Estudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarina

Detalhes bibliográficos
Autor(a) principal: Lima, Lin Machado de
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/14601
Resumo: A monoamina oxidase [EC 1.4.3.4 (MAO)] é uma enzima localizada na membrana externa da mitocôndria que usa a flavina adenina dinucleotídeo (FAD) como cofator enzimático para catalisar a conversão oxidante de uma amina em seu aldeído correspondente, produzindo também amônia e peróxido de hidrogênio. A atividade das monoamina oxidases regula os níveis de aminas biogênicas presentes nos tecidos, principalmente no cérebro. Monoamina oxidases existem como duas proteínas: MAO-A e MAO-B. Estas isoformas foram definidas primariamente pelas afinidades por substratos e sensibilidade aos inibidores. Assim, a MAO-A oxida preferencialmente serotonina, melatonina, noradrenalina e adrenalina. A MAO-B oxida preferencialmente a feniletilamina, um alcaloide do metabolismo da fenilalanina. A ingestão de feniletilamina promove a liberação de dopamina que atua no cérebro estimulando euforia. Com relação aos inibidores, a MAO-A é inibida preferencialmente por clorgilina. MAO-B é inibida por deprenil e por pargilina. Esses inibidores podem ser usados para o tratamento das doenças degenerativas do cérebro. Desde que estudos têm mostrado que moléculas derivadas de cumarinas obtiveram excelentes resultados como inibidoras destas enzimas, muitas drogas novas derivadas da cumarina vêm sendo sintetizadas, das quais algumas são muito promissoras para o tratamento das doenças de Alzheimer e Parkinson. O alvo desse trabalho foi promover testes de inibição in vitro da MAO da fração mitocondrial de cérebro de rato Wistar com novos produtos derivados da cumarina. Dentre os compostos testados, dois deles se mostraram promissores como inibidores da MAO de fração mitocondrial de cérebro de rato wistar, atingindo mais de 60% de inibição da atividade da monoamina oxidase.
id UFRRJ-1_09740135bd6b9125fc864d6f0bca6934
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/14601
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Lima, Lin Machado deSalles, Cristiane Martins Cardoso deCPF: 035.399.287-90Bastos, Frederico FreireCPF: 082.617.467-76Vieira, André Luiz GomesFernandes, Daniele CorrêaSantos, André Marques dosBastos Neto, Jayme da CunhaCPF: 805.264.627-87http://lattes.cnpq.br/44430988949885652023-12-22T03:03:24Z2023-12-22T03:03:24Z2019-07-01LIMA, Lin Machado de. Estudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarina. 2019. 33 f. Dissertação (Mestrado em Quí­mica) - Instituto de Quí­mica, Departamento de Bioquí­mica, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.https://rima.ufrrj.br/jspui/handle/20.500.14407/14601A monoamina oxidase [EC 1.4.3.4 (MAO)] é uma enzima localizada na membrana externa da mitocôndria que usa a flavina adenina dinucleotídeo (FAD) como cofator enzimático para catalisar a conversão oxidante de uma amina em seu aldeído correspondente, produzindo também amônia e peróxido de hidrogênio. A atividade das monoamina oxidases regula os níveis de aminas biogênicas presentes nos tecidos, principalmente no cérebro. Monoamina oxidases existem como duas proteínas: MAO-A e MAO-B. Estas isoformas foram definidas primariamente pelas afinidades por substratos e sensibilidade aos inibidores. Assim, a MAO-A oxida preferencialmente serotonina, melatonina, noradrenalina e adrenalina. A MAO-B oxida preferencialmente a feniletilamina, um alcaloide do metabolismo da fenilalanina. A ingestão de feniletilamina promove a liberação de dopamina que atua no cérebro estimulando euforia. Com relação aos inibidores, a MAO-A é inibida preferencialmente por clorgilina. MAO-B é inibida por deprenil e por pargilina. Esses inibidores podem ser usados para o tratamento das doenças degenerativas do cérebro. Desde que estudos têm mostrado que moléculas derivadas de cumarinas obtiveram excelentes resultados como inibidoras destas enzimas, muitas drogas novas derivadas da cumarina vêm sendo sintetizadas, das quais algumas são muito promissoras para o tratamento das doenças de Alzheimer e Parkinson. O alvo desse trabalho foi promover testes de inibição in vitro da MAO da fração mitocondrial de cérebro de rato Wistar com novos produtos derivados da cumarina. Dentre os compostos testados, dois deles se mostraram promissores como inibidores da MAO de fração mitocondrial de cérebro de rato wistar, atingindo mais de 60% de inibição da atividade da monoamina oxidase.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorMonoamine oxidase [EC 1.4.3.4 (MAO)] is an enzyme located in the outer membrane of the mitochondria, which uses flavin adenine dinucleotide (FAD) as a cofactor to catalyze the oxidant conversion of an amine in its corresponding aldehyde, also producing ammonia and hydrogen peroxide. MAO activity regulates the levels of biogenic amines present in tissues, especially in the brain. MAO exists as two proteins: MAO-A and MAO-B. These isoforms were defined primarily by substrate affinities and inhibitor sensitivity. Accordingly, MAO-A oxidizes, preferably, serotonin, melatonin, noradrenaline and adrenaline. MAO-B preferably oxidizes phenylethylamine, an alkaloid from the metabolism of phenylalanine. The ingestion of phenylethylamine promotes the release of dopamine that acts in the brain stimulating euphoria. Concerning the inhibitors, MAO-A is preferentially inhibited by clorgiline. MAO-B is inhibited by deprenyl and pargyline. These inhibitors can be used in the treatment of degenerative brain diseases. Since studies have shown that molecules derived from coumarins achieved excellent results as inhibitors of these enzymes, several new drugs derived from coumarin have been synthesized, which a few are very promising in the treatment of Alzheimer's and Parkinson's diseases. This study aimed to promote in vitro inhibition tests of MAO with new substances derived from coumarin. Among the compounds tested, two of them were shown to be promising as MAO inhibitors of mitochondrial fraction of wistar rat brain, reaching more than 60% inhibition of monoamine oxidase activity.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em QuímicaUFRRJBrasilInstituto de QuímicaMonoamina oxidaseCumarinaInibidores de enzimasMonoamine oxidaseCoumarinEnzymes InhibitorsQuímicaEstudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarinaStudy of the inhibition of monoamine oxidase by new synthetic compounds derived from coumarininfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis1.(JPND), E.J.-N.([s.d.]). de JPND Research. Disponível em:˂http://www.neurodegenerationresearch.eu/about/what/˃. Acesso em maio de 2013. 2.Alzheimer’s association. , de Alzheimer’s Australia. Disponível em:˂http://www.fightdementia.org.au/understanding-dementia/section-1-about-dementia.aspx˃. Acesso em maio de 2013. 3.ANNAMALAI, B.; WON, J.S.; CHOI, S.; SINGH, I.; SINGH, A.K.. Role of s-nitrosoglutathione mediated mechanisms in tau hyper-phosphorylation. Biochemical andBiophysical Research Communications, 458, nº1, 214-219, 2015. 4.Associação Brasileira de Alzheimer (Abraz). Disponível em: ˂http://www.portalnovidade.com.br/materia/7315/doenca-neurodegenerativa-acomete-milhoes-em-todo-o-mundo.html˃. Acesso em 15 de abril de 2015. 5.AZIMI, S.; RAUK, A.. On the involvement of copper binding to the N-terminus of theamyloid beta peptide of Alzheimer’s disease: a computational study on model systems.International Journal of Alzheimer’s Disease, 2011, Article ID 539762, 1-15, 2011. 6.BARNHAM, K.J.; MASTERS, C.L.; BUSH, A.I.. Neurodegenerative diseases andoxidative stress. Nature Reviews Drugs Discovery, 3, 205-214, 2004. 7.BARNHAN, K.J.; BUSH, A.L.. Metals in Alzheimer’s and Parkinson’s diseases. CurrentOpinion in Chemical Biology, 12, nº 2, 222-228, 2008. 8.BARREIROS, A.L.B.S.; DAVID, J.M.; DAVID, J.P.. Estresse oxidativo: relação entregeração de espécies relativas e defesa do organismo. Química nova, 29, nº 1, 113-123,2006. 9.BARTUS, R.T.; DEAN, R.L.; BEER, B.; LIPPA, A.S.. The cholinergic hypothesis ofgeriatric memory dysfunctions. Science, 217, 408-417, 1982. 10.BENNET, B.M.; REYNOLDS, J.N.; PRUSKY, G.T.; DOUGLAS, R.M.; SUTHERLAND,R.J.; THATCHER, G.R.. Cognitive deficits in rat after forebrain cholinergic depletion arereversed by a novel no mimetic nitrate ester. Neuropsychopharmacology, 32, nº 3, 505-513, 2006. 11.BERGER-SWEENEY, J.; ARNOLD, A.; GABEAU, D,; MILLS, J.. Sex differences inlearning and memory in mice: effects of sequence of testing and cholinergic blockade.Beharvioral Neuroscience, 109, nº 5, 859-873, 1995. 12.BUSH, A.L.; PETTINGELL, W.H.; MULTHAUP, G.; d PARADIS, M.; VONSATTEL,J.P.; GUSELLA, J.F.; BEYREUTHER, K.; MASTERS, C.L.; TANZI, R.E.. Rapideinduction of Alzheimer A beta amyloid formation by zinc. Science, 265, nº 5177, 1464-1467, 1994. 13.CHARTIER-HARLIN, M.C.; CROWFORD, F.; HOULDEN, H.; WARREN, A.;HUGHES, D.; FIDANI, L.; GOATE, A.; ROSSOR, M.; ROQUES, P.; HARDY, J.. Early-onset Alzheimer’s disease caused by mutations st codon 717 of Beta-amyloid precursorprotein gene. Nature, 353, 844-846, 1991. 14.CITRON, M.; OUTERSDORF, T.; HAASS, C.; McCONLOQUE, L.; HUNG, A.Y.;SEUBERT, P.; VIGO-PELFREY, C.; LIEBERBURG, I.; SELDKOE, D.J.. Mutation ofbeta-amyloid precursor protein in familial Alzheimer’s disease increases beta-proteinproduction. Nature, 360, nº 6405, 672-674, 1992. 15.COYLE, J.T.; PRICE, D.L.; DeLONG, M.R.. Alzheimer’s disease: a disorder of corticalcholinergic innervation. Science, 219, 1184-1190, 1983. 16.CRADDOCK, T.J.; TUSZYNSKI, J.A.; CHOPRA, D.; CASEY, N.; GOLDSTEIN, L.E.;HAMEROFF, S.R.; TANZI, R.E.. The zinc dyshomeostasis hypothesis of Alzheimer’sdisease. Plos One, 7, nº 3, 1-16, 2012. 17.DANSHER, G.; JENSEN, K.B.; FREDERICKSON, C.J.; KEMP, K.; ANDREASEN, A.;JUHL, S.; STOLLENBERG, M.; RAVID, R.. Increased amount of zinc in thehippocampus and amygdala of Alzheimer’s disease brains: a proton-induced X-rayemission spectroscopic analysis of cryostat sections from autopsy material. JournalNeuroscience Methods, 76, nº 1, 53-59, 1997. 18.DAVIES, P.; MALONEY, A.J.F.. Selective loss of central cholinergic neurons inAlzheimer’s disease. The Lancet, 308, 1403, 1976. 19.DE FALCO, A.; CUKIERMAN, D.S.; HAUSER-DAVIS, R.A.; REY, N.A.. Doença deAlzheimer: hipóteses etiológicas e perspectivas de tratamento. Química Nova, 39, nº 1,1678-17064, 2016. 20.DEIBEL, M.A.; EHMANN, W.D.; MARKESBERY, W.R.. Copper, iron, and zincimbalances in severely degenerated brain regions in Alzheimer’s disease: possible relationto oxidative stress. Journal of the Neurological Sciences, 143, nº 1-2, 137-142, 1996. 21.DEUTSH, J.A.. The cholinergic synapse and the site of memory. Science, 174, 788-794,1971. 22.DINGLEDINE, R.; BORGES, K.; BOWIE, D.; TRAYNELIS, S.F.. The glutamatereceptor ion channels. Pharmacology Reviews, 51, nº 1, 7-61, 1999. 23.DOMINGUEZ, J.L.; FERNÁNDEZ,-NIETO, F.; BREA,J.M.; CATTO, M.; SOTO-OTERO,R.. 8-Aminomethyl-7-hydroxy-4-methylcoumarins as multitarget leads forAlzheimer’s Disease. Chemistry Select, 1, 2742-2749, 2016. 24.DRACHMAN, D.A.; SAHAKIAN, B.J.. Memory and cognitive function in the elderly: Apreliminary trial of physostigmine. Archives of Neurology, 37, (10), 674-675, 1980. 25.FINCKH, U.; KUSCHEL, C.; ANAGNOSOULI, M.; PATSOURIS, E.; PANTS, G.V.;GATZONIS, S.; KAPAKI, E.; DAVAKI, P.; LAMSZUS, K.; STAVROU, D.; GAL, A..Novel mutations and repeated findings of mutations in familial Alzheimer’s disease.Neurogenetics, 6, nº 2, 85-89, 2005. 26.FOLLMER, C.; BEZERRA-NETO, H.J.C.. Fármacos multifuncionais: monoaminaoxidase e a-sinucleína como alvos terapêuticos na doença de Parkinson. Química Nova,36, nº 2, 1-12, 2013. 27.GANDY, S.. The role of cerebral amyloid beta accumulation in forms of Alzheimer’sdisease. The Journal of Clinical Investigation, 115, (5), 1121-1129, 2005. 28.GIACCONE, G.; TAGLIAVINI, F.; LINOLI, G.; BOURAS, C.; FRIGERIO, L.;FRANGIONE, B.; BUGIANE, O.. Down patients: Extracellular preamyloyd depositsprecede neuritic degeneration and senile plaques. Neuroscience Letters, 97, (1-2), 232-238,1989. 29.GOATE, A.; CHARTIER-HARLIN, M.C.; MULLAN, M.; BROWN, J.; CRAWFORD,F.; FIDANE,L.; GIUFFRA, L.; HAYNES, A.; IRVING, N.; JAMES, L.. Nature, 349,704-706, 1991. 30.GREEN, A.; ELLIS, K.A.; ELLIS, J,; BARTHOLOMEUSZ,C.F.; LLIC,S.; CROFT,R.J.;PHAN,K.L.; NATHAN,P.J.. Muscarinic and nicotinic receptor modulation of object andspatial n-back working memory in humans. Pharmacology Biochemistry and Behaviour,81, nº 3, 575-584, 2005. 31.GREENAMYRE, J.T.; YOUNG, A.B.. Excitatory amino acids and Alzheimer’s disease.Neurobiology of anging, 10, nº 5, 593-602, 1989. 32.GREENAMYRE, J.T.;MARAGOS,W.F.; ALBIN, R.L.; PENNEY, J.B.; YOUNG, A.B..Glutamate transmission and toxicity in Alzheimer’s disease. Proq.Neuropsychopharmacology Biology Psychiatry, 12, nº 4, 421-430, 1988. 33.GU, L.; LIU, C.; GUO, Z.. Structural insights into Abeta42 oligomers using site-directedspin labelling. Journal Biological Chemistry, 288, nº 26, 18673-18683, 2013. 34.HAASS, C.; HUNG, A.Y.; SELKOE, D.J.; TEPLOW, D.B.. Mutations associated with alocus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor. Journal Biologic Chemistry, 269, 17741-17748, 1994. 35.HANE, F.; LEONENKO, Z.. Effect of metal on kinetic pathways of amyloid-betaaggregation. Biomolecules, 4, nº 1, 101-116, 2014. 36.HANE, F.; TRAN, G.; ATTWOOD, S.J.; LEONENKO, Z.. Cu(+2) affects amyloid –Beta(1-42) aggregation by increasing peptide-peptide binding forces. Plos One, 8, nº 3, 1-8,2013. 37.HARDMAN, J.G.; LIMBIRD, L.E.; GILMAN, A.G.; GOODMAN, L.S.; GILMAN, A.;Goodman & Gilman's the pharmacological basis of therapeutics, McGraw-Hill: NewYork, 1996. 38.HARDY, J.A.; HIGGINS, G.A.. Alzheimer’s disease: the amyloid cascade hypothesis.Science, 256, nº 5054, 184-185, 1992. 39.HASS, C.; SCHLOSSMACHER, M.G.; HUNG, A.Y.; VIGO-PELFREY, C.; MELLON,A.; OSTSZEWSKI, B.L.; LIEBERBURG, I.; KOO, E.H.; SCHENK, D.; TEPLOW, D.B..Nature, 359, 322-325, 1992. 40.HASSELMO, M.E.. The role of acethylcholine in learning and memory. Current Opinionin Neurobiology, 16, nº 6, 710-715, 2006. 41.HE, W.; BARROW, C.J.; The A beta 3-pyroglutamyl and 11-pyroglutamyl peptides foundin senile plaque have greater beta-sheet forming and aggregation propensities in vitro thanfull-length A beta. Biochemistry, 38, nº 33, 10871- 1877, 1999. 42.HENDRIKS, L.; van DUIJN, C.M.; CRAS, P.; CRUTS, M.; Van Hul, W.; vanHARSKAMP, F.; WARREN, A.; McINNIS, M.G.; ANTONARAKIS, S.E.; MARTIN,J.J.. Nature Genetics, 1, 218-221, 1992. 43.HUANG, M.;XIE, S.S.; JIANG, N.; LAN, J.S.; KONG, L.Y.; WNAG, X.B..Multifunctional coumarin derivatives: monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s. Bioorganic& Medicinal Chemistry Letters, 25, 508-513, 2015. 44.IWATSUBO, T.; MANN, D.M.; ODAKA, A.; SUZUKI, N.; IHARA, Y.. Amyloid betaprotein (A beta) deposition: A beta 42(43) precedes a beta 40 in Down syndrome. Annalsof Neurology, 37, nº 3, 294-299, 1995. 45.KÁSA, P.;RANKONCZAY, Z.; GULYA,K.. The cholinergic system in Alzheimer’sdisease. Progress in Neurobiology, 52, nº 6, 511-535, 1997. 46.KAYED, R.; SOKOLOV, Y.; EDMONDNS, B.; McINTIRE, T.M.; MILTON, S.C.;HALL, J.E.; GLABE, C.G.. permeabilization of lipid bilayers is a common conformation-dependent activity of volume amyloid oligomers in protein misfolding diseases. JournalBiological Chemistry, 279, 46363-46366, 2004. 47.KLEIN, W,L.; KRAFFT, G.A.; FINCH, C.E.. Targeting small A-beta oligomers: thesolution to an Alzheimer’s disease conundrum? Trends in Neurosciences, 24, nº4, 219-224, 2001. 48.KRAJL, M.. A rapid microfluorimetric determination of monoamine oxidase. BiochemicalPharmacology, 14, 1683-1685, 1965. 49.LEE, J.; CULYBA, E.K.; POWERS, E.T.; KELLY, J.W.. amyloid-beta forms fibrils bynucleated conformational conversation of oligomers. Nature Chemical Biology, 7, 602-609, 2011. 50.LEVY, E.; CARMAN, M.D.; FERNANDEZ-MADRID, I.J.; POWER, M.D.;LIEBERBURG, I.; van DUINEN, S.G.; BOTS, G.T.; LUYENDIJK, W.; FRANGIONE,B.. Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage,Dutch type. Science, 248, nº 4959, 1125-1126, 1990. 51.LOVELL, M.A.; ROBERTSON, J.D.; TEESDALE, W.J.; CAMPBELL, J.L.;MARKESBERY, W.R.. Copper, iron, and zinc in Alzheimer’s disease senile plaques.Journal of the Neurological Sciences, 158, nº 1, 47-52, 1998. 52.MATOS, M.J.. Potent and selective MAO-B inhibitory activity: Amino-versus nitro-3-arylcoumarin derivatives. Bioorganic & Medicinal Chemistry Letters, 25, 642-648, 2015. 53.MATTSON, M.P.. Cellular actions of beta-amyloid precursor protein and its soluble andfibrillogenic derivates. American Physiological Society Reviews, 77, nº 4, 1081- 1090,1997. 54.MAYA, A. ([s.d.]). Masters Neurosciences – Université de Strasbourg: Disponível em˂http://neuromaster.ustrasburg.fr/forms%20and%20PDF/Biography_of_Alois_Alzheimer%20by%20.pdf˃. Acesso em maio de 2013. 55.MIURA, T.; SUZUKI, K.; KOHATA, N.; TAKEUCHI, H.. Metal binding modes ofAlzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes.Biochemistry, 39, nº 23, 7024-7031, 2000. 56.MOORES, B.; DROLLE, E.; ATTWOOD, S.J.; SIMONS, J.; LEOLENKO, Z.. Effect ofsurfaces on amyloid fibril formation. Plos One, 6, nº 10, 1-10, 2011. 57.MUDHER, A.; LOVESTONE, S.. Alzheimer’s disease-do tauists and Baptists finallyshake hands? Trends Neuroscience, 25, nº1, 22-26, 2002. 58.MURRELL, J.; FARLOW, M.; GHETTI, B.; BENSON, M.D.. A mutation in the amyloidprecursor protein associated whish hereditary Alzheimer’s disease. Science, 254, nº 5028,97-99, 1991. 59.MUTURAJU,S.; MAITI, P.; SOLANKI, P.; SHARMA, A.K.; AMITABH; SINGH, S.B.,PRASAD, D.; LLAVAZHAGAN, G.. Acethycholinesterase inhibitors enhance cognitivefunctions in rats following hypobaric hypoxia. Behavioural brain research, 203, nº 1, 1-14, 2009. 60.National Institutes of Health. (julho 2011). National Institute on Aging – NationalInstitutes of Health: Disponível em:˂http://www.nia.nih.gov/sites/defout/files/alzheimers_disease_fact_sheet_0.pdf ˃.Acessoem maio de 2013. 61.NIE, Q.; DU, X.G.; GENG, M.Y.. Small molecule inhibitors of amilóideamiloide betapeptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. ActaPharmacological Sinica, 32, 545-551, 2011. 62.NIELSBERTH, C.; DANIELSSON, A.W.; ECKMAN, C.B.; CONDRON, M.M.;AXELMAN, K.; FORSELL, C.; STENH, C.; LUTHMAN, J.; TEPLOW, D.B.;YOUNKIN, S.G.; NÄSLUND, J.; LANNFELT, L.. The ‘Artic’ APP mutation (E693G)causes Alzheimer’s disease by enhanced A-beta protofibril formation. NatureNeuroscience, 4, 887-893, 2001. 63.ORHAN, I. E.. Potential of natural products of herbal origin as monoamine oxidaseinhibitors. Current Pharmaceutical Design, 22, nº 3, 268-276, 2016. 64.PARSONS, C.G.; STÖFFLER, A.; DANYSZ, W.. Memantine: a NMDA receptorantagonist that improves memory by restoration of homeostasis that glutamatergic system–too little activation is bad, too much is even worse. Neuropharmacology, 53, nº 6, 699-723, 2007. 65.PETERSON, G.L.. A simplification of the protein assay method of Lowry et al. Which ismore generally applicable. Analytical Biochemistry, 83, 346-356, 1977. 66.PUZZO, D.; VITOLO, O.; TRINCHESE, F.; JACOB, J.P.; PALMIERI, A.; ARANCIO,O.. Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsiveelement-binding protein pathway during hippocampal synaptic plasticity. JournalNeuroscience, 25, nº 29, 6887-6897, 2005. 67.SAIDO, T.C.; IWATSUBO, T.; MANN, D,M.; SHIMADA, H.; IHARA, Y.;KAWASHIMA, S.. Dominant and differential deposition of distinct beta-amyloid peptidespecies, A beta N3(pE), in senile plaques. Neuron, 14, nº 2, 457-466, 1995. 68.SAYRE, L.M.; PERRY, G.; HARRIS, P.L.; LIU, Y.; SCHOUBERT, K.A.; SMITH, M.A..In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’sdisease: a central role for bound transition metals. Journal of the Neurochemistry, 74, nº1, 270-279, 2000. 69.SECCI, D.; CARRADONI, S.; BOLASCO, A.; CHIMENTI, P.; YÁÑES, M.; ORTUSO,F.; ALCARO, S.. Synthesis and selective human monoamine oxidase inhibition of 3-carbonyl, 3-acyl, and 3-carboxyhydrazido coumarin derivatives. European JournalMedicine Chemistry, 46, 4846-4852, 2011. 70.SELKOE, D.; MANDELKOW, E.; HOLTZMAN, D.. Deciphering Alzheimer’s disease.Cold Spring Harbour Perspectives in Medicine, 2, 1-8, 2012. 71.SELKOE, D.J.. Amyloid beta-protein and the genetics of Alzheimer’s disease. JournalBiological Chemistry, 27, nº 31, 18295-8, 1996. 72. SERRANO-POZO, A.; FROSCH, M.P.; MASLIAH, E.; HYMAN, B.T.. Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1-24, 2011. 73.SMITH, M.A.; WEHR, K.; HARRIS, P.L.; SIEDLAK, S,L.; CONNOR, J.R.; PERRY, G..abnormal localization of iron regulatory protein in Alzheimer’s disease. Brain Research,788, nº 1-2, 232-236, 1998. 74.SMITH, M.A.C.; Revista brasileira de psiquiatria, 21, 03, 1999. 75.SOREGHAN, B.; KOSMOSKI, J.; GLABE, C.. Surfactant properties of Alzheimer’s Abeta peptides and the mechanism of amyloid aggregation. Journal Biological Chemistry,269, nº 46, 28551-28554, 1994. 76.SPIRES, T.L.; HYMAN, B.T.. Transgenic models of Alzheimer’s disease: learning fromanimals. Neuro Rx, 2, nº 3, 423-437, 2005. 77.SUCHER, N.J.; AWOBULUYI, M.; CHOI, Y.B.; LIPTON,S.A.. NMDA receptors: fromgenes to channels. Trends in Pharmacological Sciences, 17,nº 10, 349-355, 1996. 78.TABATON, M.; NUNZI, M.G.; XUE, R.; USIAK, M.; AUTILIO-GAMBETTI, L.;GAMBETTI, P.. Soluble amyloid beta-protein is a marker of Alzheimer amyloid in brainbut nor in cerebrospinal fluid. Biochemical and Biophysical Research Communications,200, nº 3, 1598-1603, 1994. 79.TÕUGU, V.; KARAFIN, A.; PALUMAA, P.. Binding of zinc(II) and copper (II) to thefull-length Alzheimer’s amyloid-beta peptide. Journal Neurochemistry, 104, nº 5, 1249-1259, 2008. 80.WALSH, D.M.; KLYUBIN, I.; FADEEVA, J.; CULLEN, W.K.; ANWYL, R.; WOLFE,M.S.; ROWAN, M.J.; SELKOE, D.J..Naturally secreted oligomers of amyloid beta-proteinpotently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535-539, 2002. 81.WEINER, M.W.; VEITCH,D.P.; AISEN, P.S.; BECKETT, L.A.; CAIRNS,N.J.; GREEN,R.C.; HARVET, D.; JACK, C.R.; JAGUST, W.; LIU, E.; MORRIS, J.C.; PETERSEN,R.C.; SAYKIN, A.J.; SCHMIDT, M.E.; SHAW, L.; SIUCIAK, J.A.; SOARES, H.;TOGA, A.W.; TROJANOWSKI, J.Q.. The Alzheimer’s disease neuroimaging initiative: areview of papers published since its inception. Alzheimer’s & Dementia, 8, nº 1, S1-S68,2012. 82.WILCOCK, G.K.; ESIRI, M.M.; BOWEN, D.M.; SMITH, C.C.T.. Alzheimer’s disease:correlation of cortical choline acethyltransferase activity with the severity of dementia andhistological abnormalities. Journal of the Neurological Sciences, 57, nº 2-3, 407-417,1982. 83.WISHIK, C.M.; NOVAK, M.; EDWARDS, P.C.; KLUG, A.; TICHELAAR, W.;CROWTHER, R.A.. Proc. Natl.Acad. Sci. U.S.A., 85, 4884, 1988. 84.YANG, D.S.; McLAURIN, J.; QIN,K.; WESTAWAY, D.; FRASER, P.E.. Examining thezinc binding site of the amyloid-beta peptide. European Journal Biochemistry, 267, nº22, 6692-6698, 2000. 85.YOUDIM, M.B.; BAKHLE, Y.S.. Monoamine oxidase: isoforms and inhibitors inParkinson’s disease and depressive illness. British Journal Pharmacology, 147, 287-296,2006. 86.YOUDIM, M.B.; WEINSTOCK, M.. Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase A and B that do not cause significant tyraminepotentiation. Neurotoxicology, 25, nº 1-2, 243-250, 2004. 87.ZHENG, W.H.; BASTIANETTO, S.; MENNICKEN, F.; MA, W.; KAR, S.. Amyloid betapeptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septalcultures. Neuroscience, 115, nº 1, 201-211, 2002. 88.ZHU, X.; SU, B.; WANG, X.; SMITH, M.A.; PERRY, G.. Causes of oxidative stress inAlzheimer’s disease. Cellular and Molecular Life Sciences, 64, nº 17, 2202-2210, 2007.https://tede.ufrrj.br/retrieve/67901/2019%20-%20Lin%20Machado%20de%20Lima.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5322Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-01-19T18:51:44Z No. of bitstreams: 1 2019 - Lin Machado de Lima.pdf: 931751 bytes, checksum: b85decb15478a60703cdbcccab374702 (MD5)Made available in DSpace on 2022-01-19T18:51:45Z (GMT). No. of bitstreams: 1 2019 - Lin Machado de Lima.pdf: 931751 bytes, checksum: b85decb15478a60703cdbcccab374702 (MD5) Previous issue date: 2019-07-01info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Lin Machado de Lima.pdf.jpgGenerated Thumbnailimage/jpeg2233https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14601/1/2019%20-%20Lin%20Machado%20de%20Lima.pdf.jpg2b6920b5044aacfb0a882404d9f676fcMD51TEXT2019 - Lin Machado de Lima.pdf.txtExtracted Texttext/plain68702https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14601/2/2019%20-%20Lin%20Machado%20de%20Lima.pdf.txtbc4816f30e30c07cc85ca727c22642f3MD52ORIGINAL2019 - Lin Machado de Lima.pdfapplication/pdf931751https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14601/3/2019%20-%20Lin%20Machado%20de%20Lima.pdfb85decb15478a60703cdbcccab374702MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14601/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/146012023-12-22 00:03:24.061oai:rima.ufrrj.br:20.500.14407/14601Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T03:03:24Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Estudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarina
dc.title.alternative.eng.fl_str_mv Study of the inhibition of monoamine oxidase by new synthetic compounds derived from coumarin
title Estudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarina
spellingShingle Estudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarina
Lima, Lin Machado de
Monoamina oxidase
Cumarina
Inibidores de enzimas
Monoamine oxidase
Coumarin
Enzymes Inhibitors
Química
title_short Estudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarina
title_full Estudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarina
title_fullStr Estudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarina
title_full_unstemmed Estudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarina
title_sort Estudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarina
author Lima, Lin Machado de
author_facet Lima, Lin Machado de
author_role author
dc.contributor.author.fl_str_mv Lima, Lin Machado de
dc.contributor.advisor1.fl_str_mv Salles, Cristiane Martins Cardoso de
dc.contributor.advisor1ID.fl_str_mv CPF: 035.399.287-90
dc.contributor.advisor-co1.fl_str_mv Bastos, Frederico Freire
dc.contributor.advisor-co1ID.fl_str_mv CPF: 082.617.467-76
dc.contributor.referee1.fl_str_mv Vieira, André Luiz Gomes
dc.contributor.referee2.fl_str_mv Fernandes, Daniele Corrêa
dc.contributor.referee3.fl_str_mv Santos, André Marques dos
dc.contributor.referee4.fl_str_mv Bastos Neto, Jayme da Cunha
dc.contributor.authorID.fl_str_mv CPF: 805.264.627-87
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4443098894988565
contributor_str_mv Salles, Cristiane Martins Cardoso de
Bastos, Frederico Freire
Vieira, André Luiz Gomes
Fernandes, Daniele Corrêa
Santos, André Marques dos
Bastos Neto, Jayme da Cunha
dc.subject.por.fl_str_mv Monoamina oxidase
Cumarina
Inibidores de enzimas
topic Monoamina oxidase
Cumarina
Inibidores de enzimas
Monoamine oxidase
Coumarin
Enzymes Inhibitors
Química
dc.subject.eng.fl_str_mv Monoamine oxidase
Coumarin
Enzymes Inhibitors
dc.subject.cnpq.fl_str_mv Química
description A monoamina oxidase [EC 1.4.3.4 (MAO)] é uma enzima localizada na membrana externa da mitocôndria que usa a flavina adenina dinucleotídeo (FAD) como cofator enzimático para catalisar a conversão oxidante de uma amina em seu aldeído correspondente, produzindo também amônia e peróxido de hidrogênio. A atividade das monoamina oxidases regula os níveis de aminas biogênicas presentes nos tecidos, principalmente no cérebro. Monoamina oxidases existem como duas proteínas: MAO-A e MAO-B. Estas isoformas foram definidas primariamente pelas afinidades por substratos e sensibilidade aos inibidores. Assim, a MAO-A oxida preferencialmente serotonina, melatonina, noradrenalina e adrenalina. A MAO-B oxida preferencialmente a feniletilamina, um alcaloide do metabolismo da fenilalanina. A ingestão de feniletilamina promove a liberação de dopamina que atua no cérebro estimulando euforia. Com relação aos inibidores, a MAO-A é inibida preferencialmente por clorgilina. MAO-B é inibida por deprenil e por pargilina. Esses inibidores podem ser usados para o tratamento das doenças degenerativas do cérebro. Desde que estudos têm mostrado que moléculas derivadas de cumarinas obtiveram excelentes resultados como inibidoras destas enzimas, muitas drogas novas derivadas da cumarina vêm sendo sintetizadas, das quais algumas são muito promissoras para o tratamento das doenças de Alzheimer e Parkinson. O alvo desse trabalho foi promover testes de inibição in vitro da MAO da fração mitocondrial de cérebro de rato Wistar com novos produtos derivados da cumarina. Dentre os compostos testados, dois deles se mostraram promissores como inibidores da MAO de fração mitocondrial de cérebro de rato wistar, atingindo mais de 60% de inibição da atividade da monoamina oxidase.
publishDate 2019
dc.date.issued.fl_str_mv 2019-07-01
dc.date.accessioned.fl_str_mv 2023-12-22T03:03:24Z
dc.date.available.fl_str_mv 2023-12-22T03:03:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LIMA, Lin Machado de. Estudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarina. 2019. 33 f. Dissertação (Mestrado em Quí­mica) - Instituto de Quí­mica, Departamento de Bioquí­mica, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/14601
identifier_str_mv LIMA, Lin Machado de. Estudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarina. 2019. 33 f. Dissertação (Mestrado em Quí­mica) - Instituto de Quí­mica, Departamento de Bioquí­mica, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/14601
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv 1.(JPND), E.J.-N.([s.d.]). de JPND Research. Disponível em:˂http://www.neurodegenerationresearch.eu/about/what/˃. Acesso em maio de 2013. 2.Alzheimer’s association. , de Alzheimer’s Australia. Disponível em:˂http://www.fightdementia.org.au/understanding-dementia/section-1-about-dementia.aspx˃. Acesso em maio de 2013. 3.ANNAMALAI, B.; WON, J.S.; CHOI, S.; SINGH, I.; SINGH, A.K.. Role of s-nitrosoglutathione mediated mechanisms in tau hyper-phosphorylation. Biochemical andBiophysical Research Communications, 458, nº1, 214-219, 2015. 4.Associação Brasileira de Alzheimer (Abraz). Disponível em: ˂http://www.portalnovidade.com.br/materia/7315/doenca-neurodegenerativa-acomete-milhoes-em-todo-o-mundo.html˃. Acesso em 15 de abril de 2015. 5.AZIMI, S.; RAUK, A.. On the involvement of copper binding to the N-terminus of theamyloid beta peptide of Alzheimer’s disease: a computational study on model systems.International Journal of Alzheimer’s Disease, 2011, Article ID 539762, 1-15, 2011. 6.BARNHAM, K.J.; MASTERS, C.L.; BUSH, A.I.. Neurodegenerative diseases andoxidative stress. Nature Reviews Drugs Discovery, 3, 205-214, 2004. 7.BARNHAN, K.J.; BUSH, A.L.. Metals in Alzheimer’s and Parkinson’s diseases. CurrentOpinion in Chemical Biology, 12, nº 2, 222-228, 2008. 8.BARREIROS, A.L.B.S.; DAVID, J.M.; DAVID, J.P.. Estresse oxidativo: relação entregeração de espécies relativas e defesa do organismo. Química nova, 29, nº 1, 113-123,2006. 9.BARTUS, R.T.; DEAN, R.L.; BEER, B.; LIPPA, A.S.. The cholinergic hypothesis ofgeriatric memory dysfunctions. Science, 217, 408-417, 1982. 10.BENNET, B.M.; REYNOLDS, J.N.; PRUSKY, G.T.; DOUGLAS, R.M.; SUTHERLAND,R.J.; THATCHER, G.R.. Cognitive deficits in rat after forebrain cholinergic depletion arereversed by a novel no mimetic nitrate ester. Neuropsychopharmacology, 32, nº 3, 505-513, 2006. 11.BERGER-SWEENEY, J.; ARNOLD, A.; GABEAU, D,; MILLS, J.. Sex differences inlearning and memory in mice: effects of sequence of testing and cholinergic blockade.Beharvioral Neuroscience, 109, nº 5, 859-873, 1995. 12.BUSH, A.L.; PETTINGELL, W.H.; MULTHAUP, G.; d PARADIS, M.; VONSATTEL,J.P.; GUSELLA, J.F.; BEYREUTHER, K.; MASTERS, C.L.; TANZI, R.E.. Rapideinduction of Alzheimer A beta amyloid formation by zinc. Science, 265, nº 5177, 1464-1467, 1994. 13.CHARTIER-HARLIN, M.C.; CROWFORD, F.; HOULDEN, H.; WARREN, A.;HUGHES, D.; FIDANI, L.; GOATE, A.; ROSSOR, M.; ROQUES, P.; HARDY, J.. Early-onset Alzheimer’s disease caused by mutations st codon 717 of Beta-amyloid precursorprotein gene. Nature, 353, 844-846, 1991. 14.CITRON, M.; OUTERSDORF, T.; HAASS, C.; McCONLOQUE, L.; HUNG, A.Y.;SEUBERT, P.; VIGO-PELFREY, C.; LIEBERBURG, I.; SELDKOE, D.J.. Mutation ofbeta-amyloid precursor protein in familial Alzheimer’s disease increases beta-proteinproduction. Nature, 360, nº 6405, 672-674, 1992. 15.COYLE, J.T.; PRICE, D.L.; DeLONG, M.R.. Alzheimer’s disease: a disorder of corticalcholinergic innervation. Science, 219, 1184-1190, 1983. 16.CRADDOCK, T.J.; TUSZYNSKI, J.A.; CHOPRA, D.; CASEY, N.; GOLDSTEIN, L.E.;HAMEROFF, S.R.; TANZI, R.E.. The zinc dyshomeostasis hypothesis of Alzheimer’sdisease. Plos One, 7, nº 3, 1-16, 2012. 17.DANSHER, G.; JENSEN, K.B.; FREDERICKSON, C.J.; KEMP, K.; ANDREASEN, A.;JUHL, S.; STOLLENBERG, M.; RAVID, R.. Increased amount of zinc in thehippocampus and amygdala of Alzheimer’s disease brains: a proton-induced X-rayemission spectroscopic analysis of cryostat sections from autopsy material. JournalNeuroscience Methods, 76, nº 1, 53-59, 1997. 18.DAVIES, P.; MALONEY, A.J.F.. Selective loss of central cholinergic neurons inAlzheimer’s disease. The Lancet, 308, 1403, 1976. 19.DE FALCO, A.; CUKIERMAN, D.S.; HAUSER-DAVIS, R.A.; REY, N.A.. Doença deAlzheimer: hipóteses etiológicas e perspectivas de tratamento. Química Nova, 39, nº 1,1678-17064, 2016. 20.DEIBEL, M.A.; EHMANN, W.D.; MARKESBERY, W.R.. Copper, iron, and zincimbalances in severely degenerated brain regions in Alzheimer’s disease: possible relationto oxidative stress. Journal of the Neurological Sciences, 143, nº 1-2, 137-142, 1996. 21.DEUTSH, J.A.. The cholinergic synapse and the site of memory. Science, 174, 788-794,1971. 22.DINGLEDINE, R.; BORGES, K.; BOWIE, D.; TRAYNELIS, S.F.. The glutamatereceptor ion channels. Pharmacology Reviews, 51, nº 1, 7-61, 1999. 23.DOMINGUEZ, J.L.; FERNÁNDEZ,-NIETO, F.; BREA,J.M.; CATTO, M.; SOTO-OTERO,R.. 8-Aminomethyl-7-hydroxy-4-methylcoumarins as multitarget leads forAlzheimer’s Disease. Chemistry Select, 1, 2742-2749, 2016. 24.DRACHMAN, D.A.; SAHAKIAN, B.J.. Memory and cognitive function in the elderly: Apreliminary trial of physostigmine. Archives of Neurology, 37, (10), 674-675, 1980. 25.FINCKH, U.; KUSCHEL, C.; ANAGNOSOULI, M.; PATSOURIS, E.; PANTS, G.V.;GATZONIS, S.; KAPAKI, E.; DAVAKI, P.; LAMSZUS, K.; STAVROU, D.; GAL, A..Novel mutations and repeated findings of mutations in familial Alzheimer’s disease.Neurogenetics, 6, nº 2, 85-89, 2005. 26.FOLLMER, C.; BEZERRA-NETO, H.J.C.. Fármacos multifuncionais: monoaminaoxidase e a-sinucleína como alvos terapêuticos na doença de Parkinson. Química Nova,36, nº 2, 1-12, 2013. 27.GANDY, S.. The role of cerebral amyloid beta accumulation in forms of Alzheimer’sdisease. The Journal of Clinical Investigation, 115, (5), 1121-1129, 2005. 28.GIACCONE, G.; TAGLIAVINI, F.; LINOLI, G.; BOURAS, C.; FRIGERIO, L.;FRANGIONE, B.; BUGIANE, O.. Down patients: Extracellular preamyloyd depositsprecede neuritic degeneration and senile plaques. Neuroscience Letters, 97, (1-2), 232-238,1989. 29.GOATE, A.; CHARTIER-HARLIN, M.C.; MULLAN, M.; BROWN, J.; CRAWFORD,F.; FIDANE,L.; GIUFFRA, L.; HAYNES, A.; IRVING, N.; JAMES, L.. Nature, 349,704-706, 1991. 30.GREEN, A.; ELLIS, K.A.; ELLIS, J,; BARTHOLOMEUSZ,C.F.; LLIC,S.; CROFT,R.J.;PHAN,K.L.; NATHAN,P.J.. Muscarinic and nicotinic receptor modulation of object andspatial n-back working memory in humans. Pharmacology Biochemistry and Behaviour,81, nº 3, 575-584, 2005. 31.GREENAMYRE, J.T.; YOUNG, A.B.. Excitatory amino acids and Alzheimer’s disease.Neurobiology of anging, 10, nº 5, 593-602, 1989. 32.GREENAMYRE, J.T.;MARAGOS,W.F.; ALBIN, R.L.; PENNEY, J.B.; YOUNG, A.B..Glutamate transmission and toxicity in Alzheimer’s disease. Proq.Neuropsychopharmacology Biology Psychiatry, 12, nº 4, 421-430, 1988. 33.GU, L.; LIU, C.; GUO, Z.. Structural insights into Abeta42 oligomers using site-directedspin labelling. Journal Biological Chemistry, 288, nº 26, 18673-18683, 2013. 34.HAASS, C.; HUNG, A.Y.; SELKOE, D.J.; TEPLOW, D.B.. Mutations associated with alocus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor. Journal Biologic Chemistry, 269, 17741-17748, 1994. 35.HANE, F.; LEONENKO, Z.. Effect of metal on kinetic pathways of amyloid-betaaggregation. Biomolecules, 4, nº 1, 101-116, 2014. 36.HANE, F.; TRAN, G.; ATTWOOD, S.J.; LEONENKO, Z.. Cu(+2) affects amyloid –Beta(1-42) aggregation by increasing peptide-peptide binding forces. Plos One, 8, nº 3, 1-8,2013. 37.HARDMAN, J.G.; LIMBIRD, L.E.; GILMAN, A.G.; GOODMAN, L.S.; GILMAN, A.;Goodman & Gilman's the pharmacological basis of therapeutics, McGraw-Hill: NewYork, 1996. 38.HARDY, J.A.; HIGGINS, G.A.. Alzheimer’s disease: the amyloid cascade hypothesis.Science, 256, nº 5054, 184-185, 1992. 39.HASS, C.; SCHLOSSMACHER, M.G.; HUNG, A.Y.; VIGO-PELFREY, C.; MELLON,A.; OSTSZEWSKI, B.L.; LIEBERBURG, I.; KOO, E.H.; SCHENK, D.; TEPLOW, D.B..Nature, 359, 322-325, 1992. 40.HASSELMO, M.E.. The role of acethylcholine in learning and memory. Current Opinionin Neurobiology, 16, nº 6, 710-715, 2006. 41.HE, W.; BARROW, C.J.; The A beta 3-pyroglutamyl and 11-pyroglutamyl peptides foundin senile plaque have greater beta-sheet forming and aggregation propensities in vitro thanfull-length A beta. Biochemistry, 38, nº 33, 10871- 1877, 1999. 42.HENDRIKS, L.; van DUIJN, C.M.; CRAS, P.; CRUTS, M.; Van Hul, W.; vanHARSKAMP, F.; WARREN, A.; McINNIS, M.G.; ANTONARAKIS, S.E.; MARTIN,J.J.. Nature Genetics, 1, 218-221, 1992. 43.HUANG, M.;XIE, S.S.; JIANG, N.; LAN, J.S.; KONG, L.Y.; WNAG, X.B..Multifunctional coumarin derivatives: monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s. Bioorganic& Medicinal Chemistry Letters, 25, 508-513, 2015. 44.IWATSUBO, T.; MANN, D.M.; ODAKA, A.; SUZUKI, N.; IHARA, Y.. Amyloid betaprotein (A beta) deposition: A beta 42(43) precedes a beta 40 in Down syndrome. Annalsof Neurology, 37, nº 3, 294-299, 1995. 45.KÁSA, P.;RANKONCZAY, Z.; GULYA,K.. The cholinergic system in Alzheimer’sdisease. Progress in Neurobiology, 52, nº 6, 511-535, 1997. 46.KAYED, R.; SOKOLOV, Y.; EDMONDNS, B.; McINTIRE, T.M.; MILTON, S.C.;HALL, J.E.; GLABE, C.G.. permeabilization of lipid bilayers is a common conformation-dependent activity of volume amyloid oligomers in protein misfolding diseases. JournalBiological Chemistry, 279, 46363-46366, 2004. 47.KLEIN, W,L.; KRAFFT, G.A.; FINCH, C.E.. Targeting small A-beta oligomers: thesolution to an Alzheimer’s disease conundrum? Trends in Neurosciences, 24, nº4, 219-224, 2001. 48.KRAJL, M.. A rapid microfluorimetric determination of monoamine oxidase. BiochemicalPharmacology, 14, 1683-1685, 1965. 49.LEE, J.; CULYBA, E.K.; POWERS, E.T.; KELLY, J.W.. amyloid-beta forms fibrils bynucleated conformational conversation of oligomers. Nature Chemical Biology, 7, 602-609, 2011. 50.LEVY, E.; CARMAN, M.D.; FERNANDEZ-MADRID, I.J.; POWER, M.D.;LIEBERBURG, I.; van DUINEN, S.G.; BOTS, G.T.; LUYENDIJK, W.; FRANGIONE,B.. Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage,Dutch type. Science, 248, nº 4959, 1125-1126, 1990. 51.LOVELL, M.A.; ROBERTSON, J.D.; TEESDALE, W.J.; CAMPBELL, J.L.;MARKESBERY, W.R.. Copper, iron, and zinc in Alzheimer’s disease senile plaques.Journal of the Neurological Sciences, 158, nº 1, 47-52, 1998. 52.MATOS, M.J.. Potent and selective MAO-B inhibitory activity: Amino-versus nitro-3-arylcoumarin derivatives. Bioorganic & Medicinal Chemistry Letters, 25, 642-648, 2015. 53.MATTSON, M.P.. Cellular actions of beta-amyloid precursor protein and its soluble andfibrillogenic derivates. American Physiological Society Reviews, 77, nº 4, 1081- 1090,1997. 54.MAYA, A. ([s.d.]). Masters Neurosciences – Université de Strasbourg: Disponível em˂http://neuromaster.ustrasburg.fr/forms%20and%20PDF/Biography_of_Alois_Alzheimer%20by%20.pdf˃. Acesso em maio de 2013. 55.MIURA, T.; SUZUKI, K.; KOHATA, N.; TAKEUCHI, H.. Metal binding modes ofAlzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes.Biochemistry, 39, nº 23, 7024-7031, 2000. 56.MOORES, B.; DROLLE, E.; ATTWOOD, S.J.; SIMONS, J.; LEOLENKO, Z.. Effect ofsurfaces on amyloid fibril formation. Plos One, 6, nº 10, 1-10, 2011. 57.MUDHER, A.; LOVESTONE, S.. Alzheimer’s disease-do tauists and Baptists finallyshake hands? Trends Neuroscience, 25, nº1, 22-26, 2002. 58.MURRELL, J.; FARLOW, M.; GHETTI, B.; BENSON, M.D.. A mutation in the amyloidprecursor protein associated whish hereditary Alzheimer’s disease. Science, 254, nº 5028,97-99, 1991. 59.MUTURAJU,S.; MAITI, P.; SOLANKI, P.; SHARMA, A.K.; AMITABH; SINGH, S.B.,PRASAD, D.; LLAVAZHAGAN, G.. Acethycholinesterase inhibitors enhance cognitivefunctions in rats following hypobaric hypoxia. Behavioural brain research, 203, nº 1, 1-14, 2009. 60.National Institutes of Health. (julho 2011). National Institute on Aging – NationalInstitutes of Health: Disponível em:˂http://www.nia.nih.gov/sites/defout/files/alzheimers_disease_fact_sheet_0.pdf ˃.Acessoem maio de 2013. 61.NIE, Q.; DU, X.G.; GENG, M.Y.. Small molecule inhibitors of amilóideamiloide betapeptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. ActaPharmacological Sinica, 32, 545-551, 2011. 62.NIELSBERTH, C.; DANIELSSON, A.W.; ECKMAN, C.B.; CONDRON, M.M.;AXELMAN, K.; FORSELL, C.; STENH, C.; LUTHMAN, J.; TEPLOW, D.B.;YOUNKIN, S.G.; NÄSLUND, J.; LANNFELT, L.. The ‘Artic’ APP mutation (E693G)causes Alzheimer’s disease by enhanced A-beta protofibril formation. NatureNeuroscience, 4, 887-893, 2001. 63.ORHAN, I. E.. Potential of natural products of herbal origin as monoamine oxidaseinhibitors. Current Pharmaceutical Design, 22, nº 3, 268-276, 2016. 64.PARSONS, C.G.; STÖFFLER, A.; DANYSZ, W.. Memantine: a NMDA receptorantagonist that improves memory by restoration of homeostasis that glutamatergic system–too little activation is bad, too much is even worse. Neuropharmacology, 53, nº 6, 699-723, 2007. 65.PETERSON, G.L.. A simplification of the protein assay method of Lowry et al. Which ismore generally applicable. Analytical Biochemistry, 83, 346-356, 1977. 66.PUZZO, D.; VITOLO, O.; TRINCHESE, F.; JACOB, J.P.; PALMIERI, A.; ARANCIO,O.. Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsiveelement-binding protein pathway during hippocampal synaptic plasticity. JournalNeuroscience, 25, nº 29, 6887-6897, 2005. 67.SAIDO, T.C.; IWATSUBO, T.; MANN, D,M.; SHIMADA, H.; IHARA, Y.;KAWASHIMA, S.. Dominant and differential deposition of distinct beta-amyloid peptidespecies, A beta N3(pE), in senile plaques. Neuron, 14, nº 2, 457-466, 1995. 68.SAYRE, L.M.; PERRY, G.; HARRIS, P.L.; LIU, Y.; SCHOUBERT, K.A.; SMITH, M.A..In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’sdisease: a central role for bound transition metals. Journal of the Neurochemistry, 74, nº1, 270-279, 2000. 69.SECCI, D.; CARRADONI, S.; BOLASCO, A.; CHIMENTI, P.; YÁÑES, M.; ORTUSO,F.; ALCARO, S.. Synthesis and selective human monoamine oxidase inhibition of 3-carbonyl, 3-acyl, and 3-carboxyhydrazido coumarin derivatives. European JournalMedicine Chemistry, 46, 4846-4852, 2011. 70.SELKOE, D.; MANDELKOW, E.; HOLTZMAN, D.. Deciphering Alzheimer’s disease.Cold Spring Harbour Perspectives in Medicine, 2, 1-8, 2012. 71.SELKOE, D.J.. Amyloid beta-protein and the genetics of Alzheimer’s disease. JournalBiological Chemistry, 27, nº 31, 18295-8, 1996. 72. SERRANO-POZO, A.; FROSCH, M.P.; MASLIAH, E.; HYMAN, B.T.. Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1-24, 2011. 73.SMITH, M.A.; WEHR, K.; HARRIS, P.L.; SIEDLAK, S,L.; CONNOR, J.R.; PERRY, G..abnormal localization of iron regulatory protein in Alzheimer’s disease. Brain Research,788, nº 1-2, 232-236, 1998. 74.SMITH, M.A.C.; Revista brasileira de psiquiatria, 21, 03, 1999. 75.SOREGHAN, B.; KOSMOSKI, J.; GLABE, C.. Surfactant properties of Alzheimer’s Abeta peptides and the mechanism of amyloid aggregation. Journal Biological Chemistry,269, nº 46, 28551-28554, 1994. 76.SPIRES, T.L.; HYMAN, B.T.. Transgenic models of Alzheimer’s disease: learning fromanimals. Neuro Rx, 2, nº 3, 423-437, 2005. 77.SUCHER, N.J.; AWOBULUYI, M.; CHOI, Y.B.; LIPTON,S.A.. NMDA receptors: fromgenes to channels. Trends in Pharmacological Sciences, 17,nº 10, 349-355, 1996. 78.TABATON, M.; NUNZI, M.G.; XUE, R.; USIAK, M.; AUTILIO-GAMBETTI, L.;GAMBETTI, P.. Soluble amyloid beta-protein is a marker of Alzheimer amyloid in brainbut nor in cerebrospinal fluid. Biochemical and Biophysical Research Communications,200, nº 3, 1598-1603, 1994. 79.TÕUGU, V.; KARAFIN, A.; PALUMAA, P.. Binding of zinc(II) and copper (II) to thefull-length Alzheimer’s amyloid-beta peptide. Journal Neurochemistry, 104, nº 5, 1249-1259, 2008. 80.WALSH, D.M.; KLYUBIN, I.; FADEEVA, J.; CULLEN, W.K.; ANWYL, R.; WOLFE,M.S.; ROWAN, M.J.; SELKOE, D.J..Naturally secreted oligomers of amyloid beta-proteinpotently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535-539, 2002. 81.WEINER, M.W.; VEITCH,D.P.; AISEN, P.S.; BECKETT, L.A.; CAIRNS,N.J.; GREEN,R.C.; HARVET, D.; JACK, C.R.; JAGUST, W.; LIU, E.; MORRIS, J.C.; PETERSEN,R.C.; SAYKIN, A.J.; SCHMIDT, M.E.; SHAW, L.; SIUCIAK, J.A.; SOARES, H.;TOGA, A.W.; TROJANOWSKI, J.Q.. The Alzheimer’s disease neuroimaging initiative: areview of papers published since its inception. Alzheimer’s & Dementia, 8, nº 1, S1-S68,2012. 82.WILCOCK, G.K.; ESIRI, M.M.; BOWEN, D.M.; SMITH, C.C.T.. Alzheimer’s disease:correlation of cortical choline acethyltransferase activity with the severity of dementia andhistological abnormalities. Journal of the Neurological Sciences, 57, nº 2-3, 407-417,1982. 83.WISHIK, C.M.; NOVAK, M.; EDWARDS, P.C.; KLUG, A.; TICHELAAR, W.;CROWTHER, R.A.. Proc. Natl.Acad. Sci. U.S.A., 85, 4884, 1988. 84.YANG, D.S.; McLAURIN, J.; QIN,K.; WESTAWAY, D.; FRASER, P.E.. Examining thezinc binding site of the amyloid-beta peptide. European Journal Biochemistry, 267, nº22, 6692-6698, 2000. 85.YOUDIM, M.B.; BAKHLE, Y.S.. Monoamine oxidase: isoforms and inhibitors inParkinson’s disease and depressive illness. British Journal Pharmacology, 147, 287-296,2006. 86.YOUDIM, M.B.; WEINSTOCK, M.. Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase A and B that do not cause significant tyraminepotentiation. Neurotoxicology, 25, nº 1-2, 243-250, 2004. 87.ZHENG, W.H.; BASTIANETTO, S.; MENNICKEN, F.; MA, W.; KAR, S.. Amyloid betapeptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septalcultures. Neuroscience, 115, nº 1, 201-211, 2002. 88.ZHU, X.; SU, B.; WANG, X.; SMITH, M.A.; PERRY, G.. Causes of oxidative stress inAlzheimer’s disease. Cellular and Molecular Life Sciences, 64, nº 17, 2202-2210, 2007.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Química
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14601/1/2019%20-%20Lin%20Machado%20de%20Lima.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14601/2/2019%20-%20Lin%20Machado%20de%20Lima.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14601/3/2019%20-%20Lin%20Machado%20de%20Lima.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14601/4/license.txt
bitstream.checksum.fl_str_mv 2b6920b5044aacfb0a882404d9f676fc
bc4816f30e30c07cc85ca727c22642f3
b85decb15478a60703cdbcccab374702
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108086319316992