Dieta funcional para juvenis de beijupirá: inclusão da alga marinha Ulva fasciata

Detalhes bibliográficos
Autor(a) principal: Dias, Giselle Eler Amorim
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/10278
Resumo: Um dos maiores entraves para a produção de beijupirá (Rachycentron canadum) é a formulação de dietas, que venham atender às necessidades nutricionais da espécie em cativeiro. Em vista disso, a utilização de alimentos funcionais em dieta animal tem sido valorizada devido aos benefícios à saúde que esses alimentos podem promover. A macroalga Ulva fasciata possui atividades biológicas, como ação antioxidante e antiflamatória. Portanto, este estudo teve como objetivo incluir o farelo de Ulva fasciata como ingrediente funcional na dieta para a criação dessa espécie. Desta forma, contribuindo para o desenvolvimento de técnicas sustentáveis de produção de beijupirá, foi montada uma unidade de aquicultura multitrófica integrada em sistema de recirculação de água, tendo a U. fasciata como uma das etapas de filtração. Para a avaliação da eficiência da utilização da macroalga na dieta do peixe foram ofertadas dietas peletizadas isoproteicas, isolipídicas e isocalóricas com a inclusão do farelo de Ulva fasciata (0,00; 5,00; 10,00 e 15,00%) com três repetições por tratamento. Foram distribuídos 20 peixes em cada unidade experimental de 310 L. Para avaliar o desempenho aos 62 e 94 dias de experimento, os juvenis de beijupirá ficaram em jejum de 24 horas. Os parâmetros avaliados foram: consumo alimentar, peso final, ganho de peso, conversão alimentar, comprimento, índice de eficiência alimentar, índice de consumo alimentar, taxa de crescimento específico, taxa de eficiência proteica e fator de condição. As respostas aos valores crescentes do farelo de Ulva fasciata foram avaliadas por análise de regressão para os parâmetros de desempenho, e analisados por meio dos modelos de regressão quadrática, conforme o melhor ajustamento obtido para cada variável. Os resultados submetidos à análise de variância pelo teste de médias (Tukey) a 5% de probabilidade de erro foram para os seguintes parâmetros: peso corporal, peso de vísceras, peso de fígado, índice viscerossomático (IVS), índice hepatossomático (IHS), composição corporal de peixes eviscerados, atividades de catalase, glutationa S-transferase e medidas morfométricas do intestino delgado. O programa estatístico utilizado foi o SISVAR. Para os dois períodos avaliados, não houve diferença para consumo de ração. Nos demais parâmetros avaliados houve diferença significativa aos 62 e 94 dias de experimentação, sendo que para todos os parâmetros a melhor porcentagem de inclusão da macroalga foi 10%. Houve diferença estatística para peso de peixe aos 94 dias e peso de vísceras. Não havendo diferença para peso de fígado, IVS e IHS. Houve efeito significativo para atividade de catalase mitocondrial e citoplasmática do fígado aos 94. Houve diferenças significativas para composição corporal de juvenis de beijupirá eviscerados. A umidade, cinzas e proteína da composição corporal não diferiram entre os tratamentos. A porcentagem de lipídeos dos peixes que não receberam o farelo de U. fasciata foi significativamente menor do que dos peixes que receberam 10 e 15%. Não houve diferença para morfometria intestinal. A macroalga U. fasciata pode ser incluída em dietas para juvenis de beijupirá
id UFRRJ-1_0ca544d240cd13deaa49ec1940e5ef2a
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/10278
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Dias, Giselle Eler AmorimOshiro, Lidia Miyako Yoshii98700766887http://lattes.cnpq.br/8112019853480327Seixas Filho, José Teixeira dehttp://lattes.cnpq.br/9968278659539945Pereira, Marcelo Maiahttp://lattes.cnpq.br/9342701451815217Oshiro, Lidia Miyako YoshiiSalles, Cristiane Martins Cardoso deNascimento, Aparecida Alves doRodrigo, TakataMello, Silvia Conceição Reis Pereira09503119790http://lattes.cnpq.br/60594521400214412023-12-21T19:00:23Z2023-12-21T19:00:23Z2017-05-29DIAS, Giselle Eler Amorim. Dieta funcional para juvenis de beijupirá: inclusão da alga marinha Ulva fasciata. 2017. 89 f.. Tese( Doutorado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2018.https://rima.ufrrj.br/jspui/handle/20.500.14407/10278Um dos maiores entraves para a produção de beijupirá (Rachycentron canadum) é a formulação de dietas, que venham atender às necessidades nutricionais da espécie em cativeiro. Em vista disso, a utilização de alimentos funcionais em dieta animal tem sido valorizada devido aos benefícios à saúde que esses alimentos podem promover. A macroalga Ulva fasciata possui atividades biológicas, como ação antioxidante e antiflamatória. Portanto, este estudo teve como objetivo incluir o farelo de Ulva fasciata como ingrediente funcional na dieta para a criação dessa espécie. Desta forma, contribuindo para o desenvolvimento de técnicas sustentáveis de produção de beijupirá, foi montada uma unidade de aquicultura multitrófica integrada em sistema de recirculação de água, tendo a U. fasciata como uma das etapas de filtração. Para a avaliação da eficiência da utilização da macroalga na dieta do peixe foram ofertadas dietas peletizadas isoproteicas, isolipídicas e isocalóricas com a inclusão do farelo de Ulva fasciata (0,00; 5,00; 10,00 e 15,00%) com três repetições por tratamento. Foram distribuídos 20 peixes em cada unidade experimental de 310 L. Para avaliar o desempenho aos 62 e 94 dias de experimento, os juvenis de beijupirá ficaram em jejum de 24 horas. Os parâmetros avaliados foram: consumo alimentar, peso final, ganho de peso, conversão alimentar, comprimento, índice de eficiência alimentar, índice de consumo alimentar, taxa de crescimento específico, taxa de eficiência proteica e fator de condição. As respostas aos valores crescentes do farelo de Ulva fasciata foram avaliadas por análise de regressão para os parâmetros de desempenho, e analisados por meio dos modelos de regressão quadrática, conforme o melhor ajustamento obtido para cada variável. Os resultados submetidos à análise de variância pelo teste de médias (Tukey) a 5% de probabilidade de erro foram para os seguintes parâmetros: peso corporal, peso de vísceras, peso de fígado, índice viscerossomático (IVS), índice hepatossomático (IHS), composição corporal de peixes eviscerados, atividades de catalase, glutationa S-transferase e medidas morfométricas do intestino delgado. O programa estatístico utilizado foi o SISVAR. Para os dois períodos avaliados, não houve diferença para consumo de ração. Nos demais parâmetros avaliados houve diferença significativa aos 62 e 94 dias de experimentação, sendo que para todos os parâmetros a melhor porcentagem de inclusão da macroalga foi 10%. Houve diferença estatística para peso de peixe aos 94 dias e peso de vísceras. Não havendo diferença para peso de fígado, IVS e IHS. Houve efeito significativo para atividade de catalase mitocondrial e citoplasmática do fígado aos 94. Houve diferenças significativas para composição corporal de juvenis de beijupirá eviscerados. A umidade, cinzas e proteína da composição corporal não diferiram entre os tratamentos. A porcentagem de lipídeos dos peixes que não receberam o farelo de U. fasciata foi significativamente menor do que dos peixes que receberam 10 e 15%. Não houve diferença para morfometria intestinal. A macroalga U. fasciata pode ser incluída em dietas para juvenis de beijupiráOne of the major obstacles to the production of cobia (Rachycentron canadum) is the formulation of diets that meet the nutritional needs of the species in captivity. In view of this, the use of functional foods in animal diet has been valued due to the health benefits that these foods can promote. The Ulva fasciata macroalga has biological activities, such as antioxidant and antiflammatory action. Therefore, this study aimed to include Ulva fasciata meal as a functional ingredient in the diet for this species. Thus, contributing to the development of sustainable techniques of beijupirá production, a multi-trophic aquaculture unit integrated in a water recirculation system was set up, with U. fasciata being one of the filtration stages. For the evaluation of the efficiency of the use of macroalga in the diet of the fish, isoproteic, isoproteic and isocaloric pelleted diets with inclusion of Ulva fasciata meal (0.00; 5.00, 10.00 and 15.00%) with three replicates per treatment. Twenty fish were distributed in each experimental unit of 310 L. To evaluate the performance at 62 and 94 days of experiment, cobia juveniles were fasted for 24 hours. The parameters evaluated were: food intake, final weight, weight gain, feed conversion, length, food efficiency index, food consumption index, specific growth rate, protein efficiency ratio and condition factor. Responses to the increasing values of Ulva fasciata meal were evaluated by regression analysis for performance parameters, and analyzed using the quadratic regression models, according to the best fit obtained for each variable. The results were submitted to the analysis of variance by means of the test of means (Tukey) at 5% probability of error, for the following parameters: body weight, viscera weight, liver weight, viscerosomal index (VSI), hepatosomatic index (HIS), body composition of eviscerated fish, catalase activities, glutathione S-transferase and morphometric measurements of the small intestine. The statistical program used was SISVAR. For the two evaluated periods, there was no significant difference for feed intake. In the other parameters evaluated there was a significant difference at 62 and 94 days of experimentation, and for all parameters the best inclusion percentage of the macroalga was 10%. There were differences for fish weight at 94 days and viscera weight. There was no difference for liver weight, VSI and HSI. There was a significant effect for mitochondrial and cytoplasmic catalase activity of the liver at 94. There were significant differences for body composition of eviscerated gossy juveniles. The moisture, ashes and protein of the body composition did not differ between the treatments. The percentage of lipids of the fish that did not receive the U. fasciata meal was significantly lower than the fish that received 10 and 15%. There was no difference for intestinal morphometry. The U. fasciata macroalga can be included in diets for cobia juvenileapplication/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em ZootecniaUFRRJBrasilInstituto de ZootecniaUlva fasciataSistema multitrófico integradoBeijupiráUlva fasciataIntegrated multitrophic systemCobiaZootecniaDieta funcional para juvenis de beijupirá: inclusão da alga marinha Ulva fasciataFunctional diet for juvenile beijupirá: inclusion of seaweed Ulva fasciatainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisARNOLD, C.R.; KAISER, J.B.; HOLT, G.J. Spawning of Cobia Rachycentron canadurn in Captivity. Journal of the World Aquaculture Society, v. 33, n. 2, p.205-208, 2002. BALDISSERA, A.C.; BETTA, F.D.; PENNA, A.L.B.; LINDNER, J.D.D. Alimentos funcionais: uma nova fronteira para o desenvolvimento de bebidas protéicas a base de soro de leite. Semina: Ciências Agrárias, v. 32, n. 4, p. 1497-1512, 2011. BARBOSA, C.F. Determinação da atividade antioxidante, teor fenólico e açúcares redutores de Ulva fasciata cultivada em sistema de aquicultura multitrófica integrada. 2017. 38p. Monografia (Licenciatura em Química). Universidade Estadual do Norte Fluminense Darcy Ribeiro, Paracambi, RJ, 2017. BENETTI, D.D.; ORHUN, M.R.; SARDENBERG, B.; O’HANLON, B.; WELCH, A.; HOENIG, R.; ZINK, I.; RIVERA, J.A.; DENLINGER, B.; BACOAT, D.; PALMER, K.; CAVALIN, F. Advances in hatchery and grow-out technology of cobia Rachycentron canadum (Linnaeus). Aquaculture Research, v. 39, p.701-711, 2008. BENETTI, D.D.; O’HANLON, B.; RIVERA, J.A.; WELCH, A.W.; MAXEY, C.; ORHUN, M.R. Growth rates of cobia (Rachycentron canadum) cultured in open ocean submerged cages in the Caribbean. Aquaculture, v. 302, p. 195-201, 2010. BIANCHI, M.L.P de; ANTUNES, L.M.G. Radicais livres e os principais antioxidantes da dieta free radicals and the main dietary antioxidants. Revista de Nutrição, Campinas, v. 12, n. 2, p. 123-130, 1999. BNDES. Panorama da aquicultura no Brasil: desafios e oportunidades. BNDS Setorial, v. 35, p. 421-463, 2010. BONORDEN, W.R.; PARIZA, M.W. Antioxidant nutrients and protection from free radicals. In: Nutritional toxicology. F. N. KOTSONIS, F.N.; MACKEY, M.; HJELLE, J. eds. Raven Press, New York, NY. p. 19-48. 1994. BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução n. 17, de 30 de abril de 1999. Aprova o Regulamento Técnico que Estabelece as Diretrizes Básicas para Avaliação de Risco e Segurança dos Alimentos. Brasília, 1999. BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução n. 2, de 07 de janeiro de 2002. Aprova o Regulamento Técnico de Substâncias Bioativas e Probióticos Isolados com Alegação de Propriedades Funcional e ou de Saúde. Rotulagem. Brasília, 2002. BRASIL. Boletim estatístico da Pesca e Aquicultura – Brasil 2008-2009. Ministério da Pesca e Aquicultura. Brasília, 2010. 99p. BRASIL. Boletim estatístico da Pesca e Aquicultura – Brasil 2010. Ministério da Pesca e Aquicultura. Brasília, 2012. 128p. 16 BURR, G.S.; WOLTERS, W.R.; BARROWS, F.T.; DONKIN, A.W. Evaluation of a canola protein concentrate as a replacement for fishmeal and poultry by-product meal in a commercial production diet for Atlantic salmon (Salmo salar). International Aquatic Research, 2013, v. 5, n. 5, p. 1-8, 2013. BURTIN, P. Nutritional value of seaweeds. Electronic Journal of Environmental, Agriculture and Food Chemistry, v.2, n.4, p. 498-503, 2003. CAMPANA-FILHO, S.P.; BRITTO, D. de; CURTI, E.; ABREU, F.R.; CARDOSO, M.B.; BATTISTI, M.V.; SIM, P.C.; GOY, R.C.; SIGNINI, R.; LAVALL, R.L. Extração, estruturas e propriedades de α- e β-quitina. Quimica Nova, v. 30, n. 3, p. 644-650, 2007. CARVALHO FILHO, J. O êxito da primeira desova do bijupirá. Panorama da Aquicultura, v. 16, n. 97, p. 40-45, 2006. CASTELAR, B.; PONTES, M.D.; COSTA, W.M. de; MOURA, L.C.F.; DIAS, G.E.A.; LANDUCI, F.S.; REIS, R.P. Biofiltering efficiency and productive performance of macroalgae with potential for integrated multi-trophic aquaculture (IMTA). Boletim do Instituto de Pesca, São Paulo, v. 41 (esp.), p. 763 – 770, 2015. CAVALLI, R.O.; DOMINGUES, E.C.; HAMILTON, S. Desenvolvimento da produção de peixes marinhos em mar aberto no Brasil: possibilidades e desafios. Revista Brasileira de Zootecnia, v. 40, p. 151-164, 2011. CAVALLI, R.O.; GARCIA, A.S. Exigências nutricionais e alimentação do beijupirá. In: FRACALOSSI, D.M.; CIRYNO, J.E.P. Nutriaqua: nutrição e alimentação de espécies de interesse para a aquicultura brasileira. Florianópolis: Sociedade Brasileira de Aquicultura e Biologia Aquática, 2012. p. 269-279. CENTRO DE EXCELÊNCIA PARA O MAR BRASILEIRO (CEMBRA). O Brasil e o mar no século XXI. Edição virtual. 2015. Disponível em: http://www.cembra.org.br/segundo-projeto.html. Acesso em: 26 janeiro 2017. CERQUEIRA, F.; MEDEIROS, M.; AUGUSTO, O. Antioxidantes dietéticos: controvérsias e perspectivas. Química Nova, São Paulo, v. 30, n. 2, p. 441-449, 2007. CHAKKARAVARTHY, M.V.; KUMAR, V. HPTLC Finger Print Analysis of Steroid, Flavonoid and Antiradical activity in Sargassum wightii from Gulf of Mannar. Research Journal Pharmacognosy and Phytochemistry, v. 3, n. 2, p. 72-74, 2011. CHO, S.H., LEE, S.M., LEE, S.M., LEE, J.H., 2005. Effect of dietary protein and lipid levels on growth and body composition of juvenile turbot (Scophthalmus maximus L) reared under optimum salinity and temperature conditions. Aquaculture Nutrition, v. 11, p. 235–240, 2005. CHOU, R.L.; SU, M.S.; CHEN, H.Y. Optimal dietary protein and lipid levels for juvenile cobia (Rachycentron canadum). Aquaculture, v. 193, p. 81-89, 2001. 17 CHOU, R.L.; HER, B.Y., SU, M.S.; HWANG, G.; WU, Y.H.; CHEN, H.Y. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture, v. 229, p. 325-333, 2004. CHRISTAKI, E.; BONOS, E.; GIANNENAS, I.; FLOROU-PANERI, P. Functional properties of carotenoids originating from algae. Journal of the Science of Food and Agriculture, v. 93, p. 5-11, 2013. COLLETTE, B.B. Rachycentridae. In: FISCHER, W (ed). FAO species identification guide for fishery purposes. western and central Atlantic (Fishing area 31). Rome: FAO, v. 4, 1981. COPPENS, P.; SILVA, M.F. da; PETTMAN, S. European regulations on nutraceuticals, dietary supplements and functional foods: A framework based on safety. Toxicology, v. 221, p. 59–74, 2006. CRAIG, S.R.; SCHWARZ, M.H.; MCLEAN, E. Juvenile cobia (Rachycentron canadum) can utilize a wide range of protein and lipid levels without impacts on production characteristics. Aquaculture, v. 26, p. 384-391, 2006. CUI, X.; ZHOU, Q.; LIANG, H.; YANG, J.; ZHAO, L. Effects of dietary carbohydrate sources on the growth performance and hepatic carbohydrate metabolic enzyme activities of juvenile cobia (Rachycentron canadum Linnaeus.). Aquaculture Research, v. 42, p. 99-107, 2010. CYRINO, J.E.P.; BICUDO, A.J. de A.; SADO, R.Y.; BORGUESI, R.; DAIRIKI, J.K. A piscicultura e o ambiente – o uso de alimentos ambientalmente corretos em piscicultura. Revista Brasileira de Zootecnia, v. 39, p. 68-87, 2010. DECKER, E.A. Phenolics: prooxidants or antioxidants? Nutrition Reviews, New York, v.55, n.11, p.396-407, 1997. DEGÁSPARI, C.H.; WASZCZYNSKYJ, N. Propriedades antioxidantes de compostos fenólicos antioxidants properties of phenolic compounds. Visão Acadêmica, Curitiba, v. 5, n. 1, p. 33-40, 2004. DOMINGUES, E.C. Viabilidade econômica do cultivo do beijupirá (Rachycentron canadum) em mar aberto em Pernambuco. Recife. 84p. (Dissertação de Mestrado. Universidade Federal Rural de Pernambuco). 2012. Disponível em: <http://www.pgpa.ufrpe.br/Trabalhos/2012/ T2012ecd.pdf>. Acesso em: 21 jun 2015. ERGUN, S.; SOYUTURK, M.; GUROY, B.; GUROY D.; MERRIFIELD, D. Influence of Ulva meal on growth, feed utilization, and body composition of juvenile Nile tilapia (Oreochromis niloticus) at two levels of dietary lipid. Aquaculture International, v. 17, p. 355-361, 2008. ESPE, M.; LEMME, A PETRI, A.; EL-MOWAFI, A. Assessment of lysine requirement for maximal protein accretion in Atlantic salmon using plant protein diets. Aquaculture, v. 263, p. 168–178, 2007. 18 EVANS, J.L.; GOLDFINE, I.D.; MADDUX, B.A.; GRODSKY, G.M. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine Reviews, v. 23, n. 5, p. 599-622, 2002. FAO. The State of World Fisheries and Aquaculture. Rome: FAO, 2010. 197p. Disponível em: http://www.fao.org/fishery/sofia/en. Acesso em: 14 mar 2015. FAO. Fishstat plus: Universal software for fisher y statistical time series. Rome: Fisheries Department Fishery Information, Data and Statistics Unit, FAO, 2011. Disponível em: http://www.fao.org/fishery/statistics/software/fishstat/en. Acesso em: 31 dez 2016. FAO. The State of World Fisheries and Aquaculture (SOFIA). Rome: FAO, 2012. Disponível em: http://www.fao.org/fishery/sofia/en. Acesso em: 1 mar 2015. FAO. Cultured Aquatic Species Information Programme: Rachycentron canadum (Linnaeus, 1766). Rome: FAO, 2013. Disponível em: http://www.fao.org/fishery/culturedspecies/ Rachycentron_canadum/en. Acesso em: 22 abr 2015. FAO. The State of World Fisheries and Aquaculture (SOFIA). Rome: FAO, 2014. 223p. Disponível em: http://www.fao.org/fishery/sofia/en. Acesso em: 15 mar 2015. FAULK, C.K.; HOLT, G.J. Biochemical composition and quality of captive-spawned cobia Rachycentron canadum eggs. Aquaculture, v. 279, p. 70-76, 2008. FEELEY, M.W.; BENETTI, D.D.; AULT, J.S. Elevated oxygen uptake and high rates of nitrogen excretion in early life stages of the cobia Rachycentron canadum (L.), a fast-growing subtropical fish. Journal of Fish Biology, v. 71, p. 1662–1678, 2007. FINES, B.C.; HOLT, G.J. Chitinase and apparent digestibility of chitin in the digestive tract of juvenile cobia, Rachycentron canadum. Aquaculture, v. 303, p. 34-39, 2010. FINKEL, T.; HOLBROOK, N.J. Oxidants, oxidative stress and the biology of ageing. Nature, v. 408, n. 9, p. 239-246, 2000. FLEURENCE, J. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Technology, v. 10, p. 25-28, 1999. FRACALOSSI, D.M.; CIRYNO, J.E.P. Técnicas experimentais em nutrição de peixes. In: FRACALOSSI, D.M.; CIRYNO, J.E.P. Nutriaqua: nutrição e alimentação de espécies de interesse para a aquicultura brasileira. Florianópolis: Sociedade Brasileira de Aquicultura e Biologia Aquática, 2012. p. 37-63. FRANK, H.A.; BRUDVIG, G.W. Redox functions of carotenoids in photosynthesis. Biochemistry, v. 43, n. 27, p. 8607-8615, 2004. FRANKS, J.S.; OGLE, J.T.; LOB, J.M.; NICHOLSON, L.C.; BARNES, D.N.; LARSEN, K.M. Spontaneous spawning of cobia, Rachycentron canadurn, induced by human chorionic gonadotropin (HCG), with comments on fertilization, hatching, and larval development. Proceedings of the Gulf and Caribbean Fisheries Institute,v. 52, p. 598-609, 2001. 19 FRASER, T.W.K.; DAVIES, S.J. Nutritional requirements of cobia, Rachycentron canadum (Linnaeus): a review. Aquaculture Research, v. 40, p. 1219-1234, 2009. GATELLIER, P.; MERCIER, Y.; RENERRE, M. Effect of diet finishing mode (pasture or mixed diet) on antioxidant status of Charolais bovine meat. Meat Science, v. 67, p. 385–394, 2004. GATLIN III, D.M.; BARROWS, F.T.; BROWN, P.; DABROWSKI, K.; GAYLORD, T.G.; HARDY, R.W.; HERMAN, E.; HU, G.; KROGDAHL, Å.; NELSON, R.; OVERTURF, K.; RUST, M.; SEALEY, W.; SKONBERG, D.; SOUZA, E.J.; STONE, D.; WILSON, R.; WURTELE, E. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research, v. 38, p. 551‑579, 2007. GAYLORD, T.G.; BARROWS, F.T. Multiple amino acid supplementations to reduce dietary protein in plant-based rainbow trout, Oncorhynchus mykiss, feeds. Aquaculture, v. 287, p. 180–184, 2009. GODARD, M.; DÉCORDÉ, K.; VENTURA, E.; SOTERAS, G.; BACCOU, J.C.; CRISTOL, J.P.; ROUANET, J.M. Polysaccharides from the green alga Ulva rigida improve the antioxidant status and prevent fatty streak lesions in the high cholesterol fed hamster, an animal model of nutritionally-induced atherosclerosis. Food Chemistry, v. 115, p.176-180, 2009. GOMES, F. da S. Carotenóides: uma possível proteção contra o desenvolvimento de câncer. Revista de Nutrição, v. 5, p. 537-548, 2007. GONZALES, E.; MASCARENHAS, A.G. Regulamentação do uso de aditivos na alimentação animal. In: SAKOMURA, N.K. (ed.). Nutrição de não ruminantes. Editora Funep: SP, 2014. p. 461-465. GOPAKUMAR, G.; NAZAR, A.A.K.; TAMILMANI, G.; SAKTHIVEL, M.; KALIDAS, C.; RAMAMOORTHY, N.; PALANICHAMY, S.; MAHARSHI, A.V.; RAO, S.K.; RAO, S.G. Broodstock development and controlled breeding of cobia Rachycentron canadum (Linnaeus 1766) from Indian seas. Indian Journal Fish., v. 58, n. 4, p. 27-32, 2011. GUTTERIDGE, J.M.C. Does redox regulation of cell function explain why antioxidants perform so poorly as therapeutic agents? Redox Report, v. 4, n. 3, p. 129-131, 1999. HAMED, I.F.; ÖZOGUL, F.; ÖZOGUL, Y.; REGENSTEIN, J.M. Marine Bioactive Compounds and Their Health Benefits: A Review. Comprehensive Reviews in Food Science and Food Safety, p. 1-20, 2015. HAMILTON, S.; SEVERI, W.; CAVALLI, R.O. Biologia e aquicultura do beijupirá: uma revisão. Boletim do Instituto de Pesca, v. 39, n. 4, p. 461-477, 2013. HARABAWY, A.S.A.; MOSLEH, Y.Y.I. The role of vitamins A, C, E and selenium as antioxidants against genotoxicity and cytotoxicity of cadmium, copper, lead and zinc on erythrocytes of Nile tilapia, Oreochromis niloticus. Ecotoxicology and Environmental Safety, v. 104, p. 28-35, 2014. 20 HAYDEN, H.S.; WAALAND, J.R. A molecular systematic study of Ulva (Ulvaceae, Ulvales) from the northeast Pacific. Phycologia, v. 43, p. 364-382, 2004. HEASMAN, M.; MELLENTIN, J. The functional foods revolution: healthy people, healthy profits. London: Earthscan, 2001. 313 p. HEISER, H.; OSSWALD, W. F. Formação e função das espécies reativas de oxigênio nas interações planta-patógeno. In: PASCHOLATI, S.F.; LEITE, B.; STANGARLIN, J.R.; CIA, P. (ed.). Interação Planta Patógeno – fisiologia, Bioquímica e Biologia Molecular. Piracicaba: FEALQ, 2008. p.249-283. HOLDT, S.L.; KRAAN, S. Bioactive compounds in seaweed: functional food applications and legislation. Journal Applied Phycology, v. 23, p. 543–597, 2011. HOLT, G.J.; FAULK, C.K.; SCHWARZ, M.H. A review of the larviculture of cobia Rachycentrom canadum, a warm water marine fish. Aquaculture, v. 268, p. 181–187, 2007. IFIC. INTERNATIONAL FOOD INFORMATION COUNCIL FOUNDATION. Functional Foods Fact Sheet: Probiotics and Prebiotics. 2009. Disponível em: <http://www.foodinsight.org/Resources/Detail.aspx?topic=Functional_Foods_Fact_Sheet _Probiotics_and_Prebiotics>. Acesso em: 07 nov. 2017. IFT. INSTITUTE OF FOOD TECHNOLOGISTS. Functional Foods. 2017. Dispinível em: <http://www.ift.org/knowledge-center/focus-areas/food-health-and-nutrition/functional-foods.aspx>. Acesso em: 07 nov. 2017. ILSI. LIFE SCIENCE INTERNATIONAL INSTITUTE. Functional foods - Scientific and Global Perspectives. ILSI Europe Series, Summary of a Symposium held in October 2001. Washington, D C: International Life Science Institute Press, p. 7-10, 2002. ITO, K.; HORI, K. Seaweed: chemical composition and potential food uses. Food Reviews International, v. 5, n. 1, p. 101-144, 1989. JIMÉNEZ-ESCRIG, A.; JIMÉNEZ-JIMÉNEZ, I.; PULIDO, R.; SAURA-CALIXTO, F. Antioxidant activity of fresh and processed edible seaweeds. Journal of the Science of Food and Agriculture, v. 81, n. 5, p. 530-534, 2001. KAISER, J.B.; HOLT, G.J. Species profile cobia. Southern Regional Aquaculture Center Publication, n. 7202, 2005. KESHAVANATH, P.; MANJAPPA, K.; GANGADHARA, B. Evaluation of carbohydrate rich diets through common carp culture in manured tanks. Aquaculture Nutrition, v. 8, p. 169–174, 2002. KONGKEO, H.; WAYNE, C.; MURDJANI, M.; BUNLIPTANON, P.; CHIEN, T. Current practices of marine fi nfi sh cage culture in China, Indonesia, Thailand and Viet Nam. Aquaculture Asia Magazine, v. 15, n. 2, p.32-40, 2010. KRUGER, C. L.; MANN, S. W. Safety evaluation of funcional ingredients. Food and Chemical Toxicology. v. 41, p. 793-805, 2003. 21 LAHAYE, M.; CIMADEVILLA, E.A.; KUHLENKAMP, R.; QUEMENER, B.; LOGNONE, V.; DION, P. Chemical composition and 13C NMR spectroscopic characterisation of ulvans from Ulva (Ulvales, Chlorophyta). Journal of Applied Phycology, v. 11, p. 1–7, 1999. LARGO, D.B.; SEMBRANO, J.; HIRAOKA, M.; OHNO, M. Taxonomic and ecological profile of green-tide species of Ulva (Ulvales, Chlorophyta) in central Philippines. Hydrobiologia, v. 512, p. 247–253, 2004. LEITE, B.S.M. Novas alternativas para o uso de macroalgas da costa portuguesa em alimentação. 2017. 301p. Dissertação (Ciências Gastronómicas). Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, 2017. LIAO, I.C.; HUANG, T.S.; TSAI, W.S.; HSUEH, C.M.; CHANG, S.L.; LEAÑO, E.M. Cobia culture in Taiwan: current status and problems. Aquaculture, v. 237, p. 155-165, 2004. LIU, P.C.; LIN, J.Y.; LEE, K.K. Virulence of Photobacterium damselae subsp. Piscicida in cultured cobia Rachycentron canadum. Journal Basic Microbiology, v. 43, n. 6, p.499-507, 2003. LIVINGSTONE, D.R. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, v. 42, p. 656–666, 2001. LOBBAN, C.S.; HARRISON, P.J. Seaweed Ecology and Physiology. Cambridge University Press. U.K., 1997. 366p. LUNGER, A.N.; CRAIG, S.R.; MCLEAN, E. Replacement of fish meal in cobia (Rachycentron canadum) diets using an organically certified protein. Aquaculture, v. 257, p. 393–399, 2006. LUO, Y.; AI, Q.; MAI, K.; ZHANG, W.; XU, W.; ZHANG, Y. Effects of dietary rapeseed meal on growth performance, digestion and protein metabolism in relation to gene expression of juvenile cobia (Rachycentron canadum). Aquaculture, v. 368–369, p.109–116, 2012. MABEAU, S.; FLEURENCE, J. Seaweed in food products: biochemical and nutritional aspects. Trends in Food Science & Technology, v. 4, p. 103-107, 1993. MARGRET, R.J.; KUMARESAN, S.; RAVIKUMAR, S. A preliminary study on the anti-inflammatory activity of methanol extract of Ulva lactuca in rat. Journal Environmental Biology, v. 30 (5 suppliment), p. 899-902, 2009. MARKLUND, S.; MARKLUND, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, v. 16, p. 469-474, 1974. MATSUKAWA, R.; DUBINSKY, Z.; KISHIMOTO, E.; MASUDA, Y.; TAKEUCHI, T. A comparison of screening methods for antioxidant activity in seaweeds. Journal of Applied Phycology, v. 9, n. 1, p. 29-35, 1997. MEENAKSHI, S.; GNANAMBIGAI, M.D.; MOZHI, T.S.; ARUMUGAM, M.; BALASUBRAMANIAN, T. Total Flavanoid and in vitro Antioxidant Activity of Two 22 Seaweeds of Rameshwaram Coast. Global Journal of Pharmacology, v. 3, n. 2, p. 59-62, 2009. MENDIOLA, J.A.; MARIN, F.R.; HERNANDEZ, S.F.; ARREDONDO, B.O.; SENORANS, F.J.; IBANEZ, E.; REGLERO, G. 2005. Characterization via liquid chromatography coupled to diode array detector and tandem mass spectrometry of supercritical fluid antioxidant extracts of Spirulina platensis microalga. Journal Separation Science, v. 28, p. 1031-1038, 2005. MIAO, S.; JEN, C.C., HUANG, C.T.; HU, S.H. Ecological and economic analysis for cobia Rachycentron canadum commercial cage culture in Taiwan. Aquaculture International, v. 17, p. 125-141, 2009. MONTEIRO, D.A.; RANTIN, F.T.; KALININ, A.L. The effects of selenium on oxidative stress biomarkers in the freshwater characid fish matrinxã, Brycon cephalus (Günther, 1869) exposed to organophosphate insecticide Folisuper 600 BR® (methyl parathion). Comparative Biochemistry and Physiology, Part C, v. 149, p. 40–49, 2009. MOORE, A.L.; JOY, A.; TOM, R.; GUST, D.; MOORE, T.A. Photoprotection by carotenoids during photosynthesis: motional dependence of intramolecular energy transfer. Science, v. 216, p. 982-984, 1982. MORAN, L.H.; GUTTERIDGE, J.; QUINLAN, G.J. Thiols in cellular redox signaling and control. Current Medicinal Chemistry, v. 8, n. 7, p. 763-772, 2001. NAYLOR, R.; HARDYB, R.W.; BUREAUC, D.P.; CHIUA, A.; ELLIOTTD, M.; FARRELLE, A.P.; FORSTERE, I.; GATLINF, D.M.; GOLDBURGH, R.J.; HUAC, K.; NICHOLS, P.D. Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences, v. 106, n. 36, p. 15103–15110, 2009. NEMATIPOUR, G.R.; BROWN, M.L.; GATLIN III, D.M. Effects of dietary energy: protein ratio on growth characteristics and body composition of hybrid striped bass, Morone chrysops x M. saxatilis. Aquaculture, v. 107, p. 359-368, 1992. NEORI, A.; CHOPINB, T.; TROELL, M.; BUSCHMANNE, A.H.; KRAEMER, G.P.; HALLING, C.; SHPIGEL, M.; YARISH. C. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, v. 231, p. 361–391, 2004. NEWAJ-FYZUL, A.; AUSTIN, B. Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. Journal Fish Disease, 2014. NGUYEN, M.V.; RØNNESTAD, I.; BUTTLE, L.; LAI, H.V.; ESPE, M. Evaluation of a high plant protein test diet for juvenile cobia Rachycentron canadum in comparison to commercial diets. International Journal of Agriculture and Crop Sciences, v. 2, n. 6, p. 117-125, 2014. NHU, V.C.; NGUYEN, H.Q.; LE, T.L.; TRAN, M.T.; SORGELOOS, P.; DIERCKENS, K.; REINERTSEN, H.; KJØRSVIK, E.; SVENNEVIG, N. Cobia Rachycentron canadum 23 aquaculture in Vietnam: recent developments and prospects. Aquaculture, v. 315, n. 1-2, p. 20-25, 2011. NOSE, T. Recents advances in the study of fish digestion in Japan. In: Symposium on feeding trout and salmon culture, 7., 1966, Belgrade. Proceedings… Belgrade: EIFAC, 1966. p. 17. ORTIZ, J.; ROMERO, N.; ROBERT, P.; ARAYA, J.; LOPEZ-HERNÁNDEZ, J.; BOZZO, C.; NAVARRETE, E.; OSORIO , A.; RIOS, A. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea Antarctica. Food Chemistry, v. 99, p. 98-104, 2006. PAGLIA, D.E.; VALENTINE, W.N. Studieson the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal Laboratory Clinical Medicine, v. 7, p. 158-169, 1967. PARTHIBAN, C.; SARANYA, C.; GIRIJA, K.; HEMALATHA, A.; SURESH, M.; ANANTHARAMAN, P. Biochemical composition of some selected seaweeds from Tuticorin coast. Advances in Applied Science Research, v. 4, n. 3, p. 362-366, 2013. PEZZATO, L.E.; BARROS, M.M.; FURUYA, W.M. Valor nutritivo dos alimentos utilizados na formulação de rações para peixes tropicais. Revista Brasileira de Zootecnia, v. 38, p. 43-51, 2009. PHYCOLOGICAL SOCIETY OF AMERICA. 2015. Disponível em: <http://www.psaalgae.org/>. Acesso em: 30 jun 2015. PIETRA, P.G. Flavonoids as antioxidants. Journal National Production, n. 63, p. 1035-1042, 2000. PONTES, M.; CASTELAR, B.; SANTOS, M.D.M.; MOURA, L.C.F.; ELER, G.; MARTINS, A.P.; COLEPICOLO, P.; REIS, R.P.; OSHIRO, L.M.Y. Seleção de macroalga para a aquicultura multitrófica integrada (AMTI) e como ingrediente funcional para peixes. In: Congresso da Sociedade Brasileira de Aquicultura e Biologia Aquática (Aquaciência), 7., Belo Horizonte, MG. Anais... Belo Horizonte, 2016. REIGHT, R. C.; BRADEN, S. L.; CRAIG, R. J. Apparent digestibility coefficients for common feedstuffs in formulated diets for red swamp crayfish, Procambarus clarkii. Aquaculture, v. 84, p. 321-334, 1990. REVERTER, M.; BONTEMPS, N.; LECCHINI, D.; BANAIGS, B.; SASAL, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: current status and future perspectives. Aquaculture, v. 433, p. 50–61, 2014. REYES, K.K. Search FishBase. 2015. Disponível em: <http://www.aquamaps.org/ExpertProfile.php?expert_id=7>. Acesso em: 13 mar 2015. SALAMATDOUSTNOBAR, R.; GHORBANI, B.; MAGHAMI, S.S.G.; MOTALEBI, V. Effects of prebiotic on the fingerling Rainbow trout. Performace parameters (Oncorynchus mykiss). World Journal of Fish and Marine Sciences, v. 3, n. 4, p. 305-307, 2011. 24 SALZE, G.P.; DAVIS, D.A. Taurine: a critical nutrient for future fish feeds. Aquaculture, v. 437, p. 215–229, 2015. SAMPAIO, L.A.; TESSER, M.B.; WASIELESKY JR, W. Avanços da maricultura na primeira década do século XXI: piscicultura e carcinocultura marinha. Revista Brasileira de Zootecnia, v. 39, p. 102-111, 2010. SANCHES, E.G.; SECKENDORFF, R.W.V.; HENRIQUES, M.B.; FAGUNDES, L.; SEBASTIANI, E.F. Viabilidade econômica do cultivo do bijupirá (Rachycentron canadum) em sistema offshore. Informações Econômicas, v. 38, n. 12, p. 42-51, 2008. SANTIZO, R.B.; SERRANO JR., A.E.; CORRE, V.L. Proximate composition and dry matter digestibility of Ulva lactuca in the black tiger shrimp Penaeus monodon. Animal Biology & Animal Husbandry International Journal of the Bioflux Society, v. 6, p. 75-83, 2014. SARITHA, K.; MANI, A.E.; PRIYALAXMI, M.; PATTERSON, J. Antibacterial Activity and Biochemical Constituents of Seaweed Ulva lactuca. Global Journal of Pharmacology, v. 7, n. 3, p. 276-282, 2013. SCALBERT, A.; MANACH, C.; MORAND, C.; REMESY, C.; JIMENEZ, L. Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, v. 45, p. 287-306, 2005. SCHWARZ, M.H.; McLEAN, E.; CRAIG, S.R. Research experience with cobia: larval rearing, juvenile nutrition and general physiology. In: LIAO, I.C. e LEAÑO, E.M. Cobia Aquaculture: Research, Development and Commercial Production. Taiwan: Asian Fisheries Society, p.1-17, 2007. SCHWARZ, M.H.; CRAIG, S.R.; DELBOS, B.C.; McLEAN, E. Efficacy of concentrated algal paste during greenwater phase of cobia larviculture. Journal of Applied Aquaculture, v. 20, n. 4, p. 285-294, 2008. SCHWARZ, M.H.; SVENNEVIG, N. Cobia culture, global production, markets, challenges. Global Aquaculture Advocate, v. 12, p. 28-30, 2009. SCHAFER, F.Q.; BUETTNER, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology Medicine, v. 30, n. 11, p 1191-1212, 2001. SEIXAS FILHO, J.T.; BRÁS, J.M.; GOMIDE, A.T.M.; OLIVEIRA, M.G.A; DONZELE, J.L. MENIN, E. Anatomia Funcional e Morfometria dos Intestinos e dos Cecos Pilóricos do Teleostei (Pisces) de Água Doce Brycon orbignyanus. Revista Brasileira de Zootecnia, v. 29, n. 2, p. 313-324, 2000. SHAFFER, R.V.; NAKAMURA, E.L. Synopsis of biological data on the cobia Rachycentron canadum (Pisces: Rachycentridae). Washington D.C.: U.S. Department of Commerce, National Oceanic and Atmospheric Administration Technical Report, 1989. (FAO Fisheries Synopsis 153). 25 SIES, H. Strategies of antioxidant defence. Review. European Journal of Biochemistry, Berlin, v. 215, n. 2, p. 213- 219, 1993. SIES, H., STAHL, W. Vitamins E and C, β-carotene, and other carotenoids as antioxidants. Journal of Clinical Nutrition, Bethesda, v. 62, n. 6, p.1315-1321, 1995. SILVA, L. P.; NÖRNBERG, J. L. Prebióticos na nutrição de não ruminantes. Ciência Rural, v.33, p. 983-990, 2003. SOUZA FILHO, J.J.; TOSTA, G.A.M. Bijupirá: As primeiras desovas da geração F1. Panorama da Aquicultura, v. 18, n. 110, p.50-53, 2008. SOUZA, T.C.M.; PETRERE, M. Characterization of small-scale fisheries in the Camamu-Almada basin, southeast state of Bahia, Brazil. Brazilian Journal of Biology, v. 68, n. 4, p. 711-719, 2008. SU, M.S.; CHIEN, Y.H.; LIAO, I.C. Potencial of marine cage aquaculture in Taiwan: cobia culture. In: LIAO, I.C.; LIAN, C.K. Cage aquaculture in Asia – Proceeding of the First International Symposium on Cage Aquaculture in Asia. Asia Fisheries Society, Taiwan. p. 97-109, 2000. SULLIVAN, L.O.; MURPHY, B.; MCLOUGHLIN, P.; DUGGAN, P.; LAWLOR, P.G.; HUGHES, H.; GARDINER, G.E. Prebiotics from Marine Macroalgae for Human and Animal Health Applications. Marine Drugs, v. 8, p. 2038-2064, 2010. TABARSA, M.; REZAEI, M.; RAMEZANPOURB, Z.; WAALAND, J.R. Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. Journal Science Food Agriculture, v. 92, p. 2500–2506, 2012. TACCHI L.; BICKERDIKE, R.; DOUGLAS, A.; SECOMBES, C.J.; MARTIN, S.A.M. Transcriptomic responses to functional feeds in Atlantic salmon (Salmo salar). Fish Shellfish Immunology, v. 31, p. 704–715, 2011. TRABER, M.G. Cellular and molecular mechanisms of oxidants and antioxidants. Mineral and Electrolyte Metabolism, v. 23, n. 3-6, p. 135-139, 1997. TRIVEDI, N.; GUPTA, V.; REDDY, C.R.K.; JHA, B. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresource Technology, v. 150, p. 106–112, 2013. TRIVEDI, N.; BAGHEL, R.S.; BOTHWELL, J.; GUPTA, V.; REDDY, C.R.K.; LALI, A.M.; JHA, B. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Scientific Reports, v. 6, p. 1-8, 2016. TROELL, M.; JOYCE, A.; CHOPIN, T.; NEORI, A.; BUSCHMANN, A.H.; FANG, J. Ecological engineering in aquaculture — Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture, v. 297, p.1–9, 2009. 26 VALKO, M.; IZAKOVIC, M.; MAZUR, M.; RHODES, C.J.; TELSER, J. Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry, v. 266, p. 37-56, 2004. VAN DER OOST, R.; BEYER, J.; VERMEULEN, N.P.E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, v. 13, n. 2, p. 57-149, 2003. VAN SOEST, P.J. Nutritional Ecology of Ruminant. 2.ed. Ithaca: Cornell University, 476p. 1994. VASCONCELOS, S.M.L.; GOULART, M.O.F.; MOURA, J.B.F. de; MANFREDINI, V.; BENFATO, M.S. da; KUBOTA, L.T. Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Quimica Nova, v. 30, n. 5, p. 1323-1338, 2007. WANG, J.T.; LIU, Y.J.; TIAN, L.X.; MAI, K.S.; DU, Z.Y.; WANG, Y.; YANG, H.J. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture, v. 249, p. 439- 447, 2005. WEBB, K.A.; RAWLINSON, L.T.; HOLT, G.J. Effects of dietary starches and the protein to energy ratio on growth and feed efficiency of juvenile cobia, Rachycentron canadum. Aquaculture Nutrition, v. 16, p. 447–456, 2010. WEIRICH, C.R.; STOKES, A.D.; SMITH, T.I.J.; JENKINS, W.E.; DENSON, M.R.; TOMASSO, J.R.; CHAPPEL, J.; BURNSIDE, D. Cobia Aquaculture research in South Carolina, USA: captive reproduction, pond nursery production, and selected environmental requirements of juveniles. In: LIAO, I.C. e LEAÑO, E.M. Cobia aquaculture: research, development and commercial production. Taiwan: Asian Fisheries Society. p. 19-44, 2007. WONG, K.H.; CHEUNG, P.C.K. Nutritional evaluation of some subtropical red and green seaweeds Part I - proximate composition, amino acid profiles and some physico-chemical properties. Food Chemistry, v. 71, p. 475-482, 2000. YEDUKONDALA, R.P.; SUDHA, R.D.; NAGA, K.V.D.; RUKMINI, S.I. Seasonal changes of biochemical composition of green algae Ulva fasciata Delile, 1813 and Caulerpa racemosa Agardh, 1873 from coastal waters of Visakhapatnam, east coast of India. Asian Journal of Plant Science and Research, v. 5, n. 6, p. 57-62, 2015. YILDIRIM, Ö.; ERGÜN, S.; YAMAN, S.; TÜRKER, A. Effects of Two Seaweeds (Ulva lactuca and Enteromorpha linza) as a Feed Additive in Diets on Growth Performance, Feed Utilization, and Body Composition of Rainbow Trout (Oncorhynchus mykiss). Kafkas Üniversitesi Veteriner Fakültesi Dergisi, v. 15, n. 3, p. 455-460, 2009. YOUSIF, O.M.; KUMAR, K.K.; ABDUL-RAHMAN, A.F.A. Growth response of cobia Rachycentron canadum (Pisces: Rachycentridae) under the hypersaline con ditions of the Emirate of Abu Dhabi. Aquaculture Asia Magazine, v. 13, p. 41-42, 2009. ARNOLD, C.R.; KAISER, J.B.; HOLT, G.J. Spawning of Cobia Rachycentron canadurn in Captivity. Journal of the World Aquaculture Society, v. 33, n. 2, p.205-208, 2002. BALDISSERA, A.C.; BETTA, F.D.; PENNA, A.L.B.; LINDNER, J.D.D. Alimentos funcionais: uma nova fronteira para o desenvolvimento de bebidas protéicas a base de soro de leite. Semina: Ciências Agrárias, v. 32, n. 4, p. 1497-1512, 2011. BARBOSA, C.F. Determinação da atividade antioxidante, teor fenólico e açúcares redutores de Ulva fasciata cultivada em sistema de aquicultura multitrófica integrada. 2017. 38p. Monografia (Licenciatura em Química). Universidade Estadual do Norte Fluminense Darcy Ribeiro, Paracambi, RJ, 2017. BENETTI, D.D.; ORHUN, M.R.; SARDENBERG, B.; O’HANLON, B.; WELCH, A.; HOENIG, R.; ZINK, I.; RIVERA, J.A.; DENLINGER, B.; BACOAT, D.; PALMER, K.; CAVALIN, F. Advances in hatchery and grow-out technology of cobia Rachycentron canadum (Linnaeus). Aquaculture Research, v. 39, p.701-711, 2008. BENETTI, D.D.; O’HANLON, B.; RIVERA, J.A.; WELCH, A.W.; MAXEY, C.; ORHUN, M.R. Growth rates of cobia (Rachycentron canadum) cultured in open ocean submerged cages in the Caribbean. Aquaculture, v. 302, p. 195-201, 2010. BIANCHI, M.L.P de; ANTUNES, L.M.G. Radicais livres e os principais antioxidantes da dieta free radicals and the main dietary antioxidants. Revista de Nutrição, Campinas, v. 12, n. 2, p. 123-130, 1999. BNDES. Panorama da aquicultura no Brasil: desafios e oportunidades. BNDS Setorial, v. 35, p. 421-463, 2010. BONORDEN, W.R.; PARIZA, M.W. Antioxidant nutrients and protection from free radicals. In: Nutritional toxicology. F. N. KOTSONIS, F.N.; MACKEY, M.; HJELLE, J. eds. Raven Press, New York, NY. p. 19-48. 1994. BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução n. 17, de 30 de abril de 1999. Aprova o Regulamento Técnico que Estabelece as Diretrizes Básicas para Avaliação de Risco e Segurança dos Alimentos. Brasília, 1999. BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução n. 2, de 07 de janeiro de 2002. Aprova o Regulamento Técnico de Substâncias Bioativas e Probióticos Isolados com Alegação de Propriedades Funcional e ou de Saúde. Rotulagem. Brasília, 2002. BRASIL. Boletim estatístico da Pesca e Aquicultura – Brasil 2008-2009. Ministério da Pesca e Aquicultura. Brasília, 2010. 99p. BRASIL. Boletim estatístico da Pesca e Aquicultura – Brasil 2010. Ministério da Pesca e Aquicultura. Brasília, 2012. 128p. 16 BURR, G.S.; WOLTERS, W.R.; BARROWS, F.T.; DONKIN, A.W. Evaluation of a canola protein concentrate as a replacement for fishmeal and poultry by-product meal in a commercial production diet for Atlantic salmon (Salmo salar). International Aquatic Research, 2013, v. 5, n. 5, p. 1-8, 2013. BURTIN, P. Nutritional value of seaweeds. Electronic Journal of Environmental, Agriculture and Food Chemistry, v.2, n.4, p. 498-503, 2003. CAMPANA-FILHO, S.P.; BRITTO, D. de; CURTI, E.; ABREU, F.R.; CARDOSO, M.B.; BATTISTI, M.V.; SIM, P.C.; GOY, R.C.; SIGNINI, R.; LAVALL, R.L. Extração, estruturas e propriedades de α- e β-quitina. Quimica Nova, v. 30, n. 3, p. 644-650, 2007. CARVALHO FILHO, J. O êxito da primeira desova do bijupirá. Panorama da Aquicultura, v. 16, n. 97, p. 40-45, 2006. CASTELAR, B.; PONTES, M.D.; COSTA, W.M. de; MOURA, L.C.F.; DIAS, G.E.A.; LANDUCI, F.S.; REIS, R.P. Biofiltering efficiency and productive performance of macroalgae with potential for integrated multi-trophic aquaculture (IMTA). Boletim do Instituto de Pesca, São Paulo, v. 41 (esp.), p. 763 – 770, 2015. CAVALLI, R.O.; DOMINGUES, E.C.; HAMILTON, S. Desenvolvimento da produção de peixes marinhos em mar aberto no Brasil: possibilidades e desafios. Revista Brasileira de Zootecnia, v. 40, p. 151-164, 2011. CAVALLI, R.O.; GARCIA, A.S. Exigências nutricionais e alimentação do beijupirá. In: FRACALOSSI, D.M.; CIRYNO, J.E.P. Nutriaqua: nutrição e alimentação de espécies de interesse para a aquicultura brasileira. Florianópolis: Sociedade Brasileira de Aquicultura e Biologia Aquática, 2012. p. 269-279. CENTRO DE EXCELÊNCIA PARA O MAR BRASILEIRO (CEMBRA). O Brasil e o mar no século XXI. Edição virtual. 2015. Disponível em: http://www.cembra.org.br/segundo-projeto.html. Acesso em: 26 janeiro 2017. CERQUEIRA, F.; MEDEIROS, M.; AUGUSTO, O. Antioxidantes dietéticos: controvérsias e perspectivas. Química Nova, São Paulo, v. 30, n. 2, p. 441-449, 2007. CHAKKARAVARTHY, M.V.; KUMAR, V. HPTLC Finger Print Analysis of Steroid, Flavonoid and Antiradical activity in Sargassum wightii from Gulf of Mannar. Research Journal Pharmacognosy and Phytochemistry, v. 3, n. 2, p. 72-74, 2011. CHO, S.H., LEE, S.M., LEE, S.M., LEE, J.H., 2005. Effect of dietary protein and lipid levels on growth and body composition of juvenile turbot (Scophthalmus maximus L) reared under optimum salinity and temperature conditions. Aquaculture Nutrition, v. 11, p. 235–240, 2005. CHOU, R.L.; SU, M.S.; CHEN, H.Y. Optimal dietary protein and lipid levels for juvenile cobia (Rachycentron canadum). Aquaculture, v. 193, p. 81-89, 2001. 17 CHOU, R.L.; HER, B.Y., SU, M.S.; HWANG, G.; WU, Y.H.; CHEN, H.Y. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture, v. 229, p. 325-333, 2004. CHRISTAKI, E.; BONOS, E.; GIANNENAS, I.; FLOROU-PANERI, P. Functional properties of carotenoids originating from algae. Journal of the Science of Food and Agriculture, v. 93, p. 5-11, 2013. COLLETTE, B.B. Rachycentridae. In: FISCHER, W (ed). FAO species identification guide for fishery purposes. western and central Atlantic (Fishing area 31). Rome: FAO, v. 4, 1981. COPPENS, P.; SILVA, M.F. da; PETTMAN, S. European regulations on nutraceuticals, dietary supplements and functional foods: A framework based on safety. Toxicology, v. 221, p. 59–74, 2006. CRAIG, S.R.; SCHWARZ, M.H.; MCLEAN, E. Juvenile cobia (Rachycentron canadum) can utilize a wide range of protein and lipid levels without impacts on production characteristics. Aquaculture, v. 26, p. 384-391, 2006. CUI, X.; ZHOU, Q.; LIANG, H.; YANG, J.; ZHAO, L. Effects of dietary carbohydrate sources on the growth performance and hepatic carbohydrate metabolic enzyme activities of juvenile cobia (Rachycentron canadum Linnaeus.). Aquaculture Research, v. 42, p. 99-107, 2010. CYRINO, J.E.P.; BICUDO, A.J. de A.; SADO, R.Y.; BORGUESI, R.; DAIRIKI, J.K. A piscicultura e o ambiente – o uso de alimentos ambientalmente corretos em piscicultura. Revista Brasileira de Zootecnia, v. 39, p. 68-87, 2010. DECKER, E.A. Phenolics: prooxidants or antioxidants? Nutrition Reviews, New York, v.55, n.11, p.396-407, 1997. DEGÁSPARI, C.H.; WASZCZYNSKYJ, N. Propriedades antioxidantes de compostos fenólicos antioxidants properties of phenolic compounds. Visão Acadêmica, Curitiba, v. 5, n. 1, p. 33-40, 2004. DOMINGUES, E.C. Viabilidade econômica do cultivo do beijupirá (Rachycentron canadum) em mar aberto em Pernambuco. Recife. 84p. (Dissertação de Mestrado. Universidade Federal Rural de Pernambuco). 2012. Disponível em: <http://www.pgpa.ufrpe.br/Trabalhos/2012/ T2012ecd.pdf>. Acesso em: 21 jun 2015. ERGUN, S.; SOYUTURK, M.; GUROY, B.; GUROY D.; MERRIFIELD, D. Influence of Ulva meal on growth, feed utilization, and body composition of juvenile Nile tilapia (Oreochromis niloticus) at two levels of dietary lipid. Aquaculture International, v. 17, p. 355-361, 2008. ESPE, M.; LEMME, A PETRI, A.; EL-MOWAFI, A. Assessment of lysine requirement for maximal protein accretion in Atlantic salmon using plant protein diets. Aquaculture, v. 263, p. 168–178, 2007. 18 EVANS, J.L.; GOLDFINE, I.D.; MADDUX, B.A.; GRODSKY, G.M. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine Reviews, v. 23, n. 5, p. 599-622, 2002. FAO. The State of World Fisheries and Aquaculture. Rome: FAO, 2010. 197p. Disponível em: http://www.fao.org/fishery/sofia/en. Acesso em: 14 mar 2015. FAO. Fishstat plus: Universal software for fisher y statistical time series. Rome: Fisheries Department Fishery Information, Data and Statistics Unit, FAO, 2011. Disponível em: http://www.fao.org/fishery/statistics/software/fishstat/en. Acesso em: 31 dez 2016. FAO. The State of World Fisheries and Aquaculture (SOFIA). Rome: FAO, 2012. Disponível em: http://www.fao.org/fishery/sofia/en. Acesso em: 1 mar 2015. FAO. Cultured Aquatic Species Information Programme: Rachycentron canadum (Linnaeus, 1766). Rome: FAO, 2013. Disponível em: http://www.fao.org/fishery/culturedspecies/ Rachycentron_canadum/en. Acesso em: 22 abr 2015. FAO. The State of World Fisheries and Aquaculture (SOFIA). Rome: FAO, 2014. 223p. Disponível em: http://www.fao.org/fishery/sofia/en. Acesso em: 15 mar 2015. FAULK, C.K.; HOLT, G.J. Biochemical composition and quality of captive-spawned cobia Rachycentron canadum eggs. Aquaculture, v. 279, p. 70-76, 2008. FEELEY, M.W.; BENETTI, D.D.; AULT, J.S. Elevated oxygen uptake and high rates of nitrogen excretion in early life stages of the cobia Rachycentron canadum (L.), a fast-growing subtropical fish. Journal of Fish Biology, v. 71, p. 1662–1678, 2007. FINES, B.C.; HOLT, G.J. Chitinase and apparent digestibility of chitin in the digestive tract of juvenile cobia, Rachycentron canadum. Aquaculture, v. 303, p. 34-39, 2010. FINKEL, T.; HOLBROOK, N.J. Oxidants, oxidative stress and the biology of ageing. Nature, v. 408, n. 9, p. 239-246, 2000. FLEURENCE, J. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Technology, v. 10, p. 25-28, 1999. FRACALOSSI, D.M.; CIRYNO, J.E.P. Técnicas experimentais em nutrição de peixes. In: FRACALOSSI, D.M.; CIRYNO, J.E.P. Nutriaqua: nutrição e alimentação de espécies de interesse para a aquicultura brasileira. Florianópolis: Sociedade Brasileira de Aquicultura e Biologia Aquática, 2012. p. 37-63. FRANK, H.A.; BRUDVIG, G.W. Redox functions of carotenoids in photosynthesis. Biochemistry, v. 43, n. 27, p. 8607-8615, 2004. FRANKS, J.S.; OGLE, J.T.; LOB, J.M.; NICHOLSON, L.C.; BARNES, D.N.; LARSEN, K.M. Spontaneous spawning of cobia, Rachycentron canadurn, induced by human chorionic gonadotropin (HCG), with comments on fertilization, hatching, and larval development. Proceedings of the Gulf and Caribbean Fisheries Institute,v. 52, p. 598-609, 2001. 19 FRASER, T.W.K.; DAVIES, S.J. Nutritional requirements of cobia, Rachycentron canadum (Linnaeus): a review. Aquaculture Research, v. 40, p. 1219-1234, 2009. GATELLIER, P.; MERCIER, Y.; RENERRE, M. Effect of diet finishing mode (pasture or mixed diet) on antioxidant status of Charolais bovine meat. Meat Science, v. 67, p. 385–394, 2004. GATLIN III, D.M.; BARROWS, F.T.; BROWN, P.; DABROWSKI, K.; GAYLORD, T.G.; HARDY, R.W.; HERMAN, E.; HU, G.; KROGDAHL, Å.; NELSON, R.; OVERTURF, K.; RUST, M.; SEALEY, W.; SKONBERG, D.; SOUZA, E.J.; STONE, D.; WILSON, R.; WURTELE, E. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research, v. 38, p. 551‑579, 2007. GAYLORD, T.G.; BARROWS, F.T. Multiple amino acid supplementations to reduce dietary protein in plant-based rainbow trout, Oncorhynchus mykiss, feeds. Aquaculture, v. 287, p. 180–184, 2009. GODARD, M.; DÉCORDÉ, K.; VENTURA, E.; SOTERAS, G.; BACCOU, J.C.; CRISTOL, J.P.; ROUANET, J.M. Polysaccharides from the green alga Ulva rigida improve the antioxidant status and prevent fatty streak lesions in the high cholesterol fed hamster, an animal model of nutritionally-induced atherosclerosis. Food Chemistry, v. 115, p.176-180, 2009. GOMES, F. da S. Carotenóides: uma possível proteção contra o desenvolvimento de câncer. Revista de Nutrição, v. 5, p. 537-548, 2007. GONZALES, E.; MASCARENHAS, A.G. Regulamentação do uso de aditivos na alimentação animal. In: SAKOMURA, N.K. (ed.). Nutrição de não ruminantes. Editora Funep: SP, 2014. p. 461-465. GOPAKUMAR, G.; NAZAR, A.A.K.; TAMILMANI, G.; SAKTHIVEL, M.; KALIDAS, C.; RAMAMOORTHY, N.; PALANICHAMY, S.; MAHARSHI, A.V.; RAO, S.K.; RAO, S.G. Broodstock development and controlled breeding of cobia Rachycentron canadum (Linnaeus 1766) from Indian seas. Indian Journal Fish., v. 58, n. 4, p. 27-32, 2011. GUTTERIDGE, J.M.C. Does redox regulation of cell function explain why antioxidants perform so poorly as therapeutic agents? Redox Report, v. 4, n. 3, p. 129-131, 1999. HAMED, I.F.; ÖZOGUL, F.; ÖZOGUL, Y.; REGENSTEIN, J.M. Marine Bioactive Compounds and Their Health Benefits: A Review. Comprehensive Reviews in Food Science and Food Safety, p. 1-20, 2015. HAMILTON, S.; SEVERI, W.; CAVALLI, R.O. Biologia e aquicultura do beijupirá: uma revisão. Boletim do Instituto de Pesca, v. 39, n. 4, p. 461-477, 2013. HARABAWY, A.S.A.; MOSLEH, Y.Y.I. The role of vitamins A, C, E and selenium as antioxidants against genotoxicity and cytotoxicity of cadmium, copper, lead and zinc on erythrocytes of Nile tilapia, Oreochromis niloticus. Ecotoxicology and Environmental Safety, v. 104, p. 28-35, 2014. 20 HAYDEN, H.S.; WAALAND, J.R. A molecular systematic study of Ulva (Ulvaceae, Ulvales) from the northeast Pacific. Phycologia, v. 43, p. 364-382, 2004. HEASMAN, M.; MELLENTIN, J. The functional foods revolution: healthy people, healthy profits. London: Earthscan, 2001. 313 p. HEISER, H.; OSSWALD, W. F. Formação e função das espécies reativas de oxigênio nas interações planta-patógeno. In: PASCHOLATI, S.F.; LEITE, B.; STANGARLIN, J.R.; CIA, P. (ed.). Interação Planta Patógeno – fisiologia, Bioquímica e Biologia Molecular. Piracicaba: FEALQ, 2008. p.249-283. HOLDT, S.L.; KRAAN, S. Bioactive compounds in seaweed: functional food applications and legislation. Journal Applied Phycology, v. 23, p. 543–597, 2011. HOLT, G.J.; FAULK, C.K.; SCHWARZ, M.H. A review of the larviculture of cobia Rachycentrom canadum, a warm water marine fish. Aquaculture, v. 268, p. 181–187, 2007. IFIC. INTERNATIONAL FOOD INFORMATION COUNCIL FOUNDATION. Functional Foods Fact Sheet: Probiotics and Prebiotics. 2009. Disponível em: <http://www.foodinsight.org/Resources/Detail.aspx?topic=Functional_Foods_Fact_Sheet _Probiotics_and_Prebiotics>. Acesso em: 07 nov. 2017. IFT. INSTITUTE OF FOOD TECHNOLOGISTS. Functional Foods. 2017. Dispinível em: <http://www.ift.org/knowledge-center/focus-areas/food-health-and-nutrition/functional-foods.aspx>. Acesso em: 07 nov. 2017. ILSI. LIFE SCIENCE INTERNATIONAL INSTITUTE. Functional foods - Scientific and Global Perspectives. ILSI Europe Series, Summary of a Symposium held in October 2001. Washington, D C: International Life Science Institute Press, p. 7-10, 2002. ITO, K.; HORI, K. Seaweed: chemical composition and potential food uses. Food Reviews International, v. 5, n. 1, p. 101-144, 1989. JIMÉNEZ-ESCRIG, A.; JIMÉNEZ-JIMÉNEZ, I.; PULIDO, R.; SAURA-CALIXTO, F. Antioxidant activity of fresh and processed edible seaweeds. Journal of the Science of Food and Agriculture, v. 81, n. 5, p. 530-534, 2001. KAISER, J.B.; HOLT, G.J. Species profile cobia. Southern Regional Aquaculture Center Publication, n. 7202, 2005. KESHAVANATH, P.; MANJAPPA, K.; GANGADHARA, B. Evaluation of carbohydrate rich diets through common carp culture in manured tanks. Aquaculture Nutrition, v. 8, p. 169–174, 2002. KONGKEO, H.; WAYNE, C.; MURDJANI, M.; BUNLIPTANON, P.; CHIEN, T. Current practices of marine fi nfi sh cage culture in China, Indonesia, Thailand and Viet Nam. Aquaculture Asia Magazine, v. 15, n. 2, p.32-40, 2010. KRUGER, C. L.; MANN, S. W. Safety evaluation of funcional ingredients. Food and Chemical Toxicology. v. 41, p. 793-805, 2003. 21 LAHAYE, M.; CIMADEVILLA, E.A.; KUHLENKAMP, R.; QUEMENER, B.; LOGNONE, V.; DION, P. Chemical composition and 13C NMR spectroscopic characterisation of ulvans from Ulva (Ulvales, Chlorophyta). Journal of Applied Phycology, v. 11, p. 1–7, 1999. LARGO, D.B.; SEMBRANO, J.; HIRAOKA, M.; OHNO, M. Taxonomic and ecological profile of green-tide species of Ulva (Ulvales, Chlorophyta) in central Philippines. Hydrobiologia, v. 512, p. 247–253, 2004. LEITE, B.S.M. Novas alternativas para o uso de macroalgas da costa portuguesa em alimentação. 2017. 301p. Dissertação (Ciências Gastronómicas). Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, 2017. LIAO, I.C.; HUANG, T.S.; TSAI, W.S.; HSUEH, C.M.; CHANG, S.L.; LEAÑO, E.M. Cobia culture in Taiwan: current status and problems. Aquaculture, v. 237, p. 155-165, 2004. LIU, P.C.; LIN, J.Y.; LEE, K.K. Virulence of Photobacterium damselae subsp. Piscicida in cultured cobia Rachycentron canadum. Journal Basic Microbiology, v. 43, n. 6, p.499-507, 2003. LIVINGSTONE, D.R. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, v. 42, p. 656–666, 2001. LOBBAN, C.S.; HARRISON, P.J. Seaweed Ecology and Physiology. Cambridge University Press. U.K., 1997. 366p. LUNGER, A.N.; CRAIG, S.R.; MCLEAN, E. Replacement of fish meal in cobia (Rachycentron canadum) diets using an organically certified protein. Aquaculture, v. 257, p. 393–399, 2006. LUO, Y.; AI, Q.; MAI, K.; ZHANG, W.; XU, W.; ZHANG, Y. Effects of dietary rapeseed meal on growth performance, digestion and protein metabolism in relation to gene expression of juvenile cobia (Rachycentron canadum). Aquaculture, v. 368–369, p.109–116, 2012. MABEAU, S.; FLEURENCE, J. Seaweed in food products: biochemical and nutritional aspects. Trends in Food Science & Technology, v. 4, p. 103-107, 1993. MARGRET, R.J.; KUMARESAN, S.; RAVIKUMAR, S. A preliminary study on the anti-inflammatory activity of methanol extract of Ulva lactuca in rat. Journal Environmental Biology, v. 30 (5 suppliment), p. 899-902, 2009. MARKLUND, S.; MARKLUND, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, v. 16, p. 469-474, 1974. MATSUKAWA, R.; DUBINSKY, Z.; KISHIMOTO, E.; MASUDA, Y.; TAKEUCHI, T. A comparison of screening methods for antioxidant activity in seaweeds. Journal of Applied Phycology, v. 9, n. 1, p. 29-35, 1997. MEENAKSHI, S.; GNANAMBIGAI, M.D.; MOZHI, T.S.; ARUMUGAM, M.; BALASUBRAMANIAN, T. Total Flavanoid and in vitro Antioxidant Activity of Two 22 Seaweeds of Rameshwaram Coast. Global Journal of Pharmacology, v. 3, n. 2, p. 59-62, 2009. MENDIOLA, J.A.; MARIN, F.R.; HERNANDEZ, S.F.; ARREDONDO, B.O.; SENORANS, F.J.; IBANEZ, E.; REGLERO, G. 2005. Characterization via liquid chromatography coupled to diode array detector and tandem mass spectrometry of supercritical fluid antioxidant extracts of Spirulina platensis microalga. Journal Separation Science, v. 28, p. 1031-1038, 2005. MIAO, S.; JEN, C.C., HUANG, C.T.; HU, S.H. Ecological and economic analysis for cobia Rachycentron canadum commercial cage culture in Taiwan. Aquaculture International, v. 17, p. 125-141, 2009. MONTEIRO, D.A.; RANTIN, F.T.; KALININ, A.L. The effects of selenium on oxidative stress biomarkers in the freshwater characid fish matrinxã, Brycon cephalus (Günther, 1869) exposed to organophosphate insecticide Folisuper 600 BR® (methyl parathion). Comparative Biochemistry and Physiology, Part C, v. 149, p. 40–49, 2009. MOORE, A.L.; JOY, A.; TOM, R.; GUST, D.; MOORE, T.A. Photoprotection by carotenoids during photosynthesis: motional dependence of intramolecular energy transfer. Science, v. 216, p. 982-984, 1982. MORAN, L.H.; GUTTERIDGE, J.; QUINLAN, G.J. Thiols in cellular redox signaling and control. Current Medicinal Chemistry, v. 8, n. 7, p. 763-772, 2001. NAYLOR, R.; HARDYB, R.W.; BUREAUC, D.P.; CHIUA, A.; ELLIOTTD, M.; FARRELLE, A.P.; FORSTERE, I.; GATLINF, D.M.; GOLDBURGH, R.J.; HUAC, K.; NICHOLS, P.D. Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences, v. 106, n. 36, p. 15103–15110, 2009. NEMATIPOUR, G.R.; BROWN, M.L.; GATLIN III, D.M. Effects of dietary energy: protein ratio on growth characteristics and body composition of hybrid striped bass, Morone chrysops x M. saxatilis. Aquaculture, v. 107, p. 359-368, 1992. NEORI, A.; CHOPINB, T.; TROELL, M.; BUSCHMANNE, A.H.; KRAEMER, G.P.; HALLING, C.; SHPIGEL, M.; YARISH. C. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, v. 231, p. 361–391, 2004. NEWAJ-FYZUL, A.; AUSTIN, B. Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. Journal Fish Disease, 2014. NGUYEN, M.V.; RØNNESTAD, I.; BUTTLE, L.; LAI, H.V.; ESPE, M. Evaluation of a high plant protein test diet for juvenile cobia Rachycentron canadum in comparison to commercial diets. International Journal of Agriculture and Crop Sciences, v. 2, n. 6, p. 117-125, 2014. NHU, V.C.; NGUYEN, H.Q.; LE, T.L.; TRAN, M.T.; SORGELOOS, P.; DIERCKENS, K.; REINERTSEN, H.; KJØRSVIK, E.; SVENNEVIG, N. Cobia Rachycentron canadum 23 aquaculture in Vietnam: recent developments and prospects. Aquaculture, v. 315, n. 1-2, p. 20-25, 2011. NOSE, T. Recents advances in the study of fish digestion in Japan. In: Symposium on feeding trout and salmon culture, 7., 1966, Belgrade. Proceedings… Belgrade: EIFAC, 1966. p. 17. ORTIZ, J.; ROMERO, N.; ROBERT, P.; ARAYA, J.; LOPEZ-HERNÁNDEZ, J.; BOZZO, C.; NAVARRETE, E.; OSORIO , A.; RIOS, A. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea Antarctica. Food Chemistry, v. 99, p. 98-104, 2006. PAGLIA, D.E.; VALENTINE, W.N. Studieson the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal Laboratory Clinical Medicine, v. 7, p. 158-169, 1967. PARTHIBAN, C.; SARANYA, C.; GIRIJA, K.; HEMALATHA, A.; SURESH, M.; ANANTHARAMAN, P. Biochemical composition of some selected seaweeds from Tuticorin coast. Advances in Applied Science Research, v. 4, n. 3, p. 362-366, 2013. PEZZATO, L.E.; BARROS, M.M.; FURUYA, W.M. Valor nutritivo dos alimentos utilizados na formulação de rações para peixes tropicais. Revista Brasileira de Zootecnia, v. 38, p. 43-51, 2009. PHYCOLOGICAL SOCIETY OF AMERICA. 2015. Disponível em: <http://www.psaalgae.org/>. Acesso em: 30 jun 2015. PIETRA, P.G. Flavonoids as antioxidants. Journal National Production, n. 63, p. 1035-1042, 2000. PONTES, M.; CASTELAR, B.; SANTOS, M.D.M.; MOURA, L.C.F.; ELER, G.; MARTINS, A.P.; COLEPICOLO, P.; REIS, R.P.; OSHIRO, L.M.Y. Seleção de macroalga para a aquicultura multitrófica integrada (AMTI) e como ingrediente funcional para peixes. In: Congresso da Sociedade Brasileira de Aquicultura e Biologia Aquática (Aquaciência), 7., Belo Horizonte, MG. Anais... Belo Horizonte, 2016. REIGHT, R. C.; BRADEN, S. L.; CRAIG, R. J. Apparent digestibility coefficients for common feedstuffs in formulated diets for red swamp crayfish, Procambarus clarkii. Aquaculture, v. 84, p. 321-334, 1990. REVERTER, M.; BONTEMPS, N.; LECCHINI, D.; BANAIGS, B.; SASAL, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: current status and future perspectives. Aquaculture, v. 433, p. 50–61, 2014. REYES, K.K. Search FishBase. 2015. Disponível em: <http://www.aquamaps.org/ExpertProfile.php?expert_id=7>. Acesso em: 13 mar 2015. SALAMATDOUSTNOBAR, R.; GHORBANI, B.; MAGHAMI, S.S.G.; MOTALEBI, V. Effects of prebiotic on the fingerling Rainbow trout. Performace parameters (Oncorynchus mykiss). World Journal of Fish and Marine Sciences, v. 3, n. 4, p. 305-307, 2011. 24 SALZE, G.P.; DAVIS, D.A. Taurine: a critical nutrient for future fish feeds. Aquaculture, v. 437, p. 215–229, 2015. SAMPAIO, L.A.; TESSER, M.B.; WASIELESKY JR, W. Avanços da maricultura na primeira década do século XXI: piscicultura e carcinocultura marinha. Revista Brasileira de Zootecnia, v. 39, p. 102-111, 2010. SANCHES, E.G.; SECKENDORFF, R.W.V.; HENRIQUES, M.B.; FAGUNDES, L.; SEBASTIANI, E.F. Viabilidade econômica do cultivo do bijupirá (Rachycentron canadum) em sistema offshore. Informações Econômicas, v. 38, n. 12, p. 42-51, 2008. SANTIZO, R.B.; SERRANO JR., A.E.; CORRE, V.L. Proximate composition and dry matter digestibility of Ulva lactuca in the black tiger shrimp Penaeus monodon. Animal Biology & Animal Husbandry International Journal of the Bioflux Society, v. 6, p. 75-83, 2014. SARITHA, K.; MANI, A.E.; PRIYALAXMI, M.; PATTERSON, J. Antibacterial Activity and Biochemical Constituents of Seaweed Ulva lactuca. Global Journal of Pharmacology, v. 7, n. 3, p. 276-282, 2013. SCALBERT, A.; MANACH, C.; MORAND, C.; REMESY, C.; JIMENEZ, L. Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, v. 45, p. 287-306, 2005. SCHWARZ, M.H.; McLEAN, E.; CRAIG, S.R. Research experience with cobia: larval rearing, juvenile nutrition and general physiology. In: LIAO, I.C. e LEAÑO, E.M. Cobia Aquaculture: Research, Development and Commercial Production. Taiwan: Asian Fisheries Society, p.1-17, 2007. SCHWARZ, M.H.; CRAIG, S.R.; DELBOS, B.C.; McLEAN, E. Efficacy of concentrated algal paste during greenwater phase of cobia larviculture. Journal of Applied Aquaculture, v. 20, n. 4, p. 285-294, 2008. SCHWARZ, M.H.; SVENNEVIG, N. Cobia culture, global production, markets, challenges. Global Aquaculture Advocate, v. 12, p. 28-30, 2009. SCHAFER, F.Q.; BUETTNER, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology Medicine, v. 30, n. 11, p 1191-1212, 2001. SEIXAS FILHO, J.T.; BRÁS, J.M.; GOMIDE, A.T.M.; OLIVEIRA, M.G.A; DONZELE, J.L. MENIN, E. Anatomia Funcional e Morfometria dos Intestinos e dos Cecos Pilóricos do Teleostei (Pisces) de Água Doce Brycon orbignyanus. Revista Brasileira de Zootecnia, v. 29, n. 2, p. 313-324, 2000. SHAFFER, R.V.; NAKAMURA, E.L. Synopsis of biological data on the cobia Rachycentron canadum (Pisces: Rachycentridae). Washington D.C.: U.S. Department of Commerce, National Oceanic and Atmospheric Administration Technical Report, 1989. (FAO Fisheries Synopsis 153). 25 SIES, H. Strategies of antioxidant defence. Review. European Journal of Biochemistry, Berlin, v. 215, n. 2, p. 213- 219, 1993. SIES, H., STAHL, W. Vitamins E and C, β-carotene, and other carotenoids as antioxidants. Journal of Clinical Nutrition, Bethesda, v. 62, n. 6, p.1315-1321, 1995. SILVA, L. P.; NÖRNBERG, J. L. Prebióticos na nutrição de não ruminantes. Ciência Rural, v.33, p. 983-990, 2003. SOUZA FILHO, J.J.; TOSTA, G.A.M. Bijupirá: As primeiras desovas da geração F1. Panorama da Aquicultura, v. 18, n. 110, p.50-53, 2008. SOUZA, T.C.M.; PETRERE, M. Characterization of small-scale fisheries in the Camamu-Almada basin, southeast state of Bahia, Brazil. Brazilian Journal of Biology, v. 68, n. 4, p. 711-719, 2008. SU, M.S.; CHIEN, Y.H.; LIAO, I.C. Potencial of marine cage aquaculture in Taiwan: cobia culture. In: LIAO, I.C.; LIAN, C.K. Cage aquaculture in Asia – Proceeding of the First International Symposium on Cage Aquaculture in Asia. Asia Fisheries Society, Taiwan. p. 97-109, 2000. SULLIVAN, L.O.; MURPHY, B.; MCLOUGHLIN, P.; DUGGAN, P.; LAWLOR, P.G.; HUGHES, H.; GARDINER, G.E. Prebiotics from Marine Macroalgae for Human and Animal Health Applications. Marine Drugs, v. 8, p. 2038-2064, 2010. TABARSA, M.; REZAEI, M.; RAMEZANPOURB, Z.; WAALAND, J.R. Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. Journal Science Food Agriculture, v. 92, p. 2500–2506, 2012. TACCHI L.; BICKERDIKE, R.; DOUGLAS, A.; SECOMBES, C.J.; MARTIN, S.A.M. Transcriptomic responses to functional feeds in Atlantic salmon (Salmo salar). Fish Shellfish Immunology, v. 31, p. 704–715, 2011. TRABER, M.G. Cellular and molecular mechanisms of oxidants and antioxidants. Mineral and Electrolyte Metabolism, v. 23, n. 3-6, p. 135-139, 1997. TRIVEDI, N.; GUPTA, V.; REDDY, C.R.K.; JHA, B. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresource Technology, v. 150, p. 106–112, 2013. TRIVEDI, N.; BAGHEL, R.S.; BOTHWELL, J.; GUPTA, V.; REDDY, C.R.K.; LALI, A.M.; JHA, B. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Scientific Reports, v. 6, p. 1-8, 2016. TROELL, M.; JOYCE, A.; CHOPIN, T.; NEORI, A.; BUSCHMANN, A.H.; FANG, J. Ecological engineering in aquaculture — Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture, v. 297, p.1–9, 2009. 26 VALKO, M.; IZAKOVIC, M.; MAZUR, M.; RHODES, C.J.; TELSER, J. Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry, v. 266, p. 37-56, 2004. VAN DER OOST, R.; BEYER, J.; VERMEULEN, N.P.E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, v. 13, n. 2, p. 57-149, 2003. VAN SOEST, P.J. Nutritional Ecology of Ruminant. 2.ed. Ithaca: Cornell University, 476p. 1994. VASCONCELOS, S.M.L.; GOULART, M.O.F.; MOURA, J.B.F. de; MANFREDINI, V.; BENFATO, M.S. da; KUBOTA, L.T. Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Quimica Nova, v. 30, n. 5, p. 1323-1338, 2007. WANG, J.T.; LIU, Y.J.; TIAN, L.X.; MAI, K.S.; DU, Z.Y.; WANG, Y.; YANG, H.J. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture, v. 249, p. 439- 447, 2005. WEBB, K.A.; RAWLINSON, L.T.; HOLT, G.J. Effects of dietary starches and the protein to energy ratio on growth and feed efficiency of juvenile cobia, Rachycentron canadum. Aquaculture Nutrition, v. 16, p. 447–456, 2010. WEIRICH, C.R.; STOKES, A.D.; SMITH, T.I.J.; JENKINS, W.E.; DENSON, M.R.; TOMASSO, J.R.; CHAPPEL, J.; BURNSIDE, D. Cobia Aquaculture research in South Carolina, USA: captive reproduction, pond nursery production, and selected environmental requirements of juveniles. In: LIAO, I.C. e LEAÑO, E.M. Cobia aquaculture: research, development and commercial production. Taiwan: Asian Fisheries Society. p. 19-44, 2007. WONG, K.H.; CHEUNG, P.C.K. Nutritional evaluation of some subtropical red and green seaweeds Part I - proximate composition, amino acid profiles and some physico-chemical properties. Food Chemistry, v. 71, p. 475-482, 2000. YEDUKONDALA, R.P.; SUDHA, R.D.; NAGA, K.V.D.; RUKMINI, S.I. Seasonal changes of biochemical composition of green algae Ulva fasciata Delile, 1813 and Caulerpa racemosa Agardh, 1873 from coastal waters of Visakhapatnam, east coast of India. Asian Journal of Plant Science and Research, v. 5, n. 6, p. 57-62, 2015. YILDIRIM, Ö.; ERGÜN, S.; YAMAN, S.; TÜRKER, A. Effects of Two Seaweeds (Ulva lactuca and Enteromorpha linza) as a Feed Additive in Diets on Growth Performance, Feed Utilization, and Body Composition of Rainbow Trout (Oncorhynchus mykiss). Kafkas Üniversitesi Veteriner Fakültesi Dergisi, v. 15, n. 3, p. 455-460, 2009. YOUSIF, O.M.; KUMAR, K.K.; ABDUL-RAHMAN, A.F.A. Growth response of cobia Rachycentron canadum (Pisces: Rachycentridae) under the hypersaline con ditions of the Emirate of Abu Dhabi. Aquaculture Asia Magazine, v. 13, p. 41-42, 2009. YU, S.L.; UENG, P.S. Impact of water temperature on growth in cobia, Rachycentron canadum, cultured in cages. The Israeli Journal of Aquaculture - Bamidgeh, v. 59, p. 47-51, 2007. ZARAGOZÁ, M.C.; LÓPEZ, D.; SÁIZ, M. P.; POQUET, M.; PÉREZ, J.; PUIG-PARELLALA, P.; MÀRMOL, F.; SIMONETTI, P.; GARDANA, C.; LERAT, Y.; BURTIN, P., INISAN, C.; ROUSSEAU, I.; BESNARD, M.; MITJAVILA, M. T. Toxicity and antioxidant activity in vitro and in vivo of two Fucus vesiculosus extracts. Journal of Agricultural and Food Chemistry, v. 56, p. 7773-7780, 2008. ZHANG, H.; TSAO, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, v. 8, p. 33-42, 2016. ZHOU, Q.; TANC, B.; MAI, K.; LIU, Y. Apparent digestibility of selected feed ingredients for juvenile cobia Rachycentron canadum. Aquaculture, v. 241 p. 441–451, 2004. ZHOU, Q.C.; WU, Z.H.; TAN, B.P.; CHI, S.Y.; YANG, Q.H. Dietary lisine requirement of juvenile cobia (Rachycentron canadum). Aquaculture, v. 273, p. 634-640, 2007. ZHOU, Q.C.; BUENTELLO, J.A.; GATLIN III, D.M. Effects of dietary prebiotics on growth performance, immune response and intestinal morphology of red drum (Sciaenops ocellatus). Aquaculture, v. 309, p. 253–257, 2010. ARENDT, M.D.; OLNEY, J.E.; LUCY, J.A. Stomach content analysis of cobia, Rachycentron canadum, from lower Chesapeake Bay. Fishery Bulletin, v. 99, n. 4, p.665-670, 2001. BENETTI, D.D.; ORHUN, M.R.; SARDENBERG, B.; O’HANLON, B.; WELCH, A.; HOENIG, R.; ZINK, I.; RIVERA, J.A.; DENLINGER, B.; BACOAT, D.; PALMER, K.; CAVALIN, F. Advances in hatchery and grow-out technology of cobia Rachycentron canadum (Linnaeus). Aquaculture Research, v.39, p.701-711, 2008. BENETTI, D.D.; O’HANLON, B.; RIVERA, J.A.; WELCH, A.W.; MAXEY, C.; ORHUN, M.R. Growth rates of cobia (Rachycentron canadum) cultured in open ocean submerged cages in the Caribbean. Aquaculture, v. 302, p. 195-201, 2010. BÉRTIN, L. Appareil digestif. In: GRASSÉ, P.P. (ed.). Traité de zoologie. Paris: Masson, v.13, 1958. p. 1249-1301. CHOU, R.L.; SU, M.S.; CHEN, H.Y. Optimal dietary protein and lipid levels for juvenile cobia (Rachycentron canadum). Aquaculture, v. 193, p. 81-89, 2001. CHOU, R.L.; HER, B.Y., SU, M.S.; HWANG, G.; WU, Y.H.; CHEN, H.Y. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture, v. 229, p. 325-333, 2004. CRAIG, S.R.; SCHWARZ, M.H.; MCLEAN, E. Juvenile cobia (Rachycentron canadum) can utilize a wide range of protein and lipid levels without impacts on production characteristics. Aquaculture, v. 26, p. 384-391, 2006. CUI, X.; ZHOU, Q.; LIANG, H.; YANG, J.; ZHAO, L. Effects of dietary carbohydrate sources on the growth performance and hepatic carbohydrate metabolic enzyme activities of juvenile cobia (Rachycentron canadum Linnaeus.). Aquaculture Research, v. 42, p. 99-107, 2010. FINES, B.C.; HOLT, G.J. Chitinase and apparent digestibility of chitin in the digestive tract of juvenile cobia, Rachycentron canadum. Aquaculture, v. 303, p. 34-39, 2010. FRASER, T.W.K.; DAVIES, S.J. Nutritional requirements of cobia, Rachycentron canadum (Linnaeus): a review. Aquaculture Research, v. 40, p. 1219-1234, 2009. GATLIN III, D.M.; BARROWS, F.T.; BROWN, P.; DABROWSKI, K.; GAYLORD, T.G.; HARDY, R.W.; HERMAN, E.; HU, G.; KROGDAHL, Å.; NELSON, R.; OVERTURF, K.; RUST, M.; SEALEY, W.; SKONBERG, D.; SOUZA, E.J.; STONE, D.; WILSON, R.; WURTELE, E. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research, v. 38, p. 551‑579, 2007. GENG, X.; DONG, X.H.; TAN, B.P.; YANG, Q.; CHI, S.Y.; LIU, H.Y.; LIU, X.Q. Effects of dietary chitosan and Bacillus subtilis on the growth performance, non-specific immunity 54 and disease resistance of cobia, Rachycentron canadum. Fish and Shellfish Immunology, v. 31, p. 400-406, 2011. HUNG, P.D.; MAO, N.D. Effects of different trash fish with alginate binding on growth and body composition of juvenile cobia (Rachycentron canadum). Aquaculture Asia Magazine, v. 15, n. 2, p. 40-42, 2010. LIAO, I.C.; HUANG, T.S.; TSAI, W.S.; HSUEH, C.M.; CHANG, S.L.; LEAÑO, E.M. Cobia culture in Taiwan: current status and problems. Aquaculture, v. 237, p. 155-165, 2004. LUNGER, A.N.; CRAIG, S.R.; MCLEAN, E. Replacement of fish meal in cobia (Rachycentron canadum) diets using an organically certified protein. Aquaculture, v. 257, p. 393–399, 2006. LUNGER, A.N.; MCLEAN, E.; CRAIG, S.R. The effects of organic protein supplementation upon growth, feed conversion and texture quality parameters of juvenile cobia (Rachycentron canadum). Aquaculture, v. 264, p. 342–352, 2007a. LUNGER, A.N.; MCLEAN, E.; GAYLORD, T.G.; KUHN, D.; CRAIG, S.R. Taurine supplementation to alternative dietary proteins used in fish meal replacement enhances growth of juvenile cobia (Rachycentron canadum). Aquaculture, v. 271, p. 401-410, 2007b. SALZE G.; McLEAN E.; BATLLE, P.R.; SCHWARZ, M.H.; CRAIG S.R. Use of soy protein concentrate and novel ingredients in the total elimination of fish meal and fish oil in diets for juvenile cobia, Rachycentron canadum. Aquaculture, v. 298, p. 294-299, 2010. STONE, D.A.J. Dietary carbohydrate utilization by fish. Reviews in Fisheries Science, v. 11, p. 337-369, 2003. VIELMA J.; KOSKELA J.; RUOHONEN, K.; JOKINEN, I.; KETTUNEN, J. Optimal diet composition for European whitefish (Coregonus lavaretus): carbohydrate stress and immune parameter responses. Aquaculture, v. 225, p. 3-16, 2003. WANG, J.T.; LIU, Y.J.; TIAN, L.X.; MAI, K.S.; DU, Z.Y.; WANG, Y.; YANG, H.J. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture, v. 249, p. 439- 447, 2005. ZHOU, Q.; TANC, B.; MAI, K.; LIU, Y. Apparent digestibility of selected feed ingredients for juvenile cobia Rachycentron canadum. Aquaculture, v. 241 p. 441–451, 2004. ZHOU, Q.C.; WU, Z.H.; TAN, B.P.; CHI, S.Y.; YANG, Q.H. Dietary lisine requirement of juvenile cobia (Rachycentron canadum). Aquaculture, v. 273, p. 634-640, 2007. ZHOU, H.; CHEN, G.; GU, B.; LIN, X. Relative contribution of alternative proteins to the growth of Juvenile Cobia, Rachycentron canadum (Linnaeus). Aquaculture Research, p. 1-13, 2014. ABDEL-AZIZ, M., RAGAB, M. Effect of use fresh macro algae (seaweed) Ulva fasciata and Enteromorpha flaxusa with or without artificial feed on growth performance and feed utilization of rabbitfish (Siganus rivulatus) fry. Journal of Aquaculture Research & Development, v. 8, n. 4, p. 1-8, 2017. AEBI, H.E. Catalase. In: Methods of Enzymatic Analysis, 3 ed., BERGMEYER, H.U. (ed); CHEMIE, V. Weinheim, Florida, 1983. p. 273–286. ARNOLD, C.R.; KAISER, J.B.; HOLT, G.J. Spawning of Cobia Rachycentron canadurn in Captivity. Journal of the World Aquaculture Society, v. 33, n. 2, p. 205-208, 2002. AOAC. ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTRY. Official Methods of Analysis, 17 ed. AOAC International, Gaithersburg, MD, USA, 2000. ARAÚJO, P.F.R.; COÊLHO, M. das G.L.; HOLANDA, M.B.C.; NUNES, A.J.P.; ANDRADE, T.P. de. NUNES, A.J.P. Investigação histopatológica do fígado e intestino e hematologia de juvenis do beijupirá, Rachycentron canadum, alimentados com crescentes níveis de inclusão de farelo de soja em dietas práticas. In: Ensaios com beijupirá: Rachycentron canadum. Fortaleza: Ministério da pesca e Aquicultura/CNPQ/UFC, 2014. BANERJEE, K.; MITRA, A.; MONDAL, K. Cost-effective and eco-friendly shrimp feed from red seaweed Catenella repens (Gigartinales: Rhodophyta). Current Biotchnology, v. 4, p. 23–43, 2010. BATISTA, S.I.M. Efeito da substituição da farinha de peixe por farinha de algas Gracilaria sp. e Ulva rigida no crescimento e nos parâmetros metabólicos da dourada (Sparus aurata). Dissertação de mestrado integrado de Engenharia Biológica. Universidade do Algarve, Faro: 2008. 58p. BIANCHI, M.L.P de; ANTUNES, L.M.G. Radicais livres e os principais antioxidantes da dieta free radicals and the main dietary antioxidants. Revista de Nutrição, Campinas, v. 12, n. 2, p. 123-130, 1999. CHAKKARAVARTHY, M.V.; KUMAR, V. HPTLC Finger Print Analysis of Steroid, Flavonoid and Antiradical activity in Sargassum wightii from Gulf of Mannar. Research Journal Pharmacognosy and Phytochemistry, v. 3, n. 2, p. 72-74, 2011. CHOU, R.L.; SU, M.S.; CHEN, H.Y. Optimal dietary protein and lipid levels for juvenile cobia (Rachycentron canadum). Aquaculture, v. 193, p. 81-89, 2001. CHOU, R.L.; HER, B.Y., SU, M.S.; HWANG, G.; WU, Y.H.; CHEN, H.Y. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture, v. 229, p. 325-333, 2004. CRAIG, S.R.; SCHWARZ, M.H.; MCLEAN, E. Nutrition research with cobia. Global Aquaculture Advocate, v.8, p.76-78, 2005. 86 ERGUN, S.; SOYUTURK, M.; GUROY, B.; GUROY D.; MERRIFIELD, D. Influence of Ulva meal on growth, feed utilization, and body composition of juvenile Nile tilapia (Oreochromis niloticus) at two levels of dietary lipid. Aquaculture International, v. 17, p. 355-361, 2008. FERREIRA, D.F. SISVAR: programa de análises estatística e planejamento de experimentos, versão 5.3. Lavras: UFLA/DEX, 2010. Disponível em: <http://www.dex.ufla.br/danielff/sisvar>. Acesso em: 15 out. 2010. FLEURENCE, J. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Technology, v. 10, p. 25-28, 1999. FOLCH, J.; LEES, M.; STANLEY-SLOANE, G.H. A simple method for the isolation purification of total lipids from animal tissues. Journal Biology Chemistry, v. 226, p. 497-507, 1957. FONTAGNÉ-DICHARRY, S.; LATAILLADE, E.; SURGET, A.; LARROQUET, L.; CLUZEAUD, M.; KAUSHIK, S. Antioxidant defense system is altered by dietary oxidized lipid in first-feeding rainbow trout (Oncorhynchus mykiss). Aquaculture, v. 424, p. 220-227, 2014. FRASER, T.W.K.; DAVIES, S.J. Nutritional requirements of cobia, Rachycentron canadum (Linnaeus): a review. Aquaculture Research, v. 40, p. 1219-1234, 2009. GARCÍA-ORTEGA, A.; KISSINGER, K.R.; TRUSHENSK, J.T. Evaluation of fish meal and fish oil replacement by soybean protein and algal meal from Schizochytrium limacinum in diets for giant grouper Epinephelus lanceolatus. Aquaculture, v. 452, p. 1-8, 2016. HABIG, W.H.; PABST, M.J.; JAKOBY, W.B. Journal Biology Chemistry, v. 249, p. 7130-7139, 1974. HOLT, G.J.; FAULK, C.K.; SCHWARZ, M.H. A review of the larviculture of cobia Rachycentrom canadum, a warm water marine fish. Aquaculture, v. 268, p. 181–187, 2007. HUMASON, G.L. Animal tissue techniques. 3.ed. Freeman and Company, 1972. 641p. LISMONT, C.; NORDGREN, M.; VELDHOVEN, P.P.V.; FRANSEN, M. Redox interplay between mitochondria and peroxisomes. Frontiers in Cell and Developmental Biology, v. 3, p. 1-19, 2015. MARTÍNEZ-ÁLVAREZ, R.M.; MORALES, A.E.; SANZ, A. Antioxidant defenses in fish: Biotic and abiotic factors. Reviews in Fish Biology and Fisheries, p. 75-88, 2005. MORSHEDI, V.; BAHABADI, M.N.; SOTOUDEH, E.; AZODI, M.; HAFEZIEH, M. Nutritional evaluation of Gracilaria pulvinata as partial substitute with fish meal in practical diets of barramundi (Lates calcarifer). Journal of Applied Phycology, 2017. Disponível em: < https://link.springer.com/content/pdf/10.1007%2Fs10811-017-1199-y.pdf>. Acesso em: 13 nov 2017. 87 MUSTAFA, M.G.; NAKAGAWA, H. A review: Dietary benefits of algae as an additive in fish feed. Israeli Journal of Aquaculture-Bamidgeh, v. 47, p. 155-162, 1995. NAKAGAWA, H.; KASAHARA, S.; SUGIYAMA, T. Effect of Ulva meal supplementation on lipid metabolism of black sea bream, Acanthopagrus schlegeli (Bleeker). Aquaculture, v. 62, n. 2, p. 109-121, 1987. NAKAGAWA, H. Effect of dietary algae on improvement of lipid metabolism in fish. Biomedicine, v. 51, n. 8, p. 345-348, 1997. NATIFY, W.; DROUSSI, M.; BERDAY, N.; ARABA, A.; BENABID, M. Effect of the seaweed Ulva lactuca as a feed additive on growth performance, feed utilization and body composition of Nile tilapia (Oreochromis niloticus L.). International Journal of Agronomy and Agricultural Research, v. 7, n. 3, p. 85-92, 2015. NAYLOR, R.; HARDYB, R.W.; BUREAUC, D.P.; CHIUA, A.; ELLIOTTD, M.; FARRELLE, A.P.; FORSTERE, I.; GATLINF, D.M.; GOLDBURGH, R.J.; HUAC, K.; NICHOLS, P.D. Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences, v. 106, n. 36, p. 15103–15110, 2009. ORTIZ, J.; ROMERO, N.; ROBERT, P.; ARAYA, J.; LOPEZ-HERNÁNDEZ, J.; BOZZO, C.; NAVARRETE, E.; OSORIO , A.; RIOS, A. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea Antarctica. Food Chemistry, v. 99, p. 98-104, 2006. PEIXOTO, M.J.; SALAS-LEITÓN, E.; PEREIRA, L.F.; QUEIROZ, A.; MAGALHÃES, F.; PEREIRA, R.; ABREU, H.; REIS, P.A.; GONÇALVES, J.F.M.; OZÓRIO, R.O. de A. Role of dietary seaweed supplementation on growth performance, digestive capacity and immune and stress responsiveness in European seabass (Dicentrarchus labrax). Aquaculture Reports, v. 3, p. 189–197, 2016. PETROVA, V.Y.; RASHEVA, T.V.; KUJUMDZIEVA, A.V. Catalase enzyme in mitochondria of Saccharomyces cerevisiae. Electronic Journal of Biotechnology, v. 5, p. 29-41, 2002. RAJAPAKSE, N.; KIM, S.K. Nutritional and digestive health benefits of seaweed. Advances in Food and Nutrition Research, v. 64, p. 17–28, 2011. SALZE G.; McLEAN E.; SCHWARZ M.H.; CRAIG S.R. Dietary mannan oligosaccharide enhances salinity tolerance and gut development of larval cobia. Aquaculture, v. 274, p. 148-152, 2008. SALZE G.; McLEAN E.; BATLLE, P.R.; SCHWARZ, M.H.; CRAIG S.R. Use of soy protein concentrate and novel ingredients in the total elimination of fish meal and fish oil in diets for juvenile cobia, Rachycentron canadum. Aquaculture, v. 298, p. 294-299, 2010. SAMPAIO, L.A.; TESSER, M.B. Cultivo do Beijupirá. In: BALDISSEROTTO, B.; GOMES, L.C. Espécies nativas para a piscicutura no Brasil. UFSM, Santa Maria, 2010. 606p. 88 SATOH, K.I.; NAKAGAWA, H.; KASAHARA, S. Effect of Ulva meal supplementation on disease resistance of red Sea Bream. Nippon Suisan Gakkaishi, v. 53, n. 7, 1115-1120, 1987. SHAFFER, R.V.; NAKAMURA, E.L. Synopsis of biological data on the cobia Rachycentron canadum (Pisces: Rachycentridae). Washington D.C.: U.S. Department of Commerce, NOAA Technical Report, 1989. (FAO Fisheries Synopsis 153). SILVA, D.J.; QUEIROZ, A.C. Análise de alimentos: métodos químicos e biológicos. Viçosa, 3 ed. MG: UFV, 2006. 235 p. SILVA, W.J.M da; FERRARI, C.K.B. Metabolismo mitocondrial, radicais livres e envelhecimento. Revista Brasileira de Geriatria e Gerontologia, v. 14, n. 3, p. 441-451, 2011. SUN, L.; CHEN, H.; HUANG, L. Effect of temperature on growth and energy budget of juvenile cobia (Rachycentron canadum). Aquaculture, v. 261, p.872–878, 2006. SUN, L., CHEN, H. Effects of water temperature and fish size on growth and bioenergetics of cobia (Rachycentron canadum). Aquaculture, v. 426-427, p. 172-180, 2014. VALENTE, L.M.P.; GOUVEIA, A.; REMA, P.; MATOS, J.; Gomes E.F.; PINTO, I.S. Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, v. 252, p. 85–91, 2006. VASCONCELOS, S.M.L.; GOULART, M.O.F.; MOURA, J.B.F. de; MANFREDINI, V.; BENFATO, M.S. da; KUBOTA, L.T. Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Quimica Nova, v. 30, n. 5, p. 1323-1338, 2007. WASSEF, E.; EL-SAYED, A.M.; KANDEEL, K.M., EM S. Evaluation of pterocladia (Rhodophyta) and Ulva (Chlorophyta) meals as additives to gilthead seabream Sparus aurata diets. Egyptian Journal of Aquatic Research, v. 31, p. 321-332, 2005. WEBB, K.A.; RAWLINSON, L.T.; HOLT, G.J. Effects of dietary starches and the protein to energy ratio on growth and feed efficiency of juvenile cobia, Rachycentron canadum. Aquaculture Nutrition, v. 16, p. 447–456, 2007. WHEATLEY, J.B.; KELLEY, M.K.; MONTALI, J.A.; BERRY, C.O.A.; SCHMIDT, Jr., D. E. Examination of glutathione S-transferase isoenzyme profiles in human liver using high-performance affinity chromatography. Journal of Chromatography A, v. 663, p. 53-63, 1994.https://tede.ufrrj.br/retrieve/64238/2017%20-%20Giselle%20Eler%20Amorim%20Dias.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/4443Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-03-10T18:56:20Z No. of bitstreams: 1 2017 - Giselle Eler Amorim Dias.pdf: 3519024 bytes, checksum: ad3ee0a56c58dd86a75866d38daf5063 (MD5)Made available in DSpace on 2021-03-10T18:56:20Z (GMT). No. of bitstreams: 1 2017 - Giselle Eler Amorim Dias.pdf: 3519024 bytes, checksum: ad3ee0a56c58dd86a75866d38daf5063 (MD5) Previous issue date: 2017-05-29info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2017 - Giselle Eler Amorim Dias.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10278/1/2017%20-%20Giselle%20Eler%20Amorim%20Dias.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2017 - Giselle Eler Amorim Dias.pdf.txtExtracted Texttext/plain211236https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10278/2/2017%20-%20Giselle%20Eler%20Amorim%20Dias.pdf.txt84f6cd02507f208eed455a8ad7a76dbaMD52ORIGINAL2017 - Giselle Eler Amorim Dias.pdfGiselle Eler Amorim Diasapplication/pdf3519024https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10278/3/2017%20-%20Giselle%20Eler%20Amorim%20Dias.pdfad3ee0a56c58dd86a75866d38daf5063MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10278/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/102782023-12-21 16:00:23.045oai:rima.ufrrj.br:20.500.14407/10278Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T19:00:23Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Dieta funcional para juvenis de beijupirá: inclusão da alga marinha Ulva fasciata
dc.title.alternative.por.fl_str_mv Functional diet for juvenile beijupirá: inclusion of seaweed Ulva fasciata
title Dieta funcional para juvenis de beijupirá: inclusão da alga marinha Ulva fasciata
spellingShingle Dieta funcional para juvenis de beijupirá: inclusão da alga marinha Ulva fasciata
Dias, Giselle Eler Amorim
Ulva fasciata
Sistema multitrófico integrado
Beijupirá
Ulva fasciata
Integrated multitrophic system
Cobia
Zootecnia
title_short Dieta funcional para juvenis de beijupirá: inclusão da alga marinha Ulva fasciata
title_full Dieta funcional para juvenis de beijupirá: inclusão da alga marinha Ulva fasciata
title_fullStr Dieta funcional para juvenis de beijupirá: inclusão da alga marinha Ulva fasciata
title_full_unstemmed Dieta funcional para juvenis de beijupirá: inclusão da alga marinha Ulva fasciata
title_sort Dieta funcional para juvenis de beijupirá: inclusão da alga marinha Ulva fasciata
author Dias, Giselle Eler Amorim
author_facet Dias, Giselle Eler Amorim
author_role author
dc.contributor.author.fl_str_mv Dias, Giselle Eler Amorim
dc.contributor.advisor1.fl_str_mv Oshiro, Lidia Miyako Yoshii
dc.contributor.advisor1ID.fl_str_mv 98700766887
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8112019853480327
dc.contributor.advisor-co1.fl_str_mv Seixas Filho, José Teixeira de
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/9968278659539945
dc.contributor.advisor-co2.fl_str_mv Pereira, Marcelo Maia
dc.contributor.advisor-co2Lattes.fl_str_mv http://lattes.cnpq.br/9342701451815217
dc.contributor.referee1.fl_str_mv Oshiro, Lidia Miyako Yoshii
dc.contributor.referee2.fl_str_mv Salles, Cristiane Martins Cardoso de
dc.contributor.referee3.fl_str_mv Nascimento, Aparecida Alves do
dc.contributor.referee4.fl_str_mv Rodrigo, Takata
dc.contributor.referee5.fl_str_mv Mello, Silvia Conceição Reis Pereira
dc.contributor.authorID.fl_str_mv 09503119790
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6059452140021441
contributor_str_mv Oshiro, Lidia Miyako Yoshii
Seixas Filho, José Teixeira de
Pereira, Marcelo Maia
Oshiro, Lidia Miyako Yoshii
Salles, Cristiane Martins Cardoso de
Nascimento, Aparecida Alves do
Rodrigo, Takata
Mello, Silvia Conceição Reis Pereira
dc.subject.por.fl_str_mv Ulva fasciata
Sistema multitrófico integrado
Beijupirá
topic Ulva fasciata
Sistema multitrófico integrado
Beijupirá
Ulva fasciata
Integrated multitrophic system
Cobia
Zootecnia
dc.subject.eng.fl_str_mv Ulva fasciata
Integrated multitrophic system
Cobia
dc.subject.cnpq.fl_str_mv Zootecnia
description Um dos maiores entraves para a produção de beijupirá (Rachycentron canadum) é a formulação de dietas, que venham atender às necessidades nutricionais da espécie em cativeiro. Em vista disso, a utilização de alimentos funcionais em dieta animal tem sido valorizada devido aos benefícios à saúde que esses alimentos podem promover. A macroalga Ulva fasciata possui atividades biológicas, como ação antioxidante e antiflamatória. Portanto, este estudo teve como objetivo incluir o farelo de Ulva fasciata como ingrediente funcional na dieta para a criação dessa espécie. Desta forma, contribuindo para o desenvolvimento de técnicas sustentáveis de produção de beijupirá, foi montada uma unidade de aquicultura multitrófica integrada em sistema de recirculação de água, tendo a U. fasciata como uma das etapas de filtração. Para a avaliação da eficiência da utilização da macroalga na dieta do peixe foram ofertadas dietas peletizadas isoproteicas, isolipídicas e isocalóricas com a inclusão do farelo de Ulva fasciata (0,00; 5,00; 10,00 e 15,00%) com três repetições por tratamento. Foram distribuídos 20 peixes em cada unidade experimental de 310 L. Para avaliar o desempenho aos 62 e 94 dias de experimento, os juvenis de beijupirá ficaram em jejum de 24 horas. Os parâmetros avaliados foram: consumo alimentar, peso final, ganho de peso, conversão alimentar, comprimento, índice de eficiência alimentar, índice de consumo alimentar, taxa de crescimento específico, taxa de eficiência proteica e fator de condição. As respostas aos valores crescentes do farelo de Ulva fasciata foram avaliadas por análise de regressão para os parâmetros de desempenho, e analisados por meio dos modelos de regressão quadrática, conforme o melhor ajustamento obtido para cada variável. Os resultados submetidos à análise de variância pelo teste de médias (Tukey) a 5% de probabilidade de erro foram para os seguintes parâmetros: peso corporal, peso de vísceras, peso de fígado, índice viscerossomático (IVS), índice hepatossomático (IHS), composição corporal de peixes eviscerados, atividades de catalase, glutationa S-transferase e medidas morfométricas do intestino delgado. O programa estatístico utilizado foi o SISVAR. Para os dois períodos avaliados, não houve diferença para consumo de ração. Nos demais parâmetros avaliados houve diferença significativa aos 62 e 94 dias de experimentação, sendo que para todos os parâmetros a melhor porcentagem de inclusão da macroalga foi 10%. Houve diferença estatística para peso de peixe aos 94 dias e peso de vísceras. Não havendo diferença para peso de fígado, IVS e IHS. Houve efeito significativo para atividade de catalase mitocondrial e citoplasmática do fígado aos 94. Houve diferenças significativas para composição corporal de juvenis de beijupirá eviscerados. A umidade, cinzas e proteína da composição corporal não diferiram entre os tratamentos. A porcentagem de lipídeos dos peixes que não receberam o farelo de U. fasciata foi significativamente menor do que dos peixes que receberam 10 e 15%. Não houve diferença para morfometria intestinal. A macroalga U. fasciata pode ser incluída em dietas para juvenis de beijupirá
publishDate 2017
dc.date.issued.fl_str_mv 2017-05-29
dc.date.accessioned.fl_str_mv 2023-12-21T19:00:23Z
dc.date.available.fl_str_mv 2023-12-21T19:00:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv DIAS, Giselle Eler Amorim. Dieta funcional para juvenis de beijupirá: inclusão da alga marinha Ulva fasciata. 2017. 89 f.. Tese( Doutorado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2018.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/10278
identifier_str_mv DIAS, Giselle Eler Amorim. Dieta funcional para juvenis de beijupirá: inclusão da alga marinha Ulva fasciata. 2017. 89 f.. Tese( Doutorado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2018.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/10278
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ARNOLD, C.R.; KAISER, J.B.; HOLT, G.J. Spawning of Cobia Rachycentron canadurn in Captivity. Journal of the World Aquaculture Society, v. 33, n. 2, p.205-208, 2002. BALDISSERA, A.C.; BETTA, F.D.; PENNA, A.L.B.; LINDNER, J.D.D. Alimentos funcionais: uma nova fronteira para o desenvolvimento de bebidas protéicas a base de soro de leite. Semina: Ciências Agrárias, v. 32, n. 4, p. 1497-1512, 2011. BARBOSA, C.F. Determinação da atividade antioxidante, teor fenólico e açúcares redutores de Ulva fasciata cultivada em sistema de aquicultura multitrófica integrada. 2017. 38p. Monografia (Licenciatura em Química). Universidade Estadual do Norte Fluminense Darcy Ribeiro, Paracambi, RJ, 2017. BENETTI, D.D.; ORHUN, M.R.; SARDENBERG, B.; O’HANLON, B.; WELCH, A.; HOENIG, R.; ZINK, I.; RIVERA, J.A.; DENLINGER, B.; BACOAT, D.; PALMER, K.; CAVALIN, F. Advances in hatchery and grow-out technology of cobia Rachycentron canadum (Linnaeus). Aquaculture Research, v. 39, p.701-711, 2008. BENETTI, D.D.; O’HANLON, B.; RIVERA, J.A.; WELCH, A.W.; MAXEY, C.; ORHUN, M.R. Growth rates of cobia (Rachycentron canadum) cultured in open ocean submerged cages in the Caribbean. Aquaculture, v. 302, p. 195-201, 2010. BIANCHI, M.L.P de; ANTUNES, L.M.G. Radicais livres e os principais antioxidantes da dieta free radicals and the main dietary antioxidants. Revista de Nutrição, Campinas, v. 12, n. 2, p. 123-130, 1999. BNDES. Panorama da aquicultura no Brasil: desafios e oportunidades. BNDS Setorial, v. 35, p. 421-463, 2010. BONORDEN, W.R.; PARIZA, M.W. Antioxidant nutrients and protection from free radicals. In: Nutritional toxicology. F. N. KOTSONIS, F.N.; MACKEY, M.; HJELLE, J. eds. Raven Press, New York, NY. p. 19-48. 1994. BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução n. 17, de 30 de abril de 1999. Aprova o Regulamento Técnico que Estabelece as Diretrizes Básicas para Avaliação de Risco e Segurança dos Alimentos. Brasília, 1999. BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução n. 2, de 07 de janeiro de 2002. Aprova o Regulamento Técnico de Substâncias Bioativas e Probióticos Isolados com Alegação de Propriedades Funcional e ou de Saúde. Rotulagem. Brasília, 2002. BRASIL. Boletim estatístico da Pesca e Aquicultura – Brasil 2008-2009. Ministério da Pesca e Aquicultura. Brasília, 2010. 99p. BRASIL. Boletim estatístico da Pesca e Aquicultura – Brasil 2010. Ministério da Pesca e Aquicultura. Brasília, 2012. 128p. 16 BURR, G.S.; WOLTERS, W.R.; BARROWS, F.T.; DONKIN, A.W. Evaluation of a canola protein concentrate as a replacement for fishmeal and poultry by-product meal in a commercial production diet for Atlantic salmon (Salmo salar). International Aquatic Research, 2013, v. 5, n. 5, p. 1-8, 2013. BURTIN, P. Nutritional value of seaweeds. Electronic Journal of Environmental, Agriculture and Food Chemistry, v.2, n.4, p. 498-503, 2003. CAMPANA-FILHO, S.P.; BRITTO, D. de; CURTI, E.; ABREU, F.R.; CARDOSO, M.B.; BATTISTI, M.V.; SIM, P.C.; GOY, R.C.; SIGNINI, R.; LAVALL, R.L. Extração, estruturas e propriedades de α- e β-quitina. Quimica Nova, v. 30, n. 3, p. 644-650, 2007. CARVALHO FILHO, J. O êxito da primeira desova do bijupirá. Panorama da Aquicultura, v. 16, n. 97, p. 40-45, 2006. CASTELAR, B.; PONTES, M.D.; COSTA, W.M. de; MOURA, L.C.F.; DIAS, G.E.A.; LANDUCI, F.S.; REIS, R.P. Biofiltering efficiency and productive performance of macroalgae with potential for integrated multi-trophic aquaculture (IMTA). Boletim do Instituto de Pesca, São Paulo, v. 41 (esp.), p. 763 – 770, 2015. CAVALLI, R.O.; DOMINGUES, E.C.; HAMILTON, S. Desenvolvimento da produção de peixes marinhos em mar aberto no Brasil: possibilidades e desafios. Revista Brasileira de Zootecnia, v. 40, p. 151-164, 2011. CAVALLI, R.O.; GARCIA, A.S. Exigências nutricionais e alimentação do beijupirá. In: FRACALOSSI, D.M.; CIRYNO, J.E.P. Nutriaqua: nutrição e alimentação de espécies de interesse para a aquicultura brasileira. Florianópolis: Sociedade Brasileira de Aquicultura e Biologia Aquática, 2012. p. 269-279. CENTRO DE EXCELÊNCIA PARA O MAR BRASILEIRO (CEMBRA). O Brasil e o mar no século XXI. Edição virtual. 2015. Disponível em: http://www.cembra.org.br/segundo-projeto.html. Acesso em: 26 janeiro 2017. CERQUEIRA, F.; MEDEIROS, M.; AUGUSTO, O. Antioxidantes dietéticos: controvérsias e perspectivas. Química Nova, São Paulo, v. 30, n. 2, p. 441-449, 2007. CHAKKARAVARTHY, M.V.; KUMAR, V. HPTLC Finger Print Analysis of Steroid, Flavonoid and Antiradical activity in Sargassum wightii from Gulf of Mannar. Research Journal Pharmacognosy and Phytochemistry, v. 3, n. 2, p. 72-74, 2011. CHO, S.H., LEE, S.M., LEE, S.M., LEE, J.H., 2005. Effect of dietary protein and lipid levels on growth and body composition of juvenile turbot (Scophthalmus maximus L) reared under optimum salinity and temperature conditions. Aquaculture Nutrition, v. 11, p. 235–240, 2005. CHOU, R.L.; SU, M.S.; CHEN, H.Y. Optimal dietary protein and lipid levels for juvenile cobia (Rachycentron canadum). Aquaculture, v. 193, p. 81-89, 2001. 17 CHOU, R.L.; HER, B.Y., SU, M.S.; HWANG, G.; WU, Y.H.; CHEN, H.Y. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture, v. 229, p. 325-333, 2004. CHRISTAKI, E.; BONOS, E.; GIANNENAS, I.; FLOROU-PANERI, P. Functional properties of carotenoids originating from algae. Journal of the Science of Food and Agriculture, v. 93, p. 5-11, 2013. COLLETTE, B.B. Rachycentridae. In: FISCHER, W (ed). FAO species identification guide for fishery purposes. western and central Atlantic (Fishing area 31). Rome: FAO, v. 4, 1981. COPPENS, P.; SILVA, M.F. da; PETTMAN, S. European regulations on nutraceuticals, dietary supplements and functional foods: A framework based on safety. Toxicology, v. 221, p. 59–74, 2006. CRAIG, S.R.; SCHWARZ, M.H.; MCLEAN, E. Juvenile cobia (Rachycentron canadum) can utilize a wide range of protein and lipid levels without impacts on production characteristics. Aquaculture, v. 26, p. 384-391, 2006. CUI, X.; ZHOU, Q.; LIANG, H.; YANG, J.; ZHAO, L. Effects of dietary carbohydrate sources on the growth performance and hepatic carbohydrate metabolic enzyme activities of juvenile cobia (Rachycentron canadum Linnaeus.). Aquaculture Research, v. 42, p. 99-107, 2010. CYRINO, J.E.P.; BICUDO, A.J. de A.; SADO, R.Y.; BORGUESI, R.; DAIRIKI, J.K. A piscicultura e o ambiente – o uso de alimentos ambientalmente corretos em piscicultura. Revista Brasileira de Zootecnia, v. 39, p. 68-87, 2010. DECKER, E.A. Phenolics: prooxidants or antioxidants? Nutrition Reviews, New York, v.55, n.11, p.396-407, 1997. DEGÁSPARI, C.H.; WASZCZYNSKYJ, N. Propriedades antioxidantes de compostos fenólicos antioxidants properties of phenolic compounds. Visão Acadêmica, Curitiba, v. 5, n. 1, p. 33-40, 2004. DOMINGUES, E.C. Viabilidade econômica do cultivo do beijupirá (Rachycentron canadum) em mar aberto em Pernambuco. Recife. 84p. (Dissertação de Mestrado. Universidade Federal Rural de Pernambuco). 2012. Disponível em: <http://www.pgpa.ufrpe.br/Trabalhos/2012/ T2012ecd.pdf>. Acesso em: 21 jun 2015. ERGUN, S.; SOYUTURK, M.; GUROY, B.; GUROY D.; MERRIFIELD, D. Influence of Ulva meal on growth, feed utilization, and body composition of juvenile Nile tilapia (Oreochromis niloticus) at two levels of dietary lipid. Aquaculture International, v. 17, p. 355-361, 2008. ESPE, M.; LEMME, A PETRI, A.; EL-MOWAFI, A. Assessment of lysine requirement for maximal protein accretion in Atlantic salmon using plant protein diets. Aquaculture, v. 263, p. 168–178, 2007. 18 EVANS, J.L.; GOLDFINE, I.D.; MADDUX, B.A.; GRODSKY, G.M. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine Reviews, v. 23, n. 5, p. 599-622, 2002. FAO. The State of World Fisheries and Aquaculture. Rome: FAO, 2010. 197p. Disponível em: http://www.fao.org/fishery/sofia/en. Acesso em: 14 mar 2015. FAO. Fishstat plus: Universal software for fisher y statistical time series. Rome: Fisheries Department Fishery Information, Data and Statistics Unit, FAO, 2011. Disponível em: http://www.fao.org/fishery/statistics/software/fishstat/en. Acesso em: 31 dez 2016. FAO. The State of World Fisheries and Aquaculture (SOFIA). Rome: FAO, 2012. Disponível em: http://www.fao.org/fishery/sofia/en. Acesso em: 1 mar 2015. FAO. Cultured Aquatic Species Information Programme: Rachycentron canadum (Linnaeus, 1766). Rome: FAO, 2013. Disponível em: http://www.fao.org/fishery/culturedspecies/ Rachycentron_canadum/en. Acesso em: 22 abr 2015. FAO. The State of World Fisheries and Aquaculture (SOFIA). Rome: FAO, 2014. 223p. Disponível em: http://www.fao.org/fishery/sofia/en. Acesso em: 15 mar 2015. FAULK, C.K.; HOLT, G.J. Biochemical composition and quality of captive-spawned cobia Rachycentron canadum eggs. Aquaculture, v. 279, p. 70-76, 2008. FEELEY, M.W.; BENETTI, D.D.; AULT, J.S. Elevated oxygen uptake and high rates of nitrogen excretion in early life stages of the cobia Rachycentron canadum (L.), a fast-growing subtropical fish. Journal of Fish Biology, v. 71, p. 1662–1678, 2007. FINES, B.C.; HOLT, G.J. Chitinase and apparent digestibility of chitin in the digestive tract of juvenile cobia, Rachycentron canadum. Aquaculture, v. 303, p. 34-39, 2010. FINKEL, T.; HOLBROOK, N.J. Oxidants, oxidative stress and the biology of ageing. Nature, v. 408, n. 9, p. 239-246, 2000. FLEURENCE, J. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Technology, v. 10, p. 25-28, 1999. FRACALOSSI, D.M.; CIRYNO, J.E.P. Técnicas experimentais em nutrição de peixes. In: FRACALOSSI, D.M.; CIRYNO, J.E.P. Nutriaqua: nutrição e alimentação de espécies de interesse para a aquicultura brasileira. Florianópolis: Sociedade Brasileira de Aquicultura e Biologia Aquática, 2012. p. 37-63. FRANK, H.A.; BRUDVIG, G.W. Redox functions of carotenoids in photosynthesis. Biochemistry, v. 43, n. 27, p. 8607-8615, 2004. FRANKS, J.S.; OGLE, J.T.; LOB, J.M.; NICHOLSON, L.C.; BARNES, D.N.; LARSEN, K.M. Spontaneous spawning of cobia, Rachycentron canadurn, induced by human chorionic gonadotropin (HCG), with comments on fertilization, hatching, and larval development. Proceedings of the Gulf and Caribbean Fisheries Institute,v. 52, p. 598-609, 2001. 19 FRASER, T.W.K.; DAVIES, S.J. Nutritional requirements of cobia, Rachycentron canadum (Linnaeus): a review. Aquaculture Research, v. 40, p. 1219-1234, 2009. GATELLIER, P.; MERCIER, Y.; RENERRE, M. Effect of diet finishing mode (pasture or mixed diet) on antioxidant status of Charolais bovine meat. Meat Science, v. 67, p. 385–394, 2004. GATLIN III, D.M.; BARROWS, F.T.; BROWN, P.; DABROWSKI, K.; GAYLORD, T.G.; HARDY, R.W.; HERMAN, E.; HU, G.; KROGDAHL, Å.; NELSON, R.; OVERTURF, K.; RUST, M.; SEALEY, W.; SKONBERG, D.; SOUZA, E.J.; STONE, D.; WILSON, R.; WURTELE, E. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research, v. 38, p. 551‑579, 2007. GAYLORD, T.G.; BARROWS, F.T. Multiple amino acid supplementations to reduce dietary protein in plant-based rainbow trout, Oncorhynchus mykiss, feeds. Aquaculture, v. 287, p. 180–184, 2009. GODARD, M.; DÉCORDÉ, K.; VENTURA, E.; SOTERAS, G.; BACCOU, J.C.; CRISTOL, J.P.; ROUANET, J.M. Polysaccharides from the green alga Ulva rigida improve the antioxidant status and prevent fatty streak lesions in the high cholesterol fed hamster, an animal model of nutritionally-induced atherosclerosis. Food Chemistry, v. 115, p.176-180, 2009. GOMES, F. da S. Carotenóides: uma possível proteção contra o desenvolvimento de câncer. Revista de Nutrição, v. 5, p. 537-548, 2007. GONZALES, E.; MASCARENHAS, A.G. Regulamentação do uso de aditivos na alimentação animal. In: SAKOMURA, N.K. (ed.). Nutrição de não ruminantes. Editora Funep: SP, 2014. p. 461-465. GOPAKUMAR, G.; NAZAR, A.A.K.; TAMILMANI, G.; SAKTHIVEL, M.; KALIDAS, C.; RAMAMOORTHY, N.; PALANICHAMY, S.; MAHARSHI, A.V.; RAO, S.K.; RAO, S.G. Broodstock development and controlled breeding of cobia Rachycentron canadum (Linnaeus 1766) from Indian seas. Indian Journal Fish., v. 58, n. 4, p. 27-32, 2011. GUTTERIDGE, J.M.C. Does redox regulation of cell function explain why antioxidants perform so poorly as therapeutic agents? Redox Report, v. 4, n. 3, p. 129-131, 1999. HAMED, I.F.; ÖZOGUL, F.; ÖZOGUL, Y.; REGENSTEIN, J.M. Marine Bioactive Compounds and Their Health Benefits: A Review. Comprehensive Reviews in Food Science and Food Safety, p. 1-20, 2015. HAMILTON, S.; SEVERI, W.; CAVALLI, R.O. Biologia e aquicultura do beijupirá: uma revisão. Boletim do Instituto de Pesca, v. 39, n. 4, p. 461-477, 2013. HARABAWY, A.S.A.; MOSLEH, Y.Y.I. The role of vitamins A, C, E and selenium as antioxidants against genotoxicity and cytotoxicity of cadmium, copper, lead and zinc on erythrocytes of Nile tilapia, Oreochromis niloticus. Ecotoxicology and Environmental Safety, v. 104, p. 28-35, 2014. 20 HAYDEN, H.S.; WAALAND, J.R. A molecular systematic study of Ulva (Ulvaceae, Ulvales) from the northeast Pacific. Phycologia, v. 43, p. 364-382, 2004. HEASMAN, M.; MELLENTIN, J. The functional foods revolution: healthy people, healthy profits. London: Earthscan, 2001. 313 p. HEISER, H.; OSSWALD, W. F. Formação e função das espécies reativas de oxigênio nas interações planta-patógeno. In: PASCHOLATI, S.F.; LEITE, B.; STANGARLIN, J.R.; CIA, P. (ed.). Interação Planta Patógeno – fisiologia, Bioquímica e Biologia Molecular. Piracicaba: FEALQ, 2008. p.249-283. HOLDT, S.L.; KRAAN, S. Bioactive compounds in seaweed: functional food applications and legislation. Journal Applied Phycology, v. 23, p. 543–597, 2011. HOLT, G.J.; FAULK, C.K.; SCHWARZ, M.H. A review of the larviculture of cobia Rachycentrom canadum, a warm water marine fish. Aquaculture, v. 268, p. 181–187, 2007. IFIC. INTERNATIONAL FOOD INFORMATION COUNCIL FOUNDATION. Functional Foods Fact Sheet: Probiotics and Prebiotics. 2009. Disponível em: <http://www.foodinsight.org/Resources/Detail.aspx?topic=Functional_Foods_Fact_Sheet _Probiotics_and_Prebiotics>. Acesso em: 07 nov. 2017. IFT. INSTITUTE OF FOOD TECHNOLOGISTS. Functional Foods. 2017. Dispinível em: <http://www.ift.org/knowledge-center/focus-areas/food-health-and-nutrition/functional-foods.aspx>. Acesso em: 07 nov. 2017. ILSI. LIFE SCIENCE INTERNATIONAL INSTITUTE. Functional foods - Scientific and Global Perspectives. ILSI Europe Series, Summary of a Symposium held in October 2001. Washington, D C: International Life Science Institute Press, p. 7-10, 2002. ITO, K.; HORI, K. Seaweed: chemical composition and potential food uses. Food Reviews International, v. 5, n. 1, p. 101-144, 1989. JIMÉNEZ-ESCRIG, A.; JIMÉNEZ-JIMÉNEZ, I.; PULIDO, R.; SAURA-CALIXTO, F. Antioxidant activity of fresh and processed edible seaweeds. Journal of the Science of Food and Agriculture, v. 81, n. 5, p. 530-534, 2001. KAISER, J.B.; HOLT, G.J. Species profile cobia. Southern Regional Aquaculture Center Publication, n. 7202, 2005. KESHAVANATH, P.; MANJAPPA, K.; GANGADHARA, B. Evaluation of carbohydrate rich diets through common carp culture in manured tanks. Aquaculture Nutrition, v. 8, p. 169–174, 2002. KONGKEO, H.; WAYNE, C.; MURDJANI, M.; BUNLIPTANON, P.; CHIEN, T. Current practices of marine fi nfi sh cage culture in China, Indonesia, Thailand and Viet Nam. Aquaculture Asia Magazine, v. 15, n. 2, p.32-40, 2010. KRUGER, C. L.; MANN, S. W. Safety evaluation of funcional ingredients. Food and Chemical Toxicology. v. 41, p. 793-805, 2003. 21 LAHAYE, M.; CIMADEVILLA, E.A.; KUHLENKAMP, R.; QUEMENER, B.; LOGNONE, V.; DION, P. Chemical composition and 13C NMR spectroscopic characterisation of ulvans from Ulva (Ulvales, Chlorophyta). Journal of Applied Phycology, v. 11, p. 1–7, 1999. LARGO, D.B.; SEMBRANO, J.; HIRAOKA, M.; OHNO, M. Taxonomic and ecological profile of green-tide species of Ulva (Ulvales, Chlorophyta) in central Philippines. Hydrobiologia, v. 512, p. 247–253, 2004. LEITE, B.S.M. Novas alternativas para o uso de macroalgas da costa portuguesa em alimentação. 2017. 301p. Dissertação (Ciências Gastronómicas). Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, 2017. LIAO, I.C.; HUANG, T.S.; TSAI, W.S.; HSUEH, C.M.; CHANG, S.L.; LEAÑO, E.M. Cobia culture in Taiwan: current status and problems. Aquaculture, v. 237, p. 155-165, 2004. LIU, P.C.; LIN, J.Y.; LEE, K.K. Virulence of Photobacterium damselae subsp. Piscicida in cultured cobia Rachycentron canadum. Journal Basic Microbiology, v. 43, n. 6, p.499-507, 2003. LIVINGSTONE, D.R. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, v. 42, p. 656–666, 2001. LOBBAN, C.S.; HARRISON, P.J. Seaweed Ecology and Physiology. Cambridge University Press. U.K., 1997. 366p. LUNGER, A.N.; CRAIG, S.R.; MCLEAN, E. Replacement of fish meal in cobia (Rachycentron canadum) diets using an organically certified protein. Aquaculture, v. 257, p. 393–399, 2006. LUO, Y.; AI, Q.; MAI, K.; ZHANG, W.; XU, W.; ZHANG, Y. Effects of dietary rapeseed meal on growth performance, digestion and protein metabolism in relation to gene expression of juvenile cobia (Rachycentron canadum). Aquaculture, v. 368–369, p.109–116, 2012. MABEAU, S.; FLEURENCE, J. Seaweed in food products: biochemical and nutritional aspects. Trends in Food Science & Technology, v. 4, p. 103-107, 1993. MARGRET, R.J.; KUMARESAN, S.; RAVIKUMAR, S. A preliminary study on the anti-inflammatory activity of methanol extract of Ulva lactuca in rat. Journal Environmental Biology, v. 30 (5 suppliment), p. 899-902, 2009. MARKLUND, S.; MARKLUND, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, v. 16, p. 469-474, 1974. MATSUKAWA, R.; DUBINSKY, Z.; KISHIMOTO, E.; MASUDA, Y.; TAKEUCHI, T. A comparison of screening methods for antioxidant activity in seaweeds. Journal of Applied Phycology, v. 9, n. 1, p. 29-35, 1997. MEENAKSHI, S.; GNANAMBIGAI, M.D.; MOZHI, T.S.; ARUMUGAM, M.; BALASUBRAMANIAN, T. Total Flavanoid and in vitro Antioxidant Activity of Two 22 Seaweeds of Rameshwaram Coast. Global Journal of Pharmacology, v. 3, n. 2, p. 59-62, 2009. MENDIOLA, J.A.; MARIN, F.R.; HERNANDEZ, S.F.; ARREDONDO, B.O.; SENORANS, F.J.; IBANEZ, E.; REGLERO, G. 2005. Characterization via liquid chromatography coupled to diode array detector and tandem mass spectrometry of supercritical fluid antioxidant extracts of Spirulina platensis microalga. Journal Separation Science, v. 28, p. 1031-1038, 2005. MIAO, S.; JEN, C.C., HUANG, C.T.; HU, S.H. Ecological and economic analysis for cobia Rachycentron canadum commercial cage culture in Taiwan. Aquaculture International, v. 17, p. 125-141, 2009. MONTEIRO, D.A.; RANTIN, F.T.; KALININ, A.L. The effects of selenium on oxidative stress biomarkers in the freshwater characid fish matrinxã, Brycon cephalus (Günther, 1869) exposed to organophosphate insecticide Folisuper 600 BR® (methyl parathion). Comparative Biochemistry and Physiology, Part C, v. 149, p. 40–49, 2009. MOORE, A.L.; JOY, A.; TOM, R.; GUST, D.; MOORE, T.A. Photoprotection by carotenoids during photosynthesis: motional dependence of intramolecular energy transfer. Science, v. 216, p. 982-984, 1982. MORAN, L.H.; GUTTERIDGE, J.; QUINLAN, G.J. Thiols in cellular redox signaling and control. Current Medicinal Chemistry, v. 8, n. 7, p. 763-772, 2001. NAYLOR, R.; HARDYB, R.W.; BUREAUC, D.P.; CHIUA, A.; ELLIOTTD, M.; FARRELLE, A.P.; FORSTERE, I.; GATLINF, D.M.; GOLDBURGH, R.J.; HUAC, K.; NICHOLS, P.D. Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences, v. 106, n. 36, p. 15103–15110, 2009. NEMATIPOUR, G.R.; BROWN, M.L.; GATLIN III, D.M. Effects of dietary energy: protein ratio on growth characteristics and body composition of hybrid striped bass, Morone chrysops x M. saxatilis. Aquaculture, v. 107, p. 359-368, 1992. NEORI, A.; CHOPINB, T.; TROELL, M.; BUSCHMANNE, A.H.; KRAEMER, G.P.; HALLING, C.; SHPIGEL, M.; YARISH. C. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, v. 231, p. 361–391, 2004. NEWAJ-FYZUL, A.; AUSTIN, B. Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. Journal Fish Disease, 2014. NGUYEN, M.V.; RØNNESTAD, I.; BUTTLE, L.; LAI, H.V.; ESPE, M. Evaluation of a high plant protein test diet for juvenile cobia Rachycentron canadum in comparison to commercial diets. International Journal of Agriculture and Crop Sciences, v. 2, n. 6, p. 117-125, 2014. NHU, V.C.; NGUYEN, H.Q.; LE, T.L.; TRAN, M.T.; SORGELOOS, P.; DIERCKENS, K.; REINERTSEN, H.; KJØRSVIK, E.; SVENNEVIG, N. Cobia Rachycentron canadum 23 aquaculture in Vietnam: recent developments and prospects. Aquaculture, v. 315, n. 1-2, p. 20-25, 2011. NOSE, T. Recents advances in the study of fish digestion in Japan. In: Symposium on feeding trout and salmon culture, 7., 1966, Belgrade. Proceedings… Belgrade: EIFAC, 1966. p. 17. ORTIZ, J.; ROMERO, N.; ROBERT, P.; ARAYA, J.; LOPEZ-HERNÁNDEZ, J.; BOZZO, C.; NAVARRETE, E.; OSORIO , A.; RIOS, A. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea Antarctica. Food Chemistry, v. 99, p. 98-104, 2006. PAGLIA, D.E.; VALENTINE, W.N. Studieson the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal Laboratory Clinical Medicine, v. 7, p. 158-169, 1967. PARTHIBAN, C.; SARANYA, C.; GIRIJA, K.; HEMALATHA, A.; SURESH, M.; ANANTHARAMAN, P. Biochemical composition of some selected seaweeds from Tuticorin coast. Advances in Applied Science Research, v. 4, n. 3, p. 362-366, 2013. PEZZATO, L.E.; BARROS, M.M.; FURUYA, W.M. Valor nutritivo dos alimentos utilizados na formulação de rações para peixes tropicais. Revista Brasileira de Zootecnia, v. 38, p. 43-51, 2009. PHYCOLOGICAL SOCIETY OF AMERICA. 2015. Disponível em: <http://www.psaalgae.org/>. Acesso em: 30 jun 2015. PIETRA, P.G. Flavonoids as antioxidants. Journal National Production, n. 63, p. 1035-1042, 2000. PONTES, M.; CASTELAR, B.; SANTOS, M.D.M.; MOURA, L.C.F.; ELER, G.; MARTINS, A.P.; COLEPICOLO, P.; REIS, R.P.; OSHIRO, L.M.Y. Seleção de macroalga para a aquicultura multitrófica integrada (AMTI) e como ingrediente funcional para peixes. In: Congresso da Sociedade Brasileira de Aquicultura e Biologia Aquática (Aquaciência), 7., Belo Horizonte, MG. Anais... Belo Horizonte, 2016. REIGHT, R. C.; BRADEN, S. L.; CRAIG, R. J. Apparent digestibility coefficients for common feedstuffs in formulated diets for red swamp crayfish, Procambarus clarkii. Aquaculture, v. 84, p. 321-334, 1990. REVERTER, M.; BONTEMPS, N.; LECCHINI, D.; BANAIGS, B.; SASAL, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: current status and future perspectives. Aquaculture, v. 433, p. 50–61, 2014. REYES, K.K. Search FishBase. 2015. Disponível em: <http://www.aquamaps.org/ExpertProfile.php?expert_id=7>. Acesso em: 13 mar 2015. SALAMATDOUSTNOBAR, R.; GHORBANI, B.; MAGHAMI, S.S.G.; MOTALEBI, V. Effects of prebiotic on the fingerling Rainbow trout. Performace parameters (Oncorynchus mykiss). World Journal of Fish and Marine Sciences, v. 3, n. 4, p. 305-307, 2011. 24 SALZE, G.P.; DAVIS, D.A. Taurine: a critical nutrient for future fish feeds. Aquaculture, v. 437, p. 215–229, 2015. SAMPAIO, L.A.; TESSER, M.B.; WASIELESKY JR, W. Avanços da maricultura na primeira década do século XXI: piscicultura e carcinocultura marinha. Revista Brasileira de Zootecnia, v. 39, p. 102-111, 2010. SANCHES, E.G.; SECKENDORFF, R.W.V.; HENRIQUES, M.B.; FAGUNDES, L.; SEBASTIANI, E.F. Viabilidade econômica do cultivo do bijupirá (Rachycentron canadum) em sistema offshore. Informações Econômicas, v. 38, n. 12, p. 42-51, 2008. SANTIZO, R.B.; SERRANO JR., A.E.; CORRE, V.L. Proximate composition and dry matter digestibility of Ulva lactuca in the black tiger shrimp Penaeus monodon. Animal Biology & Animal Husbandry International Journal of the Bioflux Society, v. 6, p. 75-83, 2014. SARITHA, K.; MANI, A.E.; PRIYALAXMI, M.; PATTERSON, J. Antibacterial Activity and Biochemical Constituents of Seaweed Ulva lactuca. Global Journal of Pharmacology, v. 7, n. 3, p. 276-282, 2013. SCALBERT, A.; MANACH, C.; MORAND, C.; REMESY, C.; JIMENEZ, L. Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, v. 45, p. 287-306, 2005. SCHWARZ, M.H.; McLEAN, E.; CRAIG, S.R. Research experience with cobia: larval rearing, juvenile nutrition and general physiology. In: LIAO, I.C. e LEAÑO, E.M. Cobia Aquaculture: Research, Development and Commercial Production. Taiwan: Asian Fisheries Society, p.1-17, 2007. SCHWARZ, M.H.; CRAIG, S.R.; DELBOS, B.C.; McLEAN, E. Efficacy of concentrated algal paste during greenwater phase of cobia larviculture. Journal of Applied Aquaculture, v. 20, n. 4, p. 285-294, 2008. SCHWARZ, M.H.; SVENNEVIG, N. Cobia culture, global production, markets, challenges. Global Aquaculture Advocate, v. 12, p. 28-30, 2009. SCHAFER, F.Q.; BUETTNER, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology Medicine, v. 30, n. 11, p 1191-1212, 2001. SEIXAS FILHO, J.T.; BRÁS, J.M.; GOMIDE, A.T.M.; OLIVEIRA, M.G.A; DONZELE, J.L. MENIN, E. Anatomia Funcional e Morfometria dos Intestinos e dos Cecos Pilóricos do Teleostei (Pisces) de Água Doce Brycon orbignyanus. Revista Brasileira de Zootecnia, v. 29, n. 2, p. 313-324, 2000. SHAFFER, R.V.; NAKAMURA, E.L. Synopsis of biological data on the cobia Rachycentron canadum (Pisces: Rachycentridae). Washington D.C.: U.S. Department of Commerce, National Oceanic and Atmospheric Administration Technical Report, 1989. (FAO Fisheries Synopsis 153). 25 SIES, H. Strategies of antioxidant defence. Review. European Journal of Biochemistry, Berlin, v. 215, n. 2, p. 213- 219, 1993. SIES, H., STAHL, W. Vitamins E and C, β-carotene, and other carotenoids as antioxidants. Journal of Clinical Nutrition, Bethesda, v. 62, n. 6, p.1315-1321, 1995. SILVA, L. P.; NÖRNBERG, J. L. Prebióticos na nutrição de não ruminantes. Ciência Rural, v.33, p. 983-990, 2003. SOUZA FILHO, J.J.; TOSTA, G.A.M. Bijupirá: As primeiras desovas da geração F1. Panorama da Aquicultura, v. 18, n. 110, p.50-53, 2008. SOUZA, T.C.M.; PETRERE, M. Characterization of small-scale fisheries in the Camamu-Almada basin, southeast state of Bahia, Brazil. Brazilian Journal of Biology, v. 68, n. 4, p. 711-719, 2008. SU, M.S.; CHIEN, Y.H.; LIAO, I.C. Potencial of marine cage aquaculture in Taiwan: cobia culture. In: LIAO, I.C.; LIAN, C.K. Cage aquaculture in Asia – Proceeding of the First International Symposium on Cage Aquaculture in Asia. Asia Fisheries Society, Taiwan. p. 97-109, 2000. SULLIVAN, L.O.; MURPHY, B.; MCLOUGHLIN, P.; DUGGAN, P.; LAWLOR, P.G.; HUGHES, H.; GARDINER, G.E. Prebiotics from Marine Macroalgae for Human and Animal Health Applications. Marine Drugs, v. 8, p. 2038-2064, 2010. TABARSA, M.; REZAEI, M.; RAMEZANPOURB, Z.; WAALAND, J.R. Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. Journal Science Food Agriculture, v. 92, p. 2500–2506, 2012. TACCHI L.; BICKERDIKE, R.; DOUGLAS, A.; SECOMBES, C.J.; MARTIN, S.A.M. Transcriptomic responses to functional feeds in Atlantic salmon (Salmo salar). Fish Shellfish Immunology, v. 31, p. 704–715, 2011. TRABER, M.G. Cellular and molecular mechanisms of oxidants and antioxidants. Mineral and Electrolyte Metabolism, v. 23, n. 3-6, p. 135-139, 1997. TRIVEDI, N.; GUPTA, V.; REDDY, C.R.K.; JHA, B. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresource Technology, v. 150, p. 106–112, 2013. TRIVEDI, N.; BAGHEL, R.S.; BOTHWELL, J.; GUPTA, V.; REDDY, C.R.K.; LALI, A.M.; JHA, B. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Scientific Reports, v. 6, p. 1-8, 2016. TROELL, M.; JOYCE, A.; CHOPIN, T.; NEORI, A.; BUSCHMANN, A.H.; FANG, J. Ecological engineering in aquaculture — Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture, v. 297, p.1–9, 2009. 26 VALKO, M.; IZAKOVIC, M.; MAZUR, M.; RHODES, C.J.; TELSER, J. Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry, v. 266, p. 37-56, 2004. VAN DER OOST, R.; BEYER, J.; VERMEULEN, N.P.E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, v. 13, n. 2, p. 57-149, 2003. VAN SOEST, P.J. Nutritional Ecology of Ruminant. 2.ed. Ithaca: Cornell University, 476p. 1994. VASCONCELOS, S.M.L.; GOULART, M.O.F.; MOURA, J.B.F. de; MANFREDINI, V.; BENFATO, M.S. da; KUBOTA, L.T. Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Quimica Nova, v. 30, n. 5, p. 1323-1338, 2007. WANG, J.T.; LIU, Y.J.; TIAN, L.X.; MAI, K.S.; DU, Z.Y.; WANG, Y.; YANG, H.J. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture, v. 249, p. 439- 447, 2005. WEBB, K.A.; RAWLINSON, L.T.; HOLT, G.J. Effects of dietary starches and the protein to energy ratio on growth and feed efficiency of juvenile cobia, Rachycentron canadum. Aquaculture Nutrition, v. 16, p. 447–456, 2010. WEIRICH, C.R.; STOKES, A.D.; SMITH, T.I.J.; JENKINS, W.E.; DENSON, M.R.; TOMASSO, J.R.; CHAPPEL, J.; BURNSIDE, D. Cobia Aquaculture research in South Carolina, USA: captive reproduction, pond nursery production, and selected environmental requirements of juveniles. In: LIAO, I.C. e LEAÑO, E.M. Cobia a
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Zootecnia
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Zootecnia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10278/1/2017%20-%20Giselle%20Eler%20Amorim%20Dias.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10278/2/2017%20-%20Giselle%20Eler%20Amorim%20Dias.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10278/3/2017%20-%20Giselle%20Eler%20Amorim%20Dias.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10278/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
84f6cd02507f208eed455a8ad7a76dba
ad3ee0a56c58dd86a75866d38daf5063
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108117507112960