Desenvolvimento de um modelo empírico de predição da seletividade e da atividade de inibidores da Shp2 utilizando o método semi-empírico PM7
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/10239 |
Resumo: | A Shp2, juntamente com a Shp1, forma uma pequena família de proteínas tirosina fosfatases. Estudos sugerem que, embora a inibição da Shp2 seja vantajosa para o tratamento de alguns tipos de câncer, a inibição da Shp1 pode ter o efeito oposto, pois atua como supressora de tumores. Desta forma, buscou-se desenvolver uma metodologia in silico capaz de identificar inibidores da Shp2 mais seletivos. Neste trabalho, mostramos que apesar da complexidade termodinâmica envolvida na interação enzima/inibidor, foi possível correlacionar a seletividade de duas séries (76 compostos) com a diferença das entalpias de interação calculadas em ambas as enzimas. Os perfis de interação dos inibidores com a Shp2 e a Shp1 foram inicialmente obtidos por docagem molecular. Após o refinamento das geometrias dos complexos enzima/inibidor com o método do orbital molecular semi-empírico PM7, foram obtidos os valores de entalpia de interação. Para a série 1, composta por 52 inibidores seletivos da Shp2, demonstramos que a entalpia de interação pode ser usada como um critério confiável para a identificação de inibidores seletivos para a Shp2, pois foi significativamente mais favorável para Shp2 do que para a Shp1 com um nível de confiança de 99%. Para a série 2, composta por 24 compostos, uma correlação satisfatória (R = 0,70) pôde ser obtida entre a seletividade e a diferença percentual relativa das entalpias de interação calculadas em ambas as enzimas. Outro objetivo deste trabalho foi construir um modelo de predição da atividade de inibidores da Shp2 utilizando como base empírica a série 1 e posteriormente, validar com a série 2. Devido à presença de inibidores carregados negativamente dentro das séries estudadas, foi necessário considerar o efeito eletrolítico, corrigindo os valores experimentais de atividade inibitória (CI50), uma vez que tais dados se referem a concentrações formais e a constante termodinâmica envolve concentrações efetivas. Para isso foi necessário calcular a força iônica do meio reacional e estimar os coeficientes de atividade das espécies envolvidas no equilíbrio de dissociação enzima/inibidor através da equação de Guntelberg. A construção do modelo se baseou em propostas da literatura sobre o uso de ciclos termodinâmicos para se calcular a energia livre de interação entre ligantes e enzimas. Neste sentido, foram obtidos termos referentes à entalpia de interação do complexo enzima/inibidor, a energia de solvatação do ligante e as perdas entrópicas devido a restrições rotacionais após a interação do mesmo com a enzima. Estes termos foram correlacionados através de regressão múltipla linear com dados experimentais de inibição. Desta forma foi possível desenvolver um modelo de predição da atividade de inibidores da Shp2 com boa correlação com dados experimentais (R= 0,83). Este modelo foi validado de forma satisfatória (R=0,73) através da série 2 e utilizado na predição da atividade relativa de novos compostos. |
id |
UFRRJ-1_08cd77463eb0ff4c4749159d6f130c7a |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/10239 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Rocha, Sheisi Fonseca Leite da SilvaSant´Anna, Carlos Mauricio Rabello deCPF: 827.232.227-72Salles, Cristiane Martins Cardoso deCPF: 035.399.287-90Bauerfeldt, Glauco FavillaBarra, Cristina MariaRomeiro, Nelilma CorreiaFokoue, Harold HilarionCPF: 122.348.897-74http://lattes.cnpq.br/42065252432799712023-12-21T18:59:21Z2023-12-21T18:59:21Z2019-01-29ROCHA, Sheisi Fonseca Leite da Silva. Desenvolvimento de um modelo empírico de predição da seletividade e da atividade de inibidores da Shp2 utilizando o método semi-empírico PM7. 2019. 95 f. Tese (Doutorado em Química) - Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018.https://rima.ufrrj.br/jspui/handle/20.500.14407/10239A Shp2, juntamente com a Shp1, forma uma pequena família de proteínas tirosina fosfatases. Estudos sugerem que, embora a inibição da Shp2 seja vantajosa para o tratamento de alguns tipos de câncer, a inibição da Shp1 pode ter o efeito oposto, pois atua como supressora de tumores. Desta forma, buscou-se desenvolver uma metodologia in silico capaz de identificar inibidores da Shp2 mais seletivos. Neste trabalho, mostramos que apesar da complexidade termodinâmica envolvida na interação enzima/inibidor, foi possível correlacionar a seletividade de duas séries (76 compostos) com a diferença das entalpias de interação calculadas em ambas as enzimas. Os perfis de interação dos inibidores com a Shp2 e a Shp1 foram inicialmente obtidos por docagem molecular. Após o refinamento das geometrias dos complexos enzima/inibidor com o método do orbital molecular semi-empírico PM7, foram obtidos os valores de entalpia de interação. Para a série 1, composta por 52 inibidores seletivos da Shp2, demonstramos que a entalpia de interação pode ser usada como um critério confiável para a identificação de inibidores seletivos para a Shp2, pois foi significativamente mais favorável para Shp2 do que para a Shp1 com um nível de confiança de 99%. Para a série 2, composta por 24 compostos, uma correlação satisfatória (R = 0,70) pôde ser obtida entre a seletividade e a diferença percentual relativa das entalpias de interação calculadas em ambas as enzimas. Outro objetivo deste trabalho foi construir um modelo de predição da atividade de inibidores da Shp2 utilizando como base empírica a série 1 e posteriormente, validar com a série 2. Devido à presença de inibidores carregados negativamente dentro das séries estudadas, foi necessário considerar o efeito eletrolítico, corrigindo os valores experimentais de atividade inibitória (CI50), uma vez que tais dados se referem a concentrações formais e a constante termodinâmica envolve concentrações efetivas. Para isso foi necessário calcular a força iônica do meio reacional e estimar os coeficientes de atividade das espécies envolvidas no equilíbrio de dissociação enzima/inibidor através da equação de Guntelberg. A construção do modelo se baseou em propostas da literatura sobre o uso de ciclos termodinâmicos para se calcular a energia livre de interação entre ligantes e enzimas. Neste sentido, foram obtidos termos referentes à entalpia de interação do complexo enzima/inibidor, a energia de solvatação do ligante e as perdas entrópicas devido a restrições rotacionais após a interação do mesmo com a enzima. Estes termos foram correlacionados através de regressão múltipla linear com dados experimentais de inibição. Desta forma foi possível desenvolver um modelo de predição da atividade de inibidores da Shp2 com boa correlação com dados experimentais (R= 0,83). Este modelo foi validado de forma satisfatória (R=0,73) através da série 2 e utilizado na predição da atividade relativa de novos compostos.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorShp2, along with Shp1, forms a small family of protein tyrosine phosphatases. Studies suggest that although inhibition of Shp2 is advantageous for the treatment of some types of cancer, inhibition of Shp1 may have the opposite effect because it acts as a tumor suppressor. In this way, we sought to develop an in silico methodology capable of identifying more selective Shp2 inhibitors. In this work, we showed that in spite of the thermodynamic complexity involved in the enzyme/inhibitor interaction, it was possible to correlate the selectivity of two series (76 compounds) with the difference of the enthalpy of interaction calculated in both enzymes. The interaction profile of the inhibitors with Shp2 and Shp1 were initially obtained by molecular docking. After the refinement of the geometries of the enzyme / inhibitor complexes with the semi-empirical molecular orbital PM7 method, the enthalpy values of the interaction were obtained. For the series 1, composed of 52 selective inhibitors of Shp2, we demonstrated that the enthalpy of interaction can be used as a reliable criterion for the identification of selective inhibitors for Shp2, since it was significantly more favorable for Shp2 than for Shp1 with a confidence level of 99%. For series 2, composed of 24 compounds, a satisfactory correlation (R = 0.70) could be obtained between the selectivity and the relative percentage difference of the calculated enthalpies of interaction in both enzymes. Another objective of this work was to construct a model of prediction of the activity of inhibitors of Shp2 using as empirical basis the series 1 to validate it later with the series 2. Due to the presence of negatively charged inhibitors within the series, it was necessary to consider the electrolytic effect, correcting the experimental values of inhibitory activity, since such data refer to formal concentrations and the thermodynamic constant involves effective concentrations. For this it was necessary to calculate the ionic strength of the reaction medium and to estimate the activity coefficients of the species involved in the enzyme /inhibitor dissociation equilibrium through the Guntelberg equation. The construction of the model was based on literature proposals on the use of thermodynamic cycles to calculate the free energy of interaction between ligands and enzymes. In this sense, terms related to the enthalpy of interaction of the enzyme / inhibitor complex, the energy of solvation of the ligand and the entropic losses due to rotational restrictions were obtained after their interaction with the enzyme. These terms were correlated through linear multiple regression with experimental data of inhibition. In this way it was possible to develop a prediction model of the activity of inhibitors of Shp2 with good correlation with experimental data (R = 0.83). This model was validated satisfactorily (R = 0.73) with series 2 and used in the prediction of the relative activity of new compounds.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em QuímicaUFRRJBrasilInstituto de QuímicaShp2SeletividadeDocagemPM7Efeito eletrolíticoSelectivityDockingElectrolytic effectQuímicaDesenvolvimento de um modelo empírico de predição da seletividade e da atividade de inibidores da Shp2 utilizando o método semi-empírico PM7info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisABRAHAM, M. J., MURTOLA, T., SCHULZ, R., PÁLL, S., SMITH, J. C., HESS, B., LINDAHL, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, v. 1, p. 19-25, 2015. ALCÁCER, Luís. Introdução à química quântica computacional. Energia, v. 265, n. 268, p. 273, 2007. ALICEA-VELAZQUEZ, L. N., BOGGON, J. T.. SHP family protein tyrosine phosphatases adopt canonical active-site conformations in the apo and phosphate-bound states. Protein and Peptide Letters, v. 20, n. 9, p. 1039-1048, 2013. ALONSO, A., SASIN, J., BOTTINI, N., FRIEDBERG, I., FRIEDBERG, I., OSTERMAN, A., MUSTELIN, T. Protein tyrosine phosphatases in the human genome. Cell, v. 117, n. 6, p. 699-711, 2004. ALLINGER, N. L. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. Journal of the American Chemical Society, v. 99, n. 25, p. 8127-8134, 1977. ANDERSEN, J. N., MORTENSEN, O. H., PETERS, G. H., DRAKE, P. G., IVERSEN, L. F., OLSEN, O. H., MØLLER, N. P. H. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Molecular and Cellular Biology, v. 21, n. 21, p. 7117-7136, 2001. ASI, A. M., RAHMAN, N. A., MERICAN, A. F. Application of the linear interaction energy method (LIE) to estimate the binding free energy values of Escherichia coli wild-type and mutant arginine repressor C-terminal domain (ArgRc)–l-arginine and ArgRc–l-citrulline protein–ligand complexes. Journal of Molecular Graphics and Modelling, v. 22, n. 4, p. 249-262, 2004. BARD-CHAPEAU, E. A., LI, S., DING, J., ZHANG, S. S., ZHU, H. H., PRINCEN, F., VARKI, N. M. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer cell, v. 19, n. 5, p. 629-639, 2011. BARR, A. J., UGOCHUKWU, E., LEE, W. H., KING, O. N., FILIPPAKOPOULOS, P., ALFANO, I., KNAPP, S. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell, v. 136, n. 2, p. 352-363, 2009. BENTIRES-ALJ, M., PAEZ, J. G., DAVID, F. S., KEILHACK, H., HALMOS, B., NAOKI, K., RICHARDS, W. G. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Research, v. 64, n. 24, p. 8816-8820, 2004. BONET, B., LOERINCS, G., GEFFNER, H. A robust and fast action selection mechanism for planning. In: AAAI/IAAI. 1997. p. 714-719. BORN, M., OPPENHEIMER, R. ROBERT. Zur quantentheorie der molekeln. Annalen der Physik, v. 389, n. 20, p. 457-484, 1927. BROOKS, C. L. A theoretical perspective of dynamics, structure, and thermodynamics. Advances in chemical physics; John Wiley: New York, v.LXXI. 1988. CHAMBERS, C. C., HAWKINS, G. D., CRAMER, C. J., TRUHLAR, D. G. Model for Aqueous Solvation Based on Class IV Atomic Charges and First Solvation Shell Effects. Journal of Physical Chemistry. v. 100, p. 16385-16298, 1996. CHAN, R. J., FENG, G. S. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood, v. 109, n. 3, p. 862-867, 2007. CHEN, C. Y., WILLARD, D., RUDOLPH, J. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines. Biochemistry, v. 48, n. 6, p. 1399-1409, 2009. CHEN, L., PERNAZZA, D., SCOTT, L. M., LAWRENCE, H. R., REN, Y., LUO, Y., LAWRENCE, N. J. Inhibition of cellular Shp2 activity by a methyl ester analog of SPI-112. Biochemical pharmacology, v. 80, n. 6, p. 801-810, 2010. CHENG, Y.; PRUSOFF, W. H. Relationship between the inhibition constant (KI) and the concentration which causes 50% inhibition of an enzymatic reaction. Biochemical Pharmacology, v. 22, p. 403-411, 1973. CHMIELA, S., TKATCHENKO, A., SAUCEDA, H. E., POLTAVSKY, I., SCHÜTT, K. T., MÜLLER, K. R. Machine learning of accurate energy-conserving molecular force fields. Science Advances, v. 3, n. 5, p. e1603015, 2017. CLARK, Tim. A handbook of computational chemistry: A practical guide to chemical structure and energy calculations. Wiley-Interscience, 1985. COSTA FILHO, Paulo Augusto da; POPPI, Ronei Jesus. Genetic algorithm in chemistry. Química Nova, v. 22, n. 3, p. 405-411, 1999. CRAMER, C. J.; TRUHLAR, D. G. PM3‐SM3: A general parameterization for including aqueous solvation effects in the PM3 molecular orbital model. Journal of Computational Chemistry, v. 13, n. 9, p. 1089-1097, 1992. DANCE, M., MONTAGNER, A., SALLES, J. P., YART, A., RAYNAL, P. The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cellular signalling, v. 20, n. 3, p. 453-459, 2008. DEWAR, M. J., ZOEBISCH, E. G., HEALY, E. F., STEWART, J. J. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, v. 107, n. 13, p. 3902-3909, 1985. DEWAR, M. J. S; THIEL, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society, v. 99, n. 15, p. 4899-4907, 1977. DOBEŠ, P., FANFRLÍK, J., ŘEZÁČ, J., OTYEPKA, M., HOBZA, P. Transferable scoring function based on semiempirical quantum mechanical PM6-DH2 method: CDK2 with 15 structurally diverse inhibitors. Journal of Computer-Aided Molecular Design, v. 25, n. 3, p. 223-235, 2011. DONG, S., LI, F. Q., ZHANG, Q., LV, K. Z., YANG, H. L., GAO, Y., YU, J. R. Expression and clinical significance of SHP2 in gastric cancer. Journal of International Medical Research, v. 40, n. 6, p. 2083-2089, 2012. ELDRIDGE, M. D., MURRAY, C. W., AUTON, T. R., PAOLINI, G. V., MEE, R. P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, v. 11, n. 5, p. 425-445, 1997. FAN, L. C., TENG, H. W., SHIAU, C. W., LIN, H., HUNG, M. H., CHEN, Y. L., CHEN, K. F. SHP-1 is a target of regorafenib in colorectal cancer. Oncotarget, v. 5, n. 15, p. 6243, 2014. FANFRLÍK, J., BRONOWSKA, A. K., ŘEZÁČ, J., PŘENOSIL, O., KONVALINKA, J., HOBZA, P. A reliable docking/scoring scheme based on the semiempirical quantum mechanical PM6-DH2 method accurately covering dispersion and H-bonding: HIV-1 protease with 22 ligands. The Journal of Physical Chemistry B, v. 114, n. 39, p. 12666-12678, 2010. FICHTNER-FEIGL, S., KESSELRING, R., STROBER, W. Chronic inflammation and the development of malignancy in the GI tract. Trends in Immunology, v. 36, n. 8, p. 451-459, 2015. GILSON, Michael K.; HONIG, Barry H. The dielectric constant of a folded protein. Biopolymers: Original Research on Biomolecules, v. 25, n. 11, p. 2097-2119, 1986. GOHLKE, H., HENDLICH, M., KLEBE, G. Knowledge-based scoring function to predict protein-ligand interactions1. Journal of Molecular Biology, v. 295, n. 2, p. 337-356, 2000. GÜNTELBERG, E. Untersuchungen über Ioneninteraktion. Zeitschrift für Physikalische Chemie, v. 123, n. 1, p. 199-247, 1926. HAN, T., X., D. M., SUN, W., LIU, N., SUN, H. L., WEN, W., CHENG, Z. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. Journal of Hepatology, v. 63, n. 3, p. 651-660, 2015. HANSSON, T., MARELIUS, J., ÅQVIST, J. Ligand binding affinity prediction by linear interaction energy methods. Journal of Computer-Aided Molecular Design, v. 12, n. 1, p. 27-35, 1998. HARTREE, D. R. On some approximate numerical applications of Bohr’s theory of spectra. In: Proceedings of the Cambridge Philosophical Society. 1923. p. 625-641. HE, R., YU, Z. H., ZHANG, R. Y., WU, L., GUNAWAN, A. M., LANE, B. S., WELLS, C. D. Exploring the existing drug space for novel pTyr mimetic and SHP2 inhibitors. ACS Medicinal Chemistry Letters, v. 6, n. 7, p. 782-786, 2015. HIGASHI, H., NAKAYA, A., TSUTSUMI, R., YOKOYAMA, K., FUJII, Y., ISHIKAWA, S., TANAKA, S. Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. Journal of Biological Chemistry, v. 279, n. 17, p. 17205-17216, 2004. HØYVIK, I.M., JØRGENSEN, P. Characterization and generation of local occupied and virtual Hartree–Fock orbitals. Chemical Reviews, v. 116, n. 5, p. 3306-3327, 2016. HOF, P., PLUSKEY, S., DHE-PAGANON, S., ECK, M. J., SHOELSON, S. E. Crystal structure of the tyrosine phosphatase SHP-2. Cell, v. 92, n. 4, p. 441-450, 1998. HOUSE, J. E. Fundamentals of Quantum Chemistry. Compllemmentary Science Series. Elsevier Science & Technology, 2004. HUANG, J., RAUSCHER, S., NAWROCKI, G., RAN, T., FEIG, M., DE GROOT, B. L., MACKERELL JR, A. D. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods, v. 14, n. 1, p. 71, 2016. JENSEN, F. Introduction to computational chemistry. Chichester: John Wiley & Sons, p.429. 1999. KAWASAKI, Y., FREIRE, E. Finding a better path to drug selectivity. Drug Discovery Today, v. 16, n. 21-22, p. 985-990, 2011. KLAMT, A.; SCHUURMANN, G. J. Chem Soc Perkin Trans 2 1993, 5, 799;(b) Baldridge, K.; Klamt. A. J Chem Phys, v. 106, p. 6622, 1997. KITCHEN, D. B., DECORNEZ, H., FURR, J. R., BAJORATH, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, v. 3, n. 11, p. 935, 2004. KUREBAYASHI, J., OKUBO, S., YAMAMOTO, Y., IKEDA, M., TANAKA, K., OTSUKI, T., SONOO, H. Additive antitumor effects of gefitinib and imatinib on anaplastic thyroid cancer cells. Cancer Chemotherapy and Pharmacology, v. 58, n. 4, p. 460-470, 2006. KOLLMAN, Peter. Free energy calculations: applications to chemical and biochemical phenomena. Chemical Reviews, v. 93, n. 7, p. 2395-2417, 1993. KORB, O., STÜTZLE, T., EXNER, T. E. An ant colony optimization approach to flexible protein–ligand docking. Swarm Intelligence, v. 1, n. 2, p. 115-134, 2007. KORB, O., STUTZLE, T., EXNER, T. E. Empirical scoring functions for advanced protein− ligand docking with PLANTS. Journal of Chemical Information and Modeling, v. 49, n. 1, p. 84-96, 2009. KUNTZ, I. D., BLANEY, J. M., OATLEY, S. J., LANGRIDGE, R., FERRIN, T. E. A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology, v. 161, n. 2, p. 269-288, 1982. LABBÉ, D. P., HARDY, S., TREMBLAY, M. L. Protein tyrosine phosphatases in cancer: friends and foes!. In: Progress in Molecular Biology and Translational Science. Academic Press, 2012. p. 253-306. LAN, L., HOLLAND, J. D., QI, J., GROSSKOPF, S., VOGEL, R., GYÖRFFY, B., BIRCHMEIER, W. Shp2 signaling suppresses senescence in PyMT‐induced mammary gland cancer in mice. The EMBO journal, p. e201489004, 2015. LAWRENCE, H. R., PIREDDU, R., CHEN, L., LUO, Y., SUNG, S. S., SZYMANSKI, A. M., LAWRENCE, N. J. Inhibitors of Src homology-2 domain containing protein tyrosine phosphatase-2 (Shp2) based on oxindole scaffolds. Journal of Medicinal Chemistry, v. 51, n. 16, p. 4948-4956, 2008. LEACH, A. R. Molecular Modelling -- Principles and Applications. England: Person Prentice Hall, p.744. 2001. LINDEN, R. Algoritmos genéticos: uma importante ferramenta da inteligência computacional. Brasport, 2006. LIU, W., YU, B., XU, G., XU, W. R., LOH, M. L., TANG, L. D., QU, C. K. Identification of cryptotanshinone as an inhibitor of oncogenic protein tyrosine phosphatase SHP2 (PTPN11). Journal of Medicinal Chemistry, v. 56, n. 18, p. 7212-7221, 2013. LOH, M. L., Reynolds, M. G., Vattikuti, S., Gerbing, R. B., Alonzo, T. A., Carlson, E., Meshinchi, S. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group. Leukemia, v. 18, n. 11, p. 1831, 2004. MORGON, N. H., COUTINHO, K. Métodos de química teórica e modelagem molecular. Editora Livraria da Física, 2007. MORRIS, G. M., GOODSELL, D. S., HALLIDAY, R. S., HUEY, R., HART, W. E., BELEW, R. K., & OLSON, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, v. 19, n. 14, p. 1639-1662, 1998. MUEGGE, I., MARTIN, Y. C. A general and fast scoring function for protein− ligand interactions: a simplified potential approach. Journal of Medicinal Chemistry, v. 42, n. 5, p. 791-804, 1999. NARDOZZA, A. P., D'ORAZIO, M., TRAPANNONE, R., CORALLINO, S., FILOMENI, G., TARTAGLIA, M., CASTAGNOLI, L. ROS and EGF are antagonistic cues controlling SHP-2 dimerization. Molecular and Cellular Biology, p. MCB. 06674-11, 2012. NIU, T., LIANG, X., YANG, J., ZHAO, Z., ZHOU, G. W. Kinetic comparison of the catalytic domains of SHP‐1 and SHP‐2. Journal of Cellular Biochemistry, v. 72, n. 1, p. 145-150, 1999. NODA, S., TAKAHASHI, A., HAYASHI, T., TANUMA, S. I., HATAKEYAMA, M. Determination of the catalytic activity of LEOPARD syndrome-associated SHP2 mutants toward parafibromin, a bona fide SHP2 substrate involved in Wnt signaling. Biochemical and Biophysical Research Communications, v. 469, n. 4, p. 1133-1139, 2016. O'BOYLE, N. M., BANCK, M., JAMES, C. A., MORLEY, C., VANDERMEERSCH, T., & HUTCHISON, G. R. Open Babel: An open chemical toolbox. Journal of Cheminformatics, v. 3, n. 1, p. 33, 2011. OLIVEIRA, Fernanda G. et al. Molecular docking study and development of an empirical binding free energy model for phosphodiesterase 4 inhibitors. Bioorganic & medicinal chemistry, v. 14, n. 17, p. 6001-6011, 2006. OHNISHI, Naomi et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proceedings of the National Academy of Sciences, v. 105, n. 3, p. 1003-1008, 2008. OPREA, T. I. Chemoinformatics in drug discovery. Weinheim: Wiley-VCH, p.493. 2005. PAGADALA, Nataraj S.; SYED, Khajamohiddin; TUSZYNSKI, Jack. Software for molecular docking: a review. Biophysical Reviews, v. 9, n. 2, p. 91-102, 2017. POPLE, J. A.; BEVERIDGE, D. L.; DOBOSH, P. A. Approximate self‐consistent molecular‐orbital theory. V. Intermediate neglect of differential overlap. The Journal of Chemical Physics, v. 47, n. 6, p. 2026-2033, 1967. QU, C. K. The SHP-2 tyrosine phosphatase: signaling mechanisms and biological functions. Cell Research, v. 10, n. 4, p. 279, 2000. REEVES, C. R. Modern heuristic techniques for combinatorial problems. Advanced topics in computer science. Mc Graw-Hill, 1995. ROCCOGRANDI, L., BINDER, Z. A., ZHANG, L., ACETO, N., ZHANG, Z., BENTIRES-ALJ, M., O’ROURKE, D. M. SHP2 regulates proliferation and tumorigenicity of glioma stem cells. Journal of Neuro-Oncology, v. 135, n. 3, p. 487-496, 2017. ROCHA, G. B., FREIRE, R. O., SIMAS, A. M., STEWART, J. J. Rm1: A reparameterization of am1 for h, c, n, o, p, s, f, cl, br, and i. Journal of Computational Chemistry, v. 27, n. 10, p. 1101-1111, 2006. SÁ, C. G. Planejamento, síntese e avaliação farmacológica in vitro de novos compostos N-arilpiperazínicos candidatos a protótipos antipsicóticos. Tese de doutorado. UFRJ, 2017 SANT'ANNA, C. M. R. Glossário de termos usados no planejamento de fármacos (recomendações da IUPAC para 1997). Química Nova, v. 25, n. 3, p. 505-512, 2002. SANT'ANNA, C. M. R. Métodos de modelagem molecular para estudo e planejamento de compostos bioativos: Uma introdução. Revista Virtual de Química, v. 1, n. 1, p. 49-57, 2009. SKOOG, D. A., WEST, D. M., HOLLER, F. J., CROUCH, S. Fundamentals of analytical chemistry. Nelson Education, 2013. SLATER, J. C. The theory of complex spectra. Physical Review., v.34, p.1293--1322, 1929. SERRANO, M. SHP2: a new target for pro‐senescence cancer therapies. The EMBO journal, v. 34, n. 11, p. 1439-1441, 2015. M SCOTT, L., R LAWRENCE, H., M SEBTI, S., J LAWRENCE, N., WU, J. Targeting protein tyrosine phosphatases for anticancer drug discovery. Current Pharmaceutical Design, v. 16, n. 16, p. 1843-1862, 2010. SCOTT, L. M., CHEN, L., DANIEL, K. G., BROOKS, W. H., GUIDA, W. C., LAWRENCE, H. R., WU, J. Shp2 protein tyrosine phosphatase inhibitor activity of estramustine phosphate and its triterpenoid analogs. Bioorganic & Medicinal Chemistry Letters, v. 21, n. 2, p. 730-733, 2011. SHI, Z. Q., YU, D. H., PARK, M., MARSHALL, M., FENG, G. S. Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Molecular and Cellular Biology, v. 20, n. 5, p. 1526-1536, 2000. STEWART, J. J. P. Optimization of parameters for semiempirical methods II. Applications. Journal of Computational Chemistry, v. 10, n. 2, p. 221-264, 1989. STEWART, J. J. P. Application of localized molecular orbitals to the solution of semiempirical self‐consistent field equations. International Journal of Quantum Chemistry, v. 58, n. 2, p. 133-146, 1996. STEWART, J. J. P. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, v. 13, n. 12, p. 1173-1213, 2007. STEWART, J. J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling, v. 19, n. 1, p. 1-32, 2013. TARCSAY, Á., KESERŰ, G. M. Is there a link between selectivity and binding thermodynamics profiles?. Drug Discovery Today, v. 20, n. 1, p. 86-94, 2015. THIEL, W., VOITYUK, A. A. Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results. Theoretica Chimica Acta, v. 81, n. 6, p. 391-404, 1992. TONKS, N. K. Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews Molecular Cell Biology, v. 7, n. 11, p. 833, 2006. VERDONK, M. L., COLE, J. C., HARTSHORN, M. J., MURRAY, C. W., TAYLOR, R. D. Improved protein–ligand docking using GOLD. Proteins: Structure, Function, and Bioinformatics, v. 52, n. 4, p. 609-623, 2003. WANG, S., MILNE, G. W., NICKLAUS, M. C., MARQUEZ, V. E., LEE, J., BLUMBERG, P. M. Protein kinase C. Modeling of the binding site and prediction of binding constants. Journal of Medicinal Chemistry, v. 37, n. 9, p. 1326-1338, 1994. WEINER, S. J., KOLLMAN, P. A., CASE, D. A., SINGH, U. C., GHIO, C., ALAGONA, G., WEINER, P. A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, v. 106, n. 3, p. 765-784, 1984. WU, J.; LAWRENCE, N. J.; SEBTI, S. M.; LAWRENCE, H. R; University Of South Florida, H. Lee Mofffitt Cancer Center and Research Institute, Inc. 2012. (US20120034186 A1) WU, N. J. LAWRENCE, S. M. SEBTI, H. R. LAWRENCE. University Of South Florida, H. Lee Mofffitt Cancer Center and Research Institute, Inc. 2008. (US2008/0176309 A1) XU, R., YU, Y., ZHENG, S., ZHAO, X., DONG, Q., HE, Z., XU, X. Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood, v. 106, n. 9, p. 3142-3149, 2005. YANG, J., LIANG, X., NIU, T., MENG, W., ZHAO, Z., ZHOU, G. W. Crystal structure of the catalytic domain of protein-tyrosine phosphatase SHP-1. Journal of Biological Chemistry, v. 273, n. 43, p. 28199-28207, 1998. YANG, J., CHENG, Z., NIU, T., LIANG, X., ZHAO, Z. J., ZHOU, G. W. Structural basis for substrate specificity of protein-tyrosine phosphatase SHP-1. Journal of Biological Chemistry, v. 275, n. 6, p. 4066-4071, 2000. YANG, J., NIU, T., ZHANG, A., MISHRA, A. K., ZHAO, Z. J., ZHOU, G. W. Relation between the flexibility of the WPD loop and the activity of the catalytic domain of protein tyrosine phosphatase SHP‐1. Journal of Cellular Biochemistry, v. 84, n. 1, p. 47-55, 2002. YU, Z. H., CHEN, L., WU, L., LIU, S., WANG, L., ZHANG, Z. Y. Small molecule inhibitors of SHP2 tyrosine phosphatase discovered by virtual screening. Bioorganic & Medicinal Chemistry Letters, v. 21, n. 14, p. 4238-4242, 2011. ZHANG, X., HE, Y., LIU, S., YU, Z., JIANG, Z. X., YANG, Z., WANG, L. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). Journal of Medicinal Chemistry, v. 53, n. 6, p. 2482-2493, 2010. ZHOU, X., COAD, J., DUCATMAN, B., AGAZIE, Y. M. SHP2 is up‐regulated in breast cancer cells and in infiltrating ductal carcinoma of the breast, implying its involvement in breast oncogenesis. Histopathology, v. 53, n. 4, p. 389-402, 2008. ZHOU, T., HUANG, D., CAFLISCH, A. Is quantum mechanics necessary for predicting binding free energy?. Journal of Medicinal Chemistry, v. 51, n. 14, p. 4280-4288, 2008.https://tede.ufrrj.br/retrieve/67212/2019%20-%20Sheisi%20Fonseca%20Leite%20da%20Silva%20Rocha.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5153Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2021-10-24T05:51:05Z No. of bitstreams: 1 2019 - Sheisi Fonseca Leite da Silva Rocha.pdf: 3059409 bytes, checksum: 78e70249053e5be917fab9c80bc8a3b5 (MD5)Made available in DSpace on 2021-10-24T05:51:05Z (GMT). No. of bitstreams: 1 2019 - Sheisi Fonseca Leite da Silva Rocha.pdf: 3059409 bytes, checksum: 78e70249053e5be917fab9c80bc8a3b5 (MD5) Previous issue date: 2019-01-29info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Sheisi Fonseca Leite da Silva Rocha.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10239/1/2019%20-%20Sheisi%20Fonseca%20Leite%20da%20Silva%20Rocha.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2019 - Sheisi Fonseca Leite da Silva Rocha.pdf.txtExtracted Texttext/plain191756https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10239/2/2019%20-%20Sheisi%20Fonseca%20Leite%20da%20Silva%20Rocha.pdf.txtea42740fb5dc6f32463415c98bdd31d0MD52ORIGINAL2019 - Sheisi Fonseca Leite da Silva Rocha.pdfapplication/pdf3059409https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10239/3/2019%20-%20Sheisi%20Fonseca%20Leite%20da%20Silva%20Rocha.pdf78e70249053e5be917fab9c80bc8a3b5MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10239/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/102392023-12-21 15:59:21.462oai:rima.ufrrj.br:20.500.14407/10239Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:59:21Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Desenvolvimento de um modelo empírico de predição da seletividade e da atividade de inibidores da Shp2 utilizando o método semi-empírico PM7 |
title |
Desenvolvimento de um modelo empírico de predição da seletividade e da atividade de inibidores da Shp2 utilizando o método semi-empírico PM7 |
spellingShingle |
Desenvolvimento de um modelo empírico de predição da seletividade e da atividade de inibidores da Shp2 utilizando o método semi-empírico PM7 Rocha, Sheisi Fonseca Leite da Silva Shp2 Seletividade Docagem PM7 Efeito eletrolítico Selectivity Docking Electrolytic effect Química |
title_short |
Desenvolvimento de um modelo empírico de predição da seletividade e da atividade de inibidores da Shp2 utilizando o método semi-empírico PM7 |
title_full |
Desenvolvimento de um modelo empírico de predição da seletividade e da atividade de inibidores da Shp2 utilizando o método semi-empírico PM7 |
title_fullStr |
Desenvolvimento de um modelo empírico de predição da seletividade e da atividade de inibidores da Shp2 utilizando o método semi-empírico PM7 |
title_full_unstemmed |
Desenvolvimento de um modelo empírico de predição da seletividade e da atividade de inibidores da Shp2 utilizando o método semi-empírico PM7 |
title_sort |
Desenvolvimento de um modelo empírico de predição da seletividade e da atividade de inibidores da Shp2 utilizando o método semi-empírico PM7 |
author |
Rocha, Sheisi Fonseca Leite da Silva |
author_facet |
Rocha, Sheisi Fonseca Leite da Silva |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rocha, Sheisi Fonseca Leite da Silva |
dc.contributor.advisor1.fl_str_mv |
Sant´Anna, Carlos Mauricio Rabello de |
dc.contributor.advisor1ID.fl_str_mv |
CPF: 827.232.227-72 |
dc.contributor.advisor-co1.fl_str_mv |
Salles, Cristiane Martins Cardoso de |
dc.contributor.advisor-co1ID.fl_str_mv |
CPF: 035.399.287-90 |
dc.contributor.referee1.fl_str_mv |
Bauerfeldt, Glauco Favilla |
dc.contributor.referee2.fl_str_mv |
Barra, Cristina Maria |
dc.contributor.referee3.fl_str_mv |
Romeiro, Nelilma Correia |
dc.contributor.referee4.fl_str_mv |
Fokoue, Harold Hilarion |
dc.contributor.authorID.fl_str_mv |
CPF: 122.348.897-74 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/4206525243279971 |
contributor_str_mv |
Sant´Anna, Carlos Mauricio Rabello de Salles, Cristiane Martins Cardoso de Bauerfeldt, Glauco Favilla Barra, Cristina Maria Romeiro, Nelilma Correia Fokoue, Harold Hilarion |
dc.subject.por.fl_str_mv |
Shp2 Seletividade Docagem PM7 Efeito eletrolítico |
topic |
Shp2 Seletividade Docagem PM7 Efeito eletrolítico Selectivity Docking Electrolytic effect Química |
dc.subject.eng.fl_str_mv |
Selectivity Docking Electrolytic effect |
dc.subject.cnpq.fl_str_mv |
Química |
description |
A Shp2, juntamente com a Shp1, forma uma pequena família de proteínas tirosina fosfatases. Estudos sugerem que, embora a inibição da Shp2 seja vantajosa para o tratamento de alguns tipos de câncer, a inibição da Shp1 pode ter o efeito oposto, pois atua como supressora de tumores. Desta forma, buscou-se desenvolver uma metodologia in silico capaz de identificar inibidores da Shp2 mais seletivos. Neste trabalho, mostramos que apesar da complexidade termodinâmica envolvida na interação enzima/inibidor, foi possível correlacionar a seletividade de duas séries (76 compostos) com a diferença das entalpias de interação calculadas em ambas as enzimas. Os perfis de interação dos inibidores com a Shp2 e a Shp1 foram inicialmente obtidos por docagem molecular. Após o refinamento das geometrias dos complexos enzima/inibidor com o método do orbital molecular semi-empírico PM7, foram obtidos os valores de entalpia de interação. Para a série 1, composta por 52 inibidores seletivos da Shp2, demonstramos que a entalpia de interação pode ser usada como um critério confiável para a identificação de inibidores seletivos para a Shp2, pois foi significativamente mais favorável para Shp2 do que para a Shp1 com um nível de confiança de 99%. Para a série 2, composta por 24 compostos, uma correlação satisfatória (R = 0,70) pôde ser obtida entre a seletividade e a diferença percentual relativa das entalpias de interação calculadas em ambas as enzimas. Outro objetivo deste trabalho foi construir um modelo de predição da atividade de inibidores da Shp2 utilizando como base empírica a série 1 e posteriormente, validar com a série 2. Devido à presença de inibidores carregados negativamente dentro das séries estudadas, foi necessário considerar o efeito eletrolítico, corrigindo os valores experimentais de atividade inibitória (CI50), uma vez que tais dados se referem a concentrações formais e a constante termodinâmica envolve concentrações efetivas. Para isso foi necessário calcular a força iônica do meio reacional e estimar os coeficientes de atividade das espécies envolvidas no equilíbrio de dissociação enzima/inibidor através da equação de Guntelberg. A construção do modelo se baseou em propostas da literatura sobre o uso de ciclos termodinâmicos para se calcular a energia livre de interação entre ligantes e enzimas. Neste sentido, foram obtidos termos referentes à entalpia de interação do complexo enzima/inibidor, a energia de solvatação do ligante e as perdas entrópicas devido a restrições rotacionais após a interação do mesmo com a enzima. Estes termos foram correlacionados através de regressão múltipla linear com dados experimentais de inibição. Desta forma foi possível desenvolver um modelo de predição da atividade de inibidores da Shp2 com boa correlação com dados experimentais (R= 0,83). Este modelo foi validado de forma satisfatória (R=0,73) através da série 2 e utilizado na predição da atividade relativa de novos compostos. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-01-29 |
dc.date.accessioned.fl_str_mv |
2023-12-21T18:59:21Z |
dc.date.available.fl_str_mv |
2023-12-21T18:59:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ROCHA, Sheisi Fonseca Leite da Silva. Desenvolvimento de um modelo empírico de predição da seletividade e da atividade de inibidores da Shp2 utilizando o método semi-empírico PM7. 2019. 95 f. Tese (Doutorado em Química) - Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/10239 |
identifier_str_mv |
ROCHA, Sheisi Fonseca Leite da Silva. Desenvolvimento de um modelo empírico de predição da seletividade e da atividade de inibidores da Shp2 utilizando o método semi-empírico PM7. 2019. 95 f. Tese (Doutorado em Química) - Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/10239 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
ABRAHAM, M. J., MURTOLA, T., SCHULZ, R., PÁLL, S., SMITH, J. C., HESS, B., LINDAHL, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, v. 1, p. 19-25, 2015. ALCÁCER, Luís. Introdução à química quântica computacional. Energia, v. 265, n. 268, p. 273, 2007. ALICEA-VELAZQUEZ, L. N., BOGGON, J. T.. SHP family protein tyrosine phosphatases adopt canonical active-site conformations in the apo and phosphate-bound states. Protein and Peptide Letters, v. 20, n. 9, p. 1039-1048, 2013. ALONSO, A., SASIN, J., BOTTINI, N., FRIEDBERG, I., FRIEDBERG, I., OSTERMAN, A., MUSTELIN, T. Protein tyrosine phosphatases in the human genome. Cell, v. 117, n. 6, p. 699-711, 2004. ALLINGER, N. L. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. Journal of the American Chemical Society, v. 99, n. 25, p. 8127-8134, 1977. ANDERSEN, J. N., MORTENSEN, O. H., PETERS, G. H., DRAKE, P. G., IVERSEN, L. F., OLSEN, O. H., MØLLER, N. P. H. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Molecular and Cellular Biology, v. 21, n. 21, p. 7117-7136, 2001. ASI, A. M., RAHMAN, N. A., MERICAN, A. F. Application of the linear interaction energy method (LIE) to estimate the binding free energy values of Escherichia coli wild-type and mutant arginine repressor C-terminal domain (ArgRc)–l-arginine and ArgRc–l-citrulline protein–ligand complexes. Journal of Molecular Graphics and Modelling, v. 22, n. 4, p. 249-262, 2004. BARD-CHAPEAU, E. A., LI, S., DING, J., ZHANG, S. S., ZHU, H. H., PRINCEN, F., VARKI, N. M. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer cell, v. 19, n. 5, p. 629-639, 2011. BARR, A. J., UGOCHUKWU, E., LEE, W. H., KING, O. N., FILIPPAKOPOULOS, P., ALFANO, I., KNAPP, S. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell, v. 136, n. 2, p. 352-363, 2009. BENTIRES-ALJ, M., PAEZ, J. G., DAVID, F. S., KEILHACK, H., HALMOS, B., NAOKI, K., RICHARDS, W. G. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Research, v. 64, n. 24, p. 8816-8820, 2004. BONET, B., LOERINCS, G., GEFFNER, H. A robust and fast action selection mechanism for planning. In: AAAI/IAAI. 1997. p. 714-719. BORN, M., OPPENHEIMER, R. ROBERT. Zur quantentheorie der molekeln. Annalen der Physik, v. 389, n. 20, p. 457-484, 1927. BROOKS, C. L. A theoretical perspective of dynamics, structure, and thermodynamics. Advances in chemical physics; John Wiley: New York, v.LXXI. 1988. CHAMBERS, C. C., HAWKINS, G. D., CRAMER, C. J., TRUHLAR, D. G. Model for Aqueous Solvation Based on Class IV Atomic Charges and First Solvation Shell Effects. Journal of Physical Chemistry. v. 100, p. 16385-16298, 1996. CHAN, R. J., FENG, G. S. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood, v. 109, n. 3, p. 862-867, 2007. CHEN, C. Y., WILLARD, D., RUDOLPH, J. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines. Biochemistry, v. 48, n. 6, p. 1399-1409, 2009. CHEN, L., PERNAZZA, D., SCOTT, L. M., LAWRENCE, H. R., REN, Y., LUO, Y., LAWRENCE, N. J. Inhibition of cellular Shp2 activity by a methyl ester analog of SPI-112. Biochemical pharmacology, v. 80, n. 6, p. 801-810, 2010. CHENG, Y.; PRUSOFF, W. H. Relationship between the inhibition constant (KI) and the concentration which causes 50% inhibition of an enzymatic reaction. Biochemical Pharmacology, v. 22, p. 403-411, 1973. CHMIELA, S., TKATCHENKO, A., SAUCEDA, H. E., POLTAVSKY, I., SCHÜTT, K. T., MÜLLER, K. R. Machine learning of accurate energy-conserving molecular force fields. Science Advances, v. 3, n. 5, p. e1603015, 2017. CLARK, Tim. A handbook of computational chemistry: A practical guide to chemical structure and energy calculations. Wiley-Interscience, 1985. COSTA FILHO, Paulo Augusto da; POPPI, Ronei Jesus. Genetic algorithm in chemistry. Química Nova, v. 22, n. 3, p. 405-411, 1999. CRAMER, C. J.; TRUHLAR, D. G. PM3‐SM3: A general parameterization for including aqueous solvation effects in the PM3 molecular orbital model. Journal of Computational Chemistry, v. 13, n. 9, p. 1089-1097, 1992. DANCE, M., MONTAGNER, A., SALLES, J. P., YART, A., RAYNAL, P. The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cellular signalling, v. 20, n. 3, p. 453-459, 2008. DEWAR, M. J., ZOEBISCH, E. G., HEALY, E. F., STEWART, J. J. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, v. 107, n. 13, p. 3902-3909, 1985. DEWAR, M. J. S; THIEL, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society, v. 99, n. 15, p. 4899-4907, 1977. DOBEŠ, P., FANFRLÍK, J., ŘEZÁČ, J., OTYEPKA, M., HOBZA, P. Transferable scoring function based on semiempirical quantum mechanical PM6-DH2 method: CDK2 with 15 structurally diverse inhibitors. Journal of Computer-Aided Molecular Design, v. 25, n. 3, p. 223-235, 2011. DONG, S., LI, F. Q., ZHANG, Q., LV, K. Z., YANG, H. L., GAO, Y., YU, J. R. Expression and clinical significance of SHP2 in gastric cancer. Journal of International Medical Research, v. 40, n. 6, p. 2083-2089, 2012. ELDRIDGE, M. D., MURRAY, C. W., AUTON, T. R., PAOLINI, G. V., MEE, R. P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, v. 11, n. 5, p. 425-445, 1997. FAN, L. C., TENG, H. W., SHIAU, C. W., LIN, H., HUNG, M. H., CHEN, Y. L., CHEN, K. F. SHP-1 is a target of regorafenib in colorectal cancer. Oncotarget, v. 5, n. 15, p. 6243, 2014. FANFRLÍK, J., BRONOWSKA, A. K., ŘEZÁČ, J., PŘENOSIL, O., KONVALINKA, J., HOBZA, P. A reliable docking/scoring scheme based on the semiempirical quantum mechanical PM6-DH2 method accurately covering dispersion and H-bonding: HIV-1 protease with 22 ligands. The Journal of Physical Chemistry B, v. 114, n. 39, p. 12666-12678, 2010. FICHTNER-FEIGL, S., KESSELRING, R., STROBER, W. Chronic inflammation and the development of malignancy in the GI tract. Trends in Immunology, v. 36, n. 8, p. 451-459, 2015. GILSON, Michael K.; HONIG, Barry H. The dielectric constant of a folded protein. Biopolymers: Original Research on Biomolecules, v. 25, n. 11, p. 2097-2119, 1986. GOHLKE, H., HENDLICH, M., KLEBE, G. Knowledge-based scoring function to predict protein-ligand interactions1. Journal of Molecular Biology, v. 295, n. 2, p. 337-356, 2000. GÜNTELBERG, E. Untersuchungen über Ioneninteraktion. Zeitschrift für Physikalische Chemie, v. 123, n. 1, p. 199-247, 1926. HAN, T., X., D. M., SUN, W., LIU, N., SUN, H. L., WEN, W., CHENG, Z. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. Journal of Hepatology, v. 63, n. 3, p. 651-660, 2015. HANSSON, T., MARELIUS, J., ÅQVIST, J. Ligand binding affinity prediction by linear interaction energy methods. Journal of Computer-Aided Molecular Design, v. 12, n. 1, p. 27-35, 1998. HARTREE, D. R. On some approximate numerical applications of Bohr’s theory of spectra. In: Proceedings of the Cambridge Philosophical Society. 1923. p. 625-641. HE, R., YU, Z. H., ZHANG, R. Y., WU, L., GUNAWAN, A. M., LANE, B. S., WELLS, C. D. Exploring the existing drug space for novel pTyr mimetic and SHP2 inhibitors. ACS Medicinal Chemistry Letters, v. 6, n. 7, p. 782-786, 2015. HIGASHI, H., NAKAYA, A., TSUTSUMI, R., YOKOYAMA, K., FUJII, Y., ISHIKAWA, S., TANAKA, S. Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. Journal of Biological Chemistry, v. 279, n. 17, p. 17205-17216, 2004. HØYVIK, I.M., JØRGENSEN, P. Characterization and generation of local occupied and virtual Hartree–Fock orbitals. Chemical Reviews, v. 116, n. 5, p. 3306-3327, 2016. HOF, P., PLUSKEY, S., DHE-PAGANON, S., ECK, M. J., SHOELSON, S. E. Crystal structure of the tyrosine phosphatase SHP-2. Cell, v. 92, n. 4, p. 441-450, 1998. HOUSE, J. E. Fundamentals of Quantum Chemistry. Compllemmentary Science Series. Elsevier Science & Technology, 2004. HUANG, J., RAUSCHER, S., NAWROCKI, G., RAN, T., FEIG, M., DE GROOT, B. L., MACKERELL JR, A. D. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods, v. 14, n. 1, p. 71, 2016. JENSEN, F. Introduction to computational chemistry. Chichester: John Wiley & Sons, p.429. 1999. KAWASAKI, Y., FREIRE, E. Finding a better path to drug selectivity. Drug Discovery Today, v. 16, n. 21-22, p. 985-990, 2011. KLAMT, A.; SCHUURMANN, G. J. Chem Soc Perkin Trans 2 1993, 5, 799;(b) Baldridge, K.; Klamt. A. J Chem Phys, v. 106, p. 6622, 1997. KITCHEN, D. B., DECORNEZ, H., FURR, J. R., BAJORATH, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, v. 3, n. 11, p. 935, 2004. KUREBAYASHI, J., OKUBO, S., YAMAMOTO, Y., IKEDA, M., TANAKA, K., OTSUKI, T., SONOO, H. Additive antitumor effects of gefitinib and imatinib on anaplastic thyroid cancer cells. Cancer Chemotherapy and Pharmacology, v. 58, n. 4, p. 460-470, 2006. KOLLMAN, Peter. Free energy calculations: applications to chemical and biochemical phenomena. Chemical Reviews, v. 93, n. 7, p. 2395-2417, 1993. KORB, O., STÜTZLE, T., EXNER, T. E. An ant colony optimization approach to flexible protein–ligand docking. Swarm Intelligence, v. 1, n. 2, p. 115-134, 2007. KORB, O., STUTZLE, T., EXNER, T. E. Empirical scoring functions for advanced protein− ligand docking with PLANTS. Journal of Chemical Information and Modeling, v. 49, n. 1, p. 84-96, 2009. KUNTZ, I. D., BLANEY, J. M., OATLEY, S. J., LANGRIDGE, R., FERRIN, T. E. A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology, v. 161, n. 2, p. 269-288, 1982. LABBÉ, D. P., HARDY, S., TREMBLAY, M. L. Protein tyrosine phosphatases in cancer: friends and foes!. In: Progress in Molecular Biology and Translational Science. Academic Press, 2012. p. 253-306. LAN, L., HOLLAND, J. D., QI, J., GROSSKOPF, S., VOGEL, R., GYÖRFFY, B., BIRCHMEIER, W. Shp2 signaling suppresses senescence in PyMT‐induced mammary gland cancer in mice. The EMBO journal, p. e201489004, 2015. LAWRENCE, H. R., PIREDDU, R., CHEN, L., LUO, Y., SUNG, S. S., SZYMANSKI, A. M., LAWRENCE, N. J. Inhibitors of Src homology-2 domain containing protein tyrosine phosphatase-2 (Shp2) based on oxindole scaffolds. Journal of Medicinal Chemistry, v. 51, n. 16, p. 4948-4956, 2008. LEACH, A. R. Molecular Modelling -- Principles and Applications. England: Person Prentice Hall, p.744. 2001. LINDEN, R. Algoritmos genéticos: uma importante ferramenta da inteligência computacional. Brasport, 2006. LIU, W., YU, B., XU, G., XU, W. R., LOH, M. L., TANG, L. D., QU, C. K. Identification of cryptotanshinone as an inhibitor of oncogenic protein tyrosine phosphatase SHP2 (PTPN11). Journal of Medicinal Chemistry, v. 56, n. 18, p. 7212-7221, 2013. LOH, M. L., Reynolds, M. G., Vattikuti, S., Gerbing, R. B., Alonzo, T. A., Carlson, E., Meshinchi, S. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group. Leukemia, v. 18, n. 11, p. 1831, 2004. MORGON, N. H., COUTINHO, K. Métodos de química teórica e modelagem molecular. Editora Livraria da Física, 2007. MORRIS, G. M., GOODSELL, D. S., HALLIDAY, R. S., HUEY, R., HART, W. E., BELEW, R. K., & OLSON, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, v. 19, n. 14, p. 1639-1662, 1998. MUEGGE, I., MARTIN, Y. C. A general and fast scoring function for protein− ligand interactions: a simplified potential approach. Journal of Medicinal Chemistry, v. 42, n. 5, p. 791-804, 1999. NARDOZZA, A. P., D'ORAZIO, M., TRAPANNONE, R., CORALLINO, S., FILOMENI, G., TARTAGLIA, M., CASTAGNOLI, L. ROS and EGF are antagonistic cues controlling SHP-2 dimerization. Molecular and Cellular Biology, p. MCB. 06674-11, 2012. NIU, T., LIANG, X., YANG, J., ZHAO, Z., ZHOU, G. W. Kinetic comparison of the catalytic domains of SHP‐1 and SHP‐2. Journal of Cellular Biochemistry, v. 72, n. 1, p. 145-150, 1999. NODA, S., TAKAHASHI, A., HAYASHI, T., TANUMA, S. I., HATAKEYAMA, M. Determination of the catalytic activity of LEOPARD syndrome-associated SHP2 mutants toward parafibromin, a bona fide SHP2 substrate involved in Wnt signaling. Biochemical and Biophysical Research Communications, v. 469, n. 4, p. 1133-1139, 2016. O'BOYLE, N. M., BANCK, M., JAMES, C. A., MORLEY, C., VANDERMEERSCH, T., & HUTCHISON, G. R. Open Babel: An open chemical toolbox. Journal of Cheminformatics, v. 3, n. 1, p. 33, 2011. OLIVEIRA, Fernanda G. et al. Molecular docking study and development of an empirical binding free energy model for phosphodiesterase 4 inhibitors. Bioorganic & medicinal chemistry, v. 14, n. 17, p. 6001-6011, 2006. OHNISHI, Naomi et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proceedings of the National Academy of Sciences, v. 105, n. 3, p. 1003-1008, 2008. OPREA, T. I. Chemoinformatics in drug discovery. Weinheim: Wiley-VCH, p.493. 2005. PAGADALA, Nataraj S.; SYED, Khajamohiddin; TUSZYNSKI, Jack. Software for molecular docking: a review. Biophysical Reviews, v. 9, n. 2, p. 91-102, 2017. POPLE, J. A.; BEVERIDGE, D. L.; DOBOSH, P. A. Approximate self‐consistent molecular‐orbital theory. V. Intermediate neglect of differential overlap. The Journal of Chemical Physics, v. 47, n. 6, p. 2026-2033, 1967. QU, C. K. The SHP-2 tyrosine phosphatase: signaling mechanisms and biological functions. Cell Research, v. 10, n. 4, p. 279, 2000. REEVES, C. R. Modern heuristic techniques for combinatorial problems. Advanced topics in computer science. Mc Graw-Hill, 1995. ROCCOGRANDI, L., BINDER, Z. A., ZHANG, L., ACETO, N., ZHANG, Z., BENTIRES-ALJ, M., O’ROURKE, D. M. SHP2 regulates proliferation and tumorigenicity of glioma stem cells. Journal of Neuro-Oncology, v. 135, n. 3, p. 487-496, 2017. ROCHA, G. B., FREIRE, R. O., SIMAS, A. M., STEWART, J. J. Rm1: A reparameterization of am1 for h, c, n, o, p, s, f, cl, br, and i. Journal of Computational Chemistry, v. 27, n. 10, p. 1101-1111, 2006. SÁ, C. G. Planejamento, síntese e avaliação farmacológica in vitro de novos compostos N-arilpiperazínicos candidatos a protótipos antipsicóticos. Tese de doutorado. UFRJ, 2017 SANT'ANNA, C. M. R. Glossário de termos usados no planejamento de fármacos (recomendações da IUPAC para 1997). Química Nova, v. 25, n. 3, p. 505-512, 2002. SANT'ANNA, C. M. R. Métodos de modelagem molecular para estudo e planejamento de compostos bioativos: Uma introdução. Revista Virtual de Química, v. 1, n. 1, p. 49-57, 2009. SKOOG, D. A., WEST, D. M., HOLLER, F. J., CROUCH, S. Fundamentals of analytical chemistry. Nelson Education, 2013. SLATER, J. C. The theory of complex spectra. Physical Review., v.34, p.1293--1322, 1929. SERRANO, M. SHP2: a new target for pro‐senescence cancer therapies. The EMBO journal, v. 34, n. 11, p. 1439-1441, 2015. M SCOTT, L., R LAWRENCE, H., M SEBTI, S., J LAWRENCE, N., WU, J. Targeting protein tyrosine phosphatases for anticancer drug discovery. Current Pharmaceutical Design, v. 16, n. 16, p. 1843-1862, 2010. SCOTT, L. M., CHEN, L., DANIEL, K. G., BROOKS, W. H., GUIDA, W. C., LAWRENCE, H. R., WU, J. Shp2 protein tyrosine phosphatase inhibitor activity of estramustine phosphate and its triterpenoid analogs. Bioorganic & Medicinal Chemistry Letters, v. 21, n. 2, p. 730-733, 2011. SHI, Z. Q., YU, D. H., PARK, M., MARSHALL, M., FENG, G. S. Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Molecular and Cellular Biology, v. 20, n. 5, p. 1526-1536, 2000. STEWART, J. J. P. Optimization of parameters for semiempirical methods II. Applications. Journal of Computational Chemistry, v. 10, n. 2, p. 221-264, 1989. STEWART, J. J. P. Application of localized molecular orbitals to the solution of semiempirical self‐consistent field equations. International Journal of Quantum Chemistry, v. 58, n. 2, p. 133-146, 1996. STEWART, J. J. P. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, v. 13, n. 12, p. 1173-1213, 2007. STEWART, J. J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling, v. 19, n. 1, p. 1-32, 2013. TARCSAY, Á., KESERŰ, G. M. Is there a link between selectivity and binding thermodynamics profiles?. Drug Discovery Today, v. 20, n. 1, p. 86-94, 2015. THIEL, W., VOITYUK, A. A. Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results. Theoretica Chimica Acta, v. 81, n. 6, p. 391-404, 1992. TONKS, N. K. Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews Molecular Cell Biology, v. 7, n. 11, p. 833, 2006. VERDONK, M. L., COLE, J. C., HARTSHORN, M. J., MURRAY, C. W., TAYLOR, R. D. Improved protein–ligand docking using GOLD. Proteins: Structure, Function, and Bioinformatics, v. 52, n. 4, p. 609-623, 2003. WANG, S., MILNE, G. W., NICKLAUS, M. C., MARQUEZ, V. E., LEE, J., BLUMBERG, P. M. Protein kinase C. Modeling of the binding site and prediction of binding constants. Journal of Medicinal Chemistry, v. 37, n. 9, p. 1326-1338, 1994. WEINER, S. J., KOLLMAN, P. A., CASE, D. A., SINGH, U. C., GHIO, C., ALAGONA, G., WEINER, P. A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, v. 106, n. 3, p. 765-784, 1984. WU, J.; LAWRENCE, N. J.; SEBTI, S. M.; LAWRENCE, H. R; University Of South Florida, H. Lee Mofffitt Cancer Center and Research Institute, Inc. 2012. (US20120034186 A1) WU, N. J. LAWRENCE, S. M. SEBTI, H. R. LAWRENCE. University Of South Florida, H. Lee Mofffitt Cancer Center and Research Institute, Inc. 2008. (US2008/0176309 A1) XU, R., YU, Y., ZHENG, S., ZHAO, X., DONG, Q., HE, Z., XU, X. Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood, v. 106, n. 9, p. 3142-3149, 2005. YANG, J., LIANG, X., NIU, T., MENG, W., ZHAO, Z., ZHOU, G. W. Crystal structure of the catalytic domain of protein-tyrosine phosphatase SHP-1. Journal of Biological Chemistry, v. 273, n. 43, p. 28199-28207, 1998. YANG, J., CHENG, Z., NIU, T., LIANG, X., ZHAO, Z. J., ZHOU, G. W. Structural basis for substrate specificity of protein-tyrosine phosphatase SHP-1. Journal of Biological Chemistry, v. 275, n. 6, p. 4066-4071, 2000. YANG, J., NIU, T., ZHANG, A., MISHRA, A. K., ZHAO, Z. J., ZHOU, G. W. Relation between the flexibility of the WPD loop and the activity of the catalytic domain of protein tyrosine phosphatase SHP‐1. Journal of Cellular Biochemistry, v. 84, n. 1, p. 47-55, 2002. YU, Z. H., CHEN, L., WU, L., LIU, S., WANG, L., ZHANG, Z. Y. Small molecule inhibitors of SHP2 tyrosine phosphatase discovered by virtual screening. Bioorganic & Medicinal Chemistry Letters, v. 21, n. 14, p. 4238-4242, 2011. ZHANG, X., HE, Y., LIU, S., YU, Z., JIANG, Z. X., YANG, Z., WANG, L. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). Journal of Medicinal Chemistry, v. 53, n. 6, p. 2482-2493, 2010. ZHOU, X., COAD, J., DUCATMAN, B., AGAZIE, Y. M. SHP2 is up‐regulated in breast cancer cells and in infiltrating ductal carcinoma of the breast, implying its involvement in breast oncogenesis. Histopathology, v. 53, n. 4, p. 389-402, 2008. ZHOU, T., HUANG, D., CAFLISCH, A. Is quantum mechanics necessary for predicting binding free energy?. Journal of Medicinal Chemistry, v. 51, n. 14, p. 4280-4288, 2008. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Química |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Química |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10239/1/2019%20-%20Sheisi%20Fonseca%20Leite%20da%20Silva%20Rocha.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10239/2/2019%20-%20Sheisi%20Fonseca%20Leite%20da%20Silva%20Rocha.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10239/3/2019%20-%20Sheisi%20Fonseca%20Leite%20da%20Silva%20Rocha.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10239/4/license.txt |
bitstream.checksum.fl_str_mv |
cc73c4c239a4c332d642ba1e7c7a9fb2 ea42740fb5dc6f32463415c98bdd31d0 78e70249053e5be917fab9c80bc8a3b5 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810107899118092288 |