular characterization and epidemiology of cefoxitin resistance among Enterobacteriaceae lacking inducible chromosomal ampC genes from hospitalized and non-hospitalized patients in Algeria: description of new sequence type in Klebsiella pneumoniae isolates. The Brazilian Journal of Infectious Diseases 19(2):187-95. GHATAK, S.; SINGHA, A.; SEM, A.; GUHA, C.; AHUJA, A.; BHATTACHARJEE,U.; DAS, S.; PRADHAN, N. R.; PURO, K.; JANA, C.; DEY, T. K.; PRASHANTKUMAR, K. L.; DAS, A.; SHAKUNTALA, I.; BISWAS, U.; JANA, P. S. 2013. Detection of New Delhi Metallo-β-Lactamase and Extended-Spectrum β-Lactamase Genes in Escherichia coli Isolated from Mastitic Milk Samples. Transboundary and Emerging Diseases 60(5):385–389. GIACOMETTI, F.; BONILAURI, P.; SERRAINO, A.; PELI, A.; AMATISTE, S.; ARRIGONI, N.; BIANCHI, M.; BILEI, S.; CASCONE, G.; COMIN, D.; DAMINELLI, P.; DECASTELLI, L.; FUSTINI, M.; MION, R.; PETRUZZELLI, A.; ROSMINI, R.; RUGNA, G.; TAMBA, M.; TONUCCI, F.; BOLZONI, G. 2013. Four-Year Monitoring of Foodborne Pathogens in Raw Milk Sold by Vending Machines in Italy. Journal of Food Protection 11:1824-1993. GOLDSTEIN, F. W. 2002. Cephalosporinase induction and cephalosporin resistance: a longstanding misinterpretation. Clinical Microbiology and Infection 8(12):823-5. GONÇALVES, D. F. M. 2008. β-lactamases de espectro alargado em Enterobacteriaceae da flora fecal de idosos. Dissertação. Universidade de Aveiro. GONÇALVES, D. F. M. 2013. Escherichia coli e Klebsiella pneumoniae, das ESBL’s às Carbapenemases, colonização fecal e infeção – Influência da população idosa numa região do Norte de Portugal. Tese. Universidade do Porto. GUÉRIN, F.; ISNARD, C.; CATTOIR, V.; GLARD, J.C. Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex. Antimicrobial Agents and Chemotherapy 59(12):7753-7761. HAENNI, M.; CHÂTRE, P.; MADEC, J. 2014. Emergence of Escherichia coli producing extended-spectrum AmpC β-lactamases (ESAC) in animals. Front Microbiol. 5. HALDORSEN, B.; AASNAES, B.; DAHL, K. H.; HANSSEN, A.-M.; SIMONSEN, G. S.; WALSH, T. R.; SUNDSFJORD, A.; LUNDBLAD, E. W. 2008. The AmpC phenotype in Norwegian clinical isolates of Escherichia coli is associated with an acquired ISEcp1-like ampC element or hyperproduction of the endogenous AmpC. Journal of Antimicrobial Chemotherapy 62:694–702. HALL, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95-98. HAMMERUM, A. M.; LARSEN, J.; ANDERSEN, V. D.; LESTER, C. H.; SKYTTE, T. S. S.; HANSEN, F.; OLSEN, S. S.; MORDHORST, H.; SKOV, R. L.; AARESTRUP, F. M.; AGERS, Y. 2014. Characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third- or fourth-generation cephalosporins. Antimicrobial Agents and Chemotherapy 7: 1-8. 76 HANSON, N.D. e SANDERS, C.C. 1999. Regulation of Inducible AmpC β-lactamase Expression Among Enterobacteriaceae. Current Pharmaceutical Design 5:881-894. HERNÁNDEZ, J. R.; CONEJO, M. C.; PASCUAL, A. 2010. Actividad comparativa del ertapenem frente a Klebsiella pneumoniae productor de betalactamasas de espectro extendido o β-lactamasas de AmpC plasmídicas: efecto inóculo y papel de la pérdida de porinas. Enfermedades Infecciosas y Microbiologia Clinica 28(1):27–30. HERRERO-FRESNO, A.; LARSEN, I.; OLSEN, J. E. 2015. Genetic relatedness of commensal Escherichia coli from nursery pigs in intensive pig production in Denmark and molecular characterization of genetically different strains. Journal of Applied Microbiology 119(2):342-353. HOFFMANN, S. A.; PIERETTI, G.G.; FIORINI, A.; PATUSSI, E. V.; CARDOSO, R. F.; MIKCHA, J. M. G. 2014. Genes and Genetic Diversity of Escherichia coli Isolated from Pasteurized Cow Milk in Brazil. Journal of Food Science 79(6):M1175–M1180. HOGARDT, M.; PROBA, P.; MISCHLER, D.; CUNY, C.; KEMPF, V. A.; HEUDORF, U. 2015. Current prevalence of multidrug-resistant organisms in long-term care facilities in the Rhine-Main district, Germany, 2013. Euro Surveill 20(26):pii=21171. HOMMA, T.; NUXOLL, A.; GANDT, A. B.; EBNER, P.; ENGELS, I.; SCHNEIDER, T.; GÖTZ, F.; LEWIS, K.; CONLON, B. P. 2016. Dual Targeting of Cell Wall Precursors by Teixobactin Leads to Cell Lysis. Antimicrobial Agents and Chemotherapy 60(11):6510-6517. HONORÉ, N.; NICOLAS, M. H.; COLE, S. T. 1986. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. The EMBO Journal 5(13):3709-3714. HORDIJK, J.; SCHOORMANS, A.; KWAKEMAAK, M.; DUIM, B.; BROENS,E.; DIERIKX, C.; MEVIUS, D.; WAGENAAR, J. A. 2013. High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Frontiers in Microbiology 4: 242. HSIEH, W.-S.; WANG, N.-Y.; FENG, J.-A.; WENG, L.-C.; WU, H.-H. Identification of DHA-23, a novel plasmid-mediated and inducible AmpC β-lactamase from Enterobacteriaceae in Northern Taiwan. Frontiers in Microbiology 6:436. HUSICKOVA, V.; CEKANOVA, L.; CHROMA, M.; HTOUTOU-SEDLAKOVA, M.; HRICOVA, K.; KOLAR, M. 2012. Carriage of ESBL- and AmpC-positive Enterobacteriaceae in the gastrointestinal tract of community subjects and hospitalized patients in the Czech Republic. Biomedical Papers of the Medical Faculty of the University Palacky Olomouc Czech Republic 156(4):348–353. HUJER, A. M.; PAGE, M. G. P.; HELFAND, M. S.; YEISER, B.; BONOMO, R. A. 2002. Development of a Sensitive and Specific Enzyme-Linked Immunosorbent Assay for Detecting and Quantifying CM-2 and SHV-β-Lactamases. Journal of Clinical Microbiology 40(6):1947-1957. IABADENE, H.; MESSAI, Y.; AMMARI, H.; ALOUACHE, S.; VERDET, C.; BAKOUR, R.; ARLET, G 2009. Prevalence of plasmid-mediated AmpC β-lactamases among Enterobacteriaceae in Algiers hospitals. Internacional Journal of Antimicrobial Agents 34(4):340-2. IBRAHIMAGIC, A.; BEDENIC, B.; KAMBEROVIC, F.; UZONOVI, S. 2015. High prevalence of CTX-M-15 and first report of CTX-M-3, CTX-M-22, CTX-M-28 and plasmid-mediated AmpC β-lactamase producing Enterobacteriaceae causing urinary tract infections in Bosnia and Herzegovina in hospital and community settings. Journal of Infection and Chemotherapy 21, p.363-369. ILLIAQUER, M.; CAROFF, N.; BÉRNER, P.; AUBIN, G. G.; JUVIN, M.-E.; LEPELLETIER, D.; REYNAUD, A.; CORVEC, S. 2012. Occurrence and molecular 77 characterization of Klebsiella pneumoniae ST37 clinical isolates producing plasmid-mediated AmpC recovered over a 3-year period. Diagnostic Microbiology and Infectious Disease 74: 95–97. INGT, B.; LASKAR, M. A.;CHOUDHURY, S.; MAURYA, A. P.; PAUL, D.; TALUKDAR, A. D.; CHOUDHURY, M. D.; DHAR, D.; CHAKRAVARTY, A.; BHATTACHARJEE, A. 2017. Molecular and in silico analysis of a new plasmid-mediated AmpC β-lactamase (CMH-2) in clinical isolates of Klebsiella pneumoniae. Infection, Genetics and Evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 48:34-39. JACOBY, G.A. e TRAN, J. 1999. Sequence of the MIR-1 β-Lactamase Gene. Antimicrobial Agents and Chemotherapy 43(7):1759-1760. JACOBY, G. A. 2009. AmpC β-lactamases. Clinical Microbiology Reviews 22(1):161-182. JAURIN, B. e GRUNDSTROM, T. 1981. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from tha of β-lactamases of the penicillinase type. Procedings of the National Academy of Science USA 78(8):4897-49901. JIANG, X.; ZHANG, Z.; LI, M..; ZHOU, D.; RUAN, F.; LU, Y. 2006. Detection of Extended-Spectrum β-Lactamases in Clinical Isolates of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 50(9):2990–2995. JIN, K. ; SAM, L. H.; PO, K. H. L.; LIN, D.; ZADEH, E. H. G.; CHEN, S.; YAN, Y.; LI, X. 2016. Total synthesis of teixobactin. Nature. Communications 7:12394. JONES, C. H.; TUCKMAN, M.; KEENEY, D.; RUZIN, A.; BRADFORD, P. A. 2009. Characterization and Sequence Analysis of Extended-Spectrum-β-Lactamase-Encoding Genes from Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates Collected during Tigecycline Phase 3 Clinical Trials. Antimicrobial Agents and Chemoterapy 53(2):465-475. JONES-DIAS, D.; MANAGEIRO, V.; FERREIRA, E.; LOURO, D.; ANTIBIOTIC RESISTANCE SURVEILLANCE PROGRAM IN PORTUGAL (ARSIP) PARTICIPANTS; CANIÇA, M. 2014. Diversity of Extended-Spectrum and Plasmid-Mediated AmpC β-Lactamases in Enterobacteriaceae Isolates from Portuguese Health Care Facilities. Journal of Microbiology 52( 6):496–503. JORGENSEN, R. L.; NIELSEN, J. B.; FRIIS-MOLLER, A.; FJELDSOE-NIELSEN, H.; SCHONNING, K. 2010. Prevalence and molecular characterization of clinical isolates of Escherichia coli expressing an AmpC phenotype. Antimicrobial Chemotherapy 65: 460–464. KAMEYAMA, M.; YABATA, J.; NOMURA, Y.; TOMINAGA, K. 2015. Detection of CMY-2 AmpC β-lactamase-producing enterohemorrhagic Escherichia coli O157:H7 from outbreak strains in a nursery school in Japan. Journal of Infection and Chemotherapy 21(7):544-546. KANG, H. Y.; KIM, J.; SEOL, S. Y.; LEE, Y. C.; LEE, J. C.; CHO, D. T. 2009. Characterization of conjugative plasmids carrying antibiotic resistance genes encoding 16S rRNA methylase, extended-spectrum β-lactamase, and/or plasmid-mediated AmpC β-lactamase. Journal of Microbiology 47(1):68-75. KAO, C.-C.; LIU, M.-F.; LIN, C.-F.; HUANF, Y.-C.; LIU, P.-Y.; CHANG, C.-W.; SHI, Z.-Y. 2010. Antimicrobial Susceptibility and Multiplex PCR Screening of AmpC Genes From Isolates of Enterobacter cloacae, Citrobacter freundii, and Serratia marcescens. Journal of Microbiology, Immunology and Infection 43(3):180–187. KATEREGGA, J. N.; KANTUME, R.; ATUHAIRE, C.; LUBOWA, M. N.; NDUKUI, J. G. 2015. Phenotypic expression and prevalence of ESBL-producing Enterobacteriaceae in samples collected from patients in various wards of Mulago Hospital, Uganda. BMC Pharmacology and Toxicology 16(14):1-6. 78 KIM, S.-H.; WEI, C. –I. 2007. Expression of AmpC β-lactamase in Enterobacter cloacae isolated from retail ground beef, cattle farm and processing facilities. Journal of Applied Microbiology 103:400–408. KIM, J. Y.; JUNG, H. I.; AN, Y, H. et al. 2006. Structural basis for the extended substrate spectrum of CMY-10, a plasmid-encoded class C β-lactamase. Molecular Microbiology 60(4):907–916. KNOTHE, H.; SHAH, P.; KRCMERY, V.; ANTAL, M.; MITSUHASHI, S. 1983. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 11(6):315-7. KONEMAN, W.E.; ALLEN, S.D.; JANDA, W.M.; SCHRECKENBERGER, P.C.; WINN, JR.W.C. As Enterobacteriaceae. In: KONEMAN, E. W. Diagnóstico microbiológico – texto e atlas colorido. 6. ed. Rio de Janeiro: Editora Médica e Científica, p.263-329, 2012. LALAK, A.; WASYL, D.; ZAJAC, M.; SKARZYNSKA, M.; HOSZOWSKI, A.; SAMCIK, I.; WOZNIAKOWSKI, G.; SZULOWSKI, K. 2016. Mechanisms of cephalosporin resistance in indicator Escherichia coli isolated from food animals. Veterinary Microbiology pii:S0378-1135(16)30023-2. LEIMBACH, A.; POEHLEIN, A.; WITTEN, A.; WELLNITZ, O.; SHPIGEL, N.; PETZL, W.; ZERBE, H.; DANIEL, R.; DOBRINDT, U. 2016. Whole-Genome Draft Sequences of Six Commensal Fecal and Six Mastitis-Associated Escherichia coli Strains of Bovine Origin. Genome Announcements 4(4):pii: e00753-16. LEIZA, M. G.; PEREZ-DIAZ, J.C.; AYALA, J.; CASELLAS, J. M.; MARTINEZ-BELTRAN, J.; BUSH, K.; BAQUERO, F. 1994. Gene Sequence and Biochemical Characterization of FOX-1 from Kiebsiella pneumoniae, a new AmpC-Type Plasmid-Mediated 1-Lactamase with Two Molecular Variants. Antimicrobial Agents and Chemotherapy 38(9): 2150-2157. LI, Y.; LI, Q.; DU, Y.; JIANG, X.; TANG, J.; WANG, J.; LI, G.; JIANG, Y. 2008. Prevalence of Plasmid-Mediated AmpC β-Lactamases in a Chinese University Hospital from 2003 to 2005: First Report of CMY-2-Type AmpC β-Lactamase Resistance in China. Journal of Clinical Microbiology 46(4): 1317–1321. LIEBANA, E.; BATCHELOR, M.; HOPKINS, K.L.; CLIFTON-HADLEY, F. A.; TEALE, C. J.; FOSTER, A.; BARKER, L.; THRELFALL, E. J.; DAVIES, R. H. 2006. Longitudinal Farm Study of Extended-Spectrum β-Lactamase-Mediated Resistance. Journal of Clinical Microb |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciências Veterinárias |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Veterinária |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9732/1/2017%20-%20Gabrielli%20Stefaninni%20Santiago.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9732/2/2017%20-%20Gabrielli%20Stefaninni%20Santiago.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9732/3/2017%20-%20Gabrielli%20Stefaninni%20Santiago.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9732/4/license.txt |
bitstream.checksum.fl_str_mv |
a7e3342ad90ff2c90786aa2dc8ee20ac cade996f3d84beb557a8306dfd338c5b 5ed0a707d2a9c380f78038ba7a02152d 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810107845770739712 |