Bionomia de Culicidae e investiga??o natural por Flavivirus em uma paisagem do bioma Mata Atl?ntica do Estado do Rio de Janeiro, Brasil

Detalhes bibliográficos
Autor(a) principal: Bastos, Amanda Queiroz
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://tede.ufrrj.br/jspui/handle/jspui/5888
Resumo: The mosquitoes, family Culicidae, have 3,588 species classified in two subfamilies: Anophelinae and Culicinae. Both have species of epidemiological importance. The fauna inventory of mosquitoes in areas of natural environment is condiderably important in ecological studies. The natural populations of animals in a given biogeographic area distributed in communities subject to constant fluctuations in response to the environment. During the processes of anthropic action or in the possible periods of recovery of the vegetation cover, knowledge of the biodiversity of mosquito communities in na Atlantic Forest environment is of relevant importance. Since this knowledge is useful to evaluate possible changes in behavior and adaptations in the pattern of activities of mosquitoes considered to be, until then, of wild habit, preferably. The sampling resulted from collections made in two fragments of Atlantic Forest in the state of Rio de Janeiro in municipality of Nova Igua?u in the Associa??o de Taifeiros da Armada (ATA) and in Boa Esperan?a site. The duration of collections in both locations was one year. The present study aimed to assess the richness, diversity, equitability and preference of immatures and adults in both fragments and the influence of climatic factors (temperature, relative humidity and rainfall) on the abundance of mosquitoes. In the two study areas, biweekly visits, sytematic and standardized sampling were performed using a manual sucker to collect the larvae. In ATA, the natural breeding sites surveyed were bamboo stalks, while in the Boa Esperan?a site, ovitraps were randomly distributed and the natural bamboo and bromeliad breeding sites were monitored. Adult spcimens were captured using CDC light traps with CO2 attractiveness, part of the specimens from the collected eggs were used to perform the analysis of possible natural infection by flavivirus (Zika, yellow fever). During the sampling period in the ATA, 3170 larvae were collected in perforated bamboo in eight stems of Five plants, of which 688 specimens reached the adult stage, distributed in 10 genera and 16 species. The richness of the immatures collected in the ATA was 16 species, with a recorded diversity of 1.10 and Shannon?s equitability of 0.57. In the sample area of the Boa Esperan?a site, 5514 larvae were collected and 1322 reached the adult stage: 949 in the plastic container, 80 in the bromeliad and 293 in the bamboo. Of the 5818 eggs collected, 3941 hatched, and 3807 reached the pupal stage and 2370 reached the adult stage. The species from the eggs with the greatest abundance were Aedes albopictus with 61% and Haemagogus leucocelaenus 34%. In the CDC light trap with CO2 attractiveness, 2621 specimens of mosquitoes of these genera were: Culex (84,9%), Wyeomyia (5,3%), Aedes (3,5%) and Limatus (3,1%). A total of 1,229 specimens of mosquitoes: Ae. albopictus (651), Hg. leucocelaenus (565) and Hg. janthinomys (13) from eggs collected at the Boa Esperan?a site were submitted to RT-PCR to detect Flavivirus. The bamboo breeding area showed the greatest diversity and fairness, however, the plastic container had the lowest indexes. Regarding the richness of the immatures found, it was showed greater richness in the bamboo. The adults captured at sample point 5 of the Boa Esperan?a site had the highest levels of diversity, equatability and richness. Evidence was found through the polymerase chain reaction (RT-PCR), partial sequences of Zika v?rus in sample of Hg. leucocelaenus, an important species from the epidemiological point of view in the transmission of the yellow fever v?rus.
id UFRRJ-1_0fd5f885402404c989b0411c78c5961c
oai_identifier_str oai:localhost:jspui/5888
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Alencar, Jeronimo Augusto Fonseca005.893.247-05http://lattes.cnpq.br/6783152813274111Mallet, Jacenir Reis dos Santos710.008.957-34Pereira, Ronaldo Figueir? PortellaSantana, H?lcio Reinaldo GilSilva, Julia dos SantosM?ller, Gerson AzulimSouza, Nataly Ara?jo094.479.3074-00http://lattes.cnpq.br/8675065910087576Bastos, Amanda Queiroz2022-08-16T19:40:42Z2021-10-29BASTOS, Amanda Queiroz. Bionomia de Culicidae e investiga??o natural por Flavivirus em uma paisagem do bioma Mata Atl?ntica do Estado do Rio de Janeiro, Brasil. 2021. 122 f. Tese (Doutorado em Biologia Animal) - Instituto de Ci?ncias Biol?gicas e da Sa?de, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2021.https://tede.ufrrj.br/jspui/handle/jspui/5888The mosquitoes, family Culicidae, have 3,588 species classified in two subfamilies: Anophelinae and Culicinae. Both have species of epidemiological importance. The fauna inventory of mosquitoes in areas of natural environment is condiderably important in ecological studies. The natural populations of animals in a given biogeographic area distributed in communities subject to constant fluctuations in response to the environment. During the processes of anthropic action or in the possible periods of recovery of the vegetation cover, knowledge of the biodiversity of mosquito communities in na Atlantic Forest environment is of relevant importance. Since this knowledge is useful to evaluate possible changes in behavior and adaptations in the pattern of activities of mosquitoes considered to be, until then, of wild habit, preferably. The sampling resulted from collections made in two fragments of Atlantic Forest in the state of Rio de Janeiro in municipality of Nova Igua?u in the Associa??o de Taifeiros da Armada (ATA) and in Boa Esperan?a site. The duration of collections in both locations was one year. The present study aimed to assess the richness, diversity, equitability and preference of immatures and adults in both fragments and the influence of climatic factors (temperature, relative humidity and rainfall) on the abundance of mosquitoes. In the two study areas, biweekly visits, sytematic and standardized sampling were performed using a manual sucker to collect the larvae. In ATA, the natural breeding sites surveyed were bamboo stalks, while in the Boa Esperan?a site, ovitraps were randomly distributed and the natural bamboo and bromeliad breeding sites were monitored. Adult spcimens were captured using CDC light traps with CO2 attractiveness, part of the specimens from the collected eggs were used to perform the analysis of possible natural infection by flavivirus (Zika, yellow fever). During the sampling period in the ATA, 3170 larvae were collected in perforated bamboo in eight stems of Five plants, of which 688 specimens reached the adult stage, distributed in 10 genera and 16 species. The richness of the immatures collected in the ATA was 16 species, with a recorded diversity of 1.10 and Shannon?s equitability of 0.57. In the sample area of the Boa Esperan?a site, 5514 larvae were collected and 1322 reached the adult stage: 949 in the plastic container, 80 in the bromeliad and 293 in the bamboo. Of the 5818 eggs collected, 3941 hatched, and 3807 reached the pupal stage and 2370 reached the adult stage. The species from the eggs with the greatest abundance were Aedes albopictus with 61% and Haemagogus leucocelaenus 34%. In the CDC light trap with CO2 attractiveness, 2621 specimens of mosquitoes of these genera were: Culex (84,9%), Wyeomyia (5,3%), Aedes (3,5%) and Limatus (3,1%). A total of 1,229 specimens of mosquitoes: Ae. albopictus (651), Hg. leucocelaenus (565) and Hg. janthinomys (13) from eggs collected at the Boa Esperan?a site were submitted to RT-PCR to detect Flavivirus. The bamboo breeding area showed the greatest diversity and fairness, however, the plastic container had the lowest indexes. Regarding the richness of the immatures found, it was showed greater richness in the bamboo. The adults captured at sample point 5 of the Boa Esperan?a site had the highest levels of diversity, equatability and richness. Evidence was found through the polymerase chain reaction (RT-PCR), partial sequences of Zika v?rus in sample of Hg. leucocelaenus, an important species from the epidemiological point of view in the transmission of the yellow fever v?rus.Os mosquitos, fam?lia Culicidae, possuem 3588 esp?cies v?lidas divididas em duas subfam?lias: Anophelinae e Culicinae. Ambas possuem esp?cies de import?ncia epidemiol?gica. O invent?rio faun?stico de mosquitos em ?reas de ambiente natural ? de consider?vel import?ncia em estudos ecol?gicos. As popula??es naturais de animais em uma determinada ?rea biogeogr?fica distribuem-se em comunidades sujeitas a constantes flutua??es em resposta ao ambiente. Durante os processos de a??o antr?pica, seja nos poss?veis per?odos de recupera??o da cobertura vegetal, o conhecimento da biodiversidade das comunidades de mosquitos em ambiente de Mata Atl?ntica ? de relevante import?ncia. Sendo que, esse conhecimento ? ?til para avaliar as poss?veis mudan?as de comportamentos e adapta??es no padr?o de atividades dos mosquitos considerados, at? ent?o, como de h?bito preferencialmente silvestre. As amostragens foram provenientes de coletas realizadas em dois fragmentos de Mata Atl?ntica do estado do Rio de Janeiro no munic?pio de Nova Igua?u na Associa??o de Taifeiros da Armada (ATA) e no s?tio Boa Esperan?a, a dura??o das coletas em ambos locais foi de um ano. O presente estudo teve como prop?sito avaliar a riqueza, diversidade, equitabilidade e prefer?ncia dos imaturos e dos adultos em ambos fragmentos e a influ?ncia dos fatores clim?ticos (temperatura, umidade relativa do ar e pluviosidade) na abund?ncia dos mosquitos. Nas duas ?reas de estudos foram realizadas visitas mensais e quinzenais, amostragens sistem?ticas e padronizadas utilizando sugador manual para coleta das larvas. Na ATA os criadouros naturais pesquisados foram os colmos de bambu, j? no s?tio Boa Esperan?a foram distribu?das aleatoriamente armadilhas de ovitrampas e monitorados os criadouros naturais bambu e bromeli?ceas, sendo os esp?cimes adultos foram capturados com aux?lio de armadilha luminosa de CDC com atrativo de CO2. Parte dos esp?cimes provenientes dos ovos coletados foram utilizados para realizar a an?lise de poss?vel infec??o natural por Flavivirus (Zika e Febre Amarela). Durante o per?odo de amostragem na ATA foram coletadas 3170 larvas em bambu perfurado em oito colmos de cinco plantas, desse total 688 esp?cimes chegaram ao est?gio adulto, distribu?dos em 10 g?neros e 16 esp?cies. A riqueza dos imaturos coletados na ATA foi de 16 esp?cies, sendo que a diversidade registrada foi de 1,10 e a equitabilidade de Shannon de 0,57. Na ?rea amostral do s?tio Boa Esperan?a foram coletadas 5514 larvas e 1322 chegaram ao est?gio adulto sendo: 949 no recipiente pl?stico, 80 na brom?lia e 293 no bambu. Dos 5818 ovos coletados 3941 eclodiram, e 3807 chegaram ? fase de pupa e 2370 chegaram ? fase adulta. As esp?cies provenientes dos ovos com maior abund?ncia foram Aedes albopictus com 61% e Haemagogus leucocelaenus com 34%. Na armadilha luminosa de CDC com atrativo de CO2, foram capturados 2621 esp?cimes de mosquitos destes os g?neros com a maior abund?ncia foram: Culex (84,9%), Wyeomyia (5,3%), Aedes (3,5%) e Limatus (3,1%). Um total de 1229 esp?cimes de mosquitos: Ae. albopictus (651), Hg. leucocelaenus (565) e Hg. janthinomys (13) provenientes de ovos coletados no s?tio Boa Esperan?a foram submetidos ao RT-PCR para detec??o de Flavivirus. O criadouro bambu apresentou a maior diversidade e equitabilidade, enquanto o recipiente pl?stico apresentou os menores ?ndices. No entanto, imaturos encontrados no recipiente pl?stico apresentaram maior riqueza e no bambu a menor. Os adultos capturados no ponto amostral 5 do s?tio Boa Esperan?a apresentaram os maiores ?ndices de diversidade, equitabilidade e riqueza. Foram encontradas evid?ncias por meio da rea??o em cadeia da polimerase (RT-PCR) sequ?ncias parciais de v?rus Zika em amostras de Hg. leucocelaenus, esp?cie importante no ponto de vista epidemiol?gico na transmiss?o do v?rus amar?lico.Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-08-16T19:40:42Z No. of bitstreams: 1 2021 - Amanda Queiroz Bastos.pdf: 3012328 bytes, checksum: 27c9491acf7f0d897512ab857cdbd4f1 (MD5)Made available in DSpace on 2022-08-16T19:40:42Z (GMT). No. of bitstreams: 1 2021 - Amanda Queiroz Bastos.pdf: 3012328 bytes, checksum: 27c9491acf7f0d897512ab857cdbd4f1 (MD5) Previous issue date: 2021-10-29CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/70309/2021%20-%20Amanda%20Queiroz%20Bastos.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Biologia AnimalUFRRJBrasilInstituto de Ci?ncias Biol?gicas e da Sa?deABREU, F.V.S.; RIBEIRO, I.P.; FERREIRA-DE-BRITO, A.; SANTOS, A.A.C.D.; MIRANDA, R.M.; BONELY, I.S.; NEVES, M.S.A.S.; BERSOT, M.I., SANTOS, T.P.D.; GOMES, M.Q.; SILVA, J.L.D.; ROMANO, A.P.M.; CARVALHO, R.G.; DITO, R.F.D.C.; RIBEIRO, M.S.; LAPERRI?RE, R.D.C.; FONSECA, E.O.L.; FALQUETO, A.; PAUPY, C.; FAILLOUX, A.B.; MOUTAILLER, S.; CASTRO, M.G.; G?MEZ, M.M.; MOTTA, M.A.; BONALDO, M.C.; LOUREN?O-DE-OLIVEIRA, R. Haemagogus leucocelaenus and Haemagogus janthinomys are the primaryv ectors in the major yellow fever outbreak in Brazil, 2016-2018. Emerging Microbes Infections, v. 8, p. 218?231, 2019. ALENCAR, J.; MARCONDES, C.B.; SERRA-FREIRE, N.M.; LOROSA, E.S.; PACHECO, J.B.; GUIMAR?ES, A.?. Feeding patterns of Haemagogus capricornii and Hg. leucocelaenus (Diptera: Culicidae) in two Brazilian states (Rio de Janeiro and Goi?s). J. Med. Entomol., v. 45, p. 873?876, 2008a. ALENCAR, J.; DE ALMEIDA, H.M.; MARCONDES, C.B.; GUIMAR?ES, A.?. Effect of multiple immersions on eggs and development of immature forms of Haemagogus janthinomys from south-eastern Brazil (Diptera: Culicidae). Entomol. News, v. 119, p. 239?244, 2008b. ALENCAR, J.; DEMELLO, C.F.; GIL-SANTANA, H.R.; GUIMAR?ES, A.?.; DE ALMEIDA, S.A.; GLEISER, R.M. Vertical oviposition activity of mosquitoes in the Atlantic Forest of Brazil with emphasis on the sylvan vector, Haemagogus leucocelaenus (Diptera: Culicidae). J. Vector Ecol., v. 41, p. 18?26, 2016. BALEOTTI, F.G.; MORELI, M.L.; FIGUEIREDO, L.T.M. Brazilian Flavivirus Phylogeny Based on NS5. Mem. Inst. Oswaldo Cruz, v. 98, p. 379?382, 2003. BRASIL, M. DA S. Boletim Epidemiol?gico 13: Monitoramento dos casos de arboviroses urbanas transmitidas pelo Aedes (dengue, chikungunya e Zika) at? a Semana Epidemiol?gica 12 de 2019; 2019; v. 50, pp. 1?18. Dispon?vel em: https://portalarquivos2.saude.gov.br/images/pdf/2019/abril/30/2019-013-Monitoramentodos- casos-de-arboviroses-urbanas-transmitidas-pelo-Aedes-publicacao.pdf. Acesso em: 2021. BUENO, M.G.; MARTINEZ, N.; ABDALLA, L.; DUARTE DOS SANTOS, C.N.; CHAME, M. Animals in the Zika Virus Life Cycle: What to Expect from Megadiverse Latin American Countries. PLoS Negl. Trop. Dis., v. 10, p. 1?13, 2016. CALVET, G.; AGUIAR, R.S.; MELO, A.S.O.; SAMPAIO, S.A.; DE FILIPPIS, I.; FABRI, A.; ARAUJO, E.S.M.; DE SEQUEIRA, P.C.; DE MENDON?A, M.C.L.; DE OLIVEIRA, L.; et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in a case study. Lancet Infect. Dis., v. 16, p. 653?660, 2016. CATENACCI, L.S.; NUNES-NETO, J.; DEEM, S.L.; PALMER, J.L.; TRAVASSOS-DAROSA, E.S.; TELLO, J.S. Diversity patterns of hematophagous insects in Atlantic forest fragments and human-modified areas of southern Bahia, Brazil. J. Vector Ecol., v.43, p. 293?304, 2018. CAMPOS, G.S.; BANDEIRA, A.C.; SARDI, S.I. Zika Virus Outbreak, Bahia, Brazil. Emerg. Infect. Dis., v. 21, p. 1885?1886, 2015. CARDOSO, J.d.C; CORSEUIL, E.; BARATA, J.M.S. Culicinae (Diptera, Culicidae) ocorrentes no Estado do Rio Grande do Sul, Brasil. Rev. Bras. Entomol., 2005, v. 49, p. 275?287, 2005. CARDOSO, J.D.C.; DE ALMEIDA, M.A.B.; DOS SANTOS, E.; DA FONSECA, D.F.; SALLUM, M.A.M.; NOLL, C.A.; MONTEIRO, H.A.D.O.; CRUZ, A.C.R.; CARVALHO, V.L.; PINTO, E.V.; et al. Yellow Fever Virus in Haemagogus leucocelaenus and Aedes serratus Mosquitoes, Southern Brazil, 2008. Emerg. Infect. Dis., v. 16, p. 1918?1924, 2010. CHANG, G.J.; CROPP, B.C.; KINNEY, R.M.; TRENT, D.W.; GUBLER, D.J. Nucleotide sequence variation of the envelope protein gene identifies two distinct genotypes of yellow fever virus. J. Virol., v. 69, p. 5773?5780, 1995. CIOTA, A.T.; BIALOSUKNIA, S.M.; EHRBAR, D.J.; KRAMER, L.D. Vertical Transmission of Zika Virus by Aedes aegypti and Ae. Albopictus Mosquitoes. Emerg. Infect. Dis., v. 23, p. 880?882, 2017. CONSOLI, R.AG.B.; LOUREN?O-DE-OLIVEIRA, R. Principais mosquitos de import?ncia sanit?ria no Brasil. 1st ed. Rio de Janeiro: Fiocruz; 1994. COSTA-DA-SILVA, A.L.; IOSHINO, R.S.; DE ARA?JO, H.R.C.; KOJIN, B.B.; DE ANDRADE ZANOTTO, P.M.; OLIVEIRA, D.B.L.; MELO, S.R.; DURIGON, E.L.; CAPURRO, M.L. Laboratory strains of Aedes aegypti are competent to Brazilian Zika virus. PLoS One, v. 12, p. 1?13, 2017. CHOUIN-CARNEIRO, T.; VEGA-RUA, A.; VAZEILLE, M.; YEBAKIMA, A.; GIROD, R.; GOINDIN, D.; DUPONT-ROUZEYROL, M.; LOUREN?O-DE-OLIVEIRA, R.; FAILLOUX, A.B. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus. PLoS Negl. Trop. Dis., v. 10, p. 1?11, 2016. DA COSTA, C.F.; DA SILVA, A.V.; NASCIMENTO, V.A.D.; DE SOUZA, V.C.; MONTEIRO, D.C.D.S.; TERRAZAS, W.C.M.; DOS PASSOS, R.A.; NASCIMENTO, S.; LIMA, J.B.P.; NAVECA, F.G. Evidence of vertical transmission of Zika virus in fieldcollected eggs of in the Brazilian Amazon. PLoS Negl.Trop. Dis., v. 12, p. 1?12, 2018. DI LUCA, M.; SEVERINI, F.; TOMA, L.; BOCCOLINI, D.; ROMI, R.; REMOLI, M.E.; SABBATUCCI, M.; RIZZO, C.; VENTURI, G.; REZZA, G.; et al. Experimental studies of susceptibility of Italian Aedes albopictus to Zika virus. Euro Surveill., v. 21, 2016. DU, S.; LIU, Y.; LIU, J.; ZHAO, J.; CHAMPAGNE, C.; TONG, L.; ZHANG, R.; ZHANG, F.; QIN, C.F.; MA, P.; et al. Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments. Nat. Commun., v. 10, p. 1?11, 2019. EPELBOIN, Y.; TALAGA, S.; EPELBOIN, L.; DUSFOUR, I. Zika virus: An updated review of competent or naturally infected mosquitoes. PLoS Negl. Trop. Dis., v. 11, p.1?22, 2017. DOS SANTOS, B.M.C.; COELHO, F.C.; ARMSTRONG, M.; SARACENI, V.; LEMOS, C. Zika: an ongoing threat to women and infants. Cad. Sa?de P?blica, v. 34, 2018. FARAJI, A.; EGIZI, A.; FONSECA, D.M.; UNLU, I.; CREPEAU, T.; HEALY, S.P.; GAUGLER, R. Comparative Host Feeding Patterns of the Asian Tiger Mosquito, Aedes albopictus, in Urban and Suburban Northeastern USA and Implications for Disease Transmission. PLoS Negl. Trop. Dis., v. 8, 2014. FAVORETTO, S.; ARA?JO, D.; OLIVEIRA, D.; DUARTE, N.; MESQUITA, F.; ZANOTTO, P.; DURIGON, E. First detection of Zika virus in neotropical primates in Brazil: A possible new reservoir. BioRxiv, 2016. FERNANDES, R.S.; BERSOT, M.I.; CASTRO, M.G.; TELLERIA, E.L.; FERREIRA-DEBRITO, A.; RAPHAEL, L.M.; BONALDO, M.C.; LOUREN?O-DE-OLIVEIRA, R. Low vector competence in sylvatic mosquitoes limits Zika virus to initiate an enzootic cycle in South America. Sci. Rep., v. 9, p. 1?7, 2019. FERREIRA-DE-BRITO, A.; RIBEIRO, I.P.; MIRANDA, R.M.; FERNANDES, R.S.; CAMPOS, S.S.; DA SILVA, K.A.B.; DE CASTRO, M.G.; BONALDO, M.C.; BRASIL, P.; LOUREN?O-DE-OLIVEIRA, R. First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America. Mem. Inst. Oswaldo Cruz, v. 111, p. 655?658, 2016. FIGUEIREDO, L.T.M. The Brazilian flaviviruses. Microbes Infect., v. 2, p. 1643?1649, 2000. FRANCO, O. Hist?ria da Febre Amarela no Brasil. Minist?rio da Sa?de, Dep. Nac. Endem. Rurais., v. 1, p.1?8. 1969. INSTITUTO NACIONAL DE METEOROLOGIA?INMET. Dispon?vel em: https://portal.inmet.gov.br/ Acesso em: 2021. GRARD, G.; CARON, M.; MOMBO, I.M.; NKOGHE, D.; MBOUI ONDO, S.; JIOLLE, D.; FONTENILLE, D.; PAUPY, C.; LEROY, E.M. Zika Virus in Gabon (Central Africa) - 2007: A New Threat from Aedes albopictus? PLoSNegl. Trop. Dis., v. 8, p. 1?6, 2014. JOHNSON, B.K.; CHANAS, A.C.; SHOCKLEY, P.; SQUIRES, E.J.; GARDNER, P.; WALLACE, C.; SIMPSON, D.I.H.; BOWEN, E.T.W.; PLATT, G.S.; WAY, H.; et al. Arbovirus isolations from, and serological studies on, wild and domestic vertebrates from Kano Plain, kenya. Trans. R. Soc. Trop. Med. Hyg., v. 71, p. 512?517, 1977. JOHNSON, B.W.; CHAMBERS, T.V.; CRABTREE, M.B.; FILIPPIS, A.M.B.; VILARINHOS, P.T.R.; RESENDE, M.C.; MACORIS, M. de L.G.; MILLER, B.R. Vector competence of Brazilian Aedes aegypti and Ae. albopictus for a Brazilian yellow fever virus isolate. Trans. R. Soc. Trop. Med. Hyg., v. 96, p. 611?613, 2002. LEROY, E.M.; NKOGHE, D.; OLLOMO, B.; NZE-NKOGUE, C.; BECQUART, P.; GRARD, G.; POURRUT, X.; CHARREL, R.; MOUREAU, G.; NDJOYI-MBIGUINO, A.; et al. Concurrent chikungunya and dengue virus infections during simultaneous outbreaks, Gabon, 2007. Emerg. Infect. Dis., v. 15, p. 591?593, 2009. LIU, Z.; ZHANG, Z.; LAI, Z.; ZHOU, T.; JIA, Z.; GU, J.; WU, K.; CHEN, X.G. Temperature Increase Enhances Aedes albopictus Competence to Transmit Dengue Virus. Front. Microbiol., v. 8, p. 1?7, 2017. LOUREN?O DE OLIVEIRA, R.; VAZEILLE, M.; DE FILIPPIS, A.M.B.; FAILLOUX, A.B. Large genetic differentiation and low variation in vector competence for dengue and yellow fever viruses of Aedes albopictus from Brazil, the United States, and the Cayman Islands. Am. J. Trop. Med. Hyg., v. 69, p. 105?114, 2003. MACIEL-DE-FREITAS, R.; NETO, R.B.; GON?ALVES, J.M.; Code?o, C.T.; LOUREN?O-DE-OLIVEIRA, R. Movement of dengue vectors between the human modified environment and an urban forest in Rio de Janeiro. J. Med. Entomol., v. 43, p. 1112?1120, 2006. MARCONDES, C.B.; ALENCAR, J. Revis?o de mosquitos Haemagogus Williston (Diptera: Culicidae) do Brasil. Rev. Biomed. v. 21, p. 221?238, 2010. MILLER, B.R.; MITCHELL, C.J.; BALLINGER, M.E. Replication, tissue tropisms and transmission of yellow fever virus in Aedes albopictus. Trans. R. Soc. Trop. Med. Hyg. v. 83, p. 252?255, 1989. MITCHELL, C.J.; MILLER, B.R.; GUBLER, D.J. Vector competence of Aedes albopictus from Houston, Texas, for dengue serotypes 1 to 4, yellow fever and Ross River viruses. J. Am. Mosq. Control Assoc., v. 3, p. 460?465, 1987. MLAKAR, J.; KORVA, M.; TUL, N.; POPOVIC, M.; POLJSAK-PRIJATELJ, M.; MRAZ, J.; KOLENC, M.; RESMAN RUS, K.; VESNAVER VIPOTNIK, T.; FABJAN, VODUSEK, V.; et al. Zika Virus Associated with Microcephaly. N. Engl. J. Med., v. 374, p. 951?958, 2016. MOREIRA-SOTO, A.; CARNEIRO, I. DE O.; FISCHER, C.; FELDMANN, M.; K?MMERER, B.M.; SILVA, N.S.; SANTOS, U.G.; SOUZA, B.F. de C.D.; LIBORIO, F. de A.; VALEN?A-MONTENEGRO, M.M.; et al. Limited Evidence for Infection of Urban and Peri-urban Nonhuman Primates with Zika and Chikungunya Viruses in Brazil. MSphere, v. 3, p. 1?10, 2018. NIEBYLSKI, M.L.; CRAIG, G.B.Jr. Dispersal and survival of Aedes albopictus at a scrap tire yard in Missouri. J Am Mosq Control Assoc, v. 10, p. 339?343, 1994. OTTO, T.D.; VASCONCELLOS, E.A.; GOMES, L.H.F.; MOREIRA, A.S.; DEGRAVE, W.M.; MENDON?A-LIMA, L.; ALVES-FERREIRA, M. ChromaPipe: a pipeline for analysis, quality control and management for a DNA sequencing facility. Genet. Mol. Res., v. 7, p. 861?871, 2008. PATEL, P.; LANDT, O.; KAISER, M.; FAYE, O.; KOPPE, T.; LASS, U.; SALL, A.A.; NIEDRIG, M. Development of one-step quantitative reverse transcription PCR for the rapid detection of flaviviruses. Virol. J., v. 10, 2013. PAUVOLID-CORR?A, A.; KENNEY, J.L.; COUTO-LIMA, D.; CAMPOS, Z.M.S.; SCHATZMAYR, H.G.; NOGUEIRA, R.M.R.; BRAULT, A.C.; KOMAR, N. Ilheus Virus Isolation in the Pantanal, West-Central Brazil. PLoS Negl. Trop. Dis., v. 7, 2013. PAUVOLID-CORR?A, A.; CAMPOS, Z.; JULIANO, R.; VELEZ, J.; NOGUEIRA, R.M.R.; KOMAR, N. Serological Evidence of Widespread Circulation of West Nile Virus and Other Flaviviruses in Equines of the Pantanal, Brazil. PLoS Negl. Trop. Dis., v. 8, 2014. REINERT, J.F. List of abbreviations for currently valid generic-level taxa in family Culicidae (Diptera). J. Eur. Mosq. Control Assoc., v. 27, p. 68?76, 2009. RICHARDS, S.L.; PONNUSAMY, L.; UNNASCH, T.R.; HASSAN, H.K.; APPERSON, C.S. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in relation to availability of human and domestic animals in suburban landscapes of central North Carolina. J. Med. Entomol., v. 43, p. 543?551, 2006. SES Informe Epidemiol?gico 001/2018: Monitoramento das Emerg?ncias em Sa?de P?blica (Febre Amarela) 04 de janeiro de 2018; pp. 1-6. Dispon?vel em: http://www.riocomsaude.rj.gov.br/Publico/MostrarArquivo.aspx?C=%2Bp77vqe5mOs%3 D. Acesso em: 2021. SILVA, N.I.O.; SACCHETTO, L.; DE REZENDE, I.M.; TRINDADE, G.S.; LABEAUD, A.D.; DE THOISY, B.; DRUMOND, B.P. Recent sylvatic yellow fever virus transmission in Brazil: the news from an old disease. Virol. J., v. 17, p. 1?12, 2020. SILVER, J.B. Mosquito ecology: field sampling methods. 3rd ed. New York: Springer, 2008. SOPER, F.L.; PENNA, H.; CARDOSO, E.; SERAFIM, J.; FROBISHER, M.Jr.; PINHEIRO, J. Yellow fever without Aedes aegypti. Study of a rural epidemic in the Valle do Chanaan, Espirito Santo, Brazil, 1932. Am. J. Epidemiol., v. 18, p. 555?587, 1933. SCHULER-FACCINI, L.; RIBEIRO, E.M.; FEITOSA, I.M.L.; HOROVITZ, D.D.G.; CAVALCANTI, D.P.; PESSOA, A.; DORIQUI, M.J.R.; NERI, J.I.; DE PINA NETO, J.M.; WANDERLEY, H.Y.C.; et al. Possible Association Between Zika Virus Infection and Microcephaly ? Brazil, 2015. MMWR. Morb. Mortal. Wkly. Rep., p. 59?62, 2016. TERZIAN, A.C.B.; AUGUSTE, A.J.; VEDOVELLO, D.; FERREIRA, M.U.; DA SILVANUNES, M.; SPERAN?A, M.A.; SUZUKI, R.B.; JUNCANSEN, C.; ARA?JO, J.P.JR., WEAVER, S.C.; et al. Isolation and characterization of Mayaro virus from a human in Acre, Brazil. Am. J. Trop. Med. Hyg., v. 92, p. 401?404, 2015. TERZIAN, A.C.B.; ZINI, N.; SACCHETTO, L.; ROCHA, R.F.; PARRA, M.C.P.; DEL SARTO, J.L.; DIAS, A.C.F.; COUTINHO, F.; RAYRA, J.; DA SILVA, R.A.; et al. Evidence of natural Zika virus infection in neotropical non-human primates in Brazil. Sci. Rep., v. 8, p. 1?15, 2018. WHO | Yellowfever ? Brazil. Dispon?vel em: http://www.who.int/csr/don/11-february-2019- yellow-fever-brazil/en/ Acesso em: 2021.mosquitosdiversidadeinfec??o naturalZikamosquitoesdiversitynatural infectionZoologiaParasitologiaBiologia GeralBionomia de Culicidae e investiga??o natural por Flavivirus em uma paisagem do bioma Mata Atl?ntica do Estado do Rio de Janeiro, BrasilBionomy of culicidae and natural investigation for Flavivirus in a landscape of the Atlantic Forest biome in the state of Rio de Janeiro, Brazilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2021 - Amanda Queiroz Bastos.pdf.jpg2021 - Amanda Queiroz Bastos.pdf.jpgimage/jpeg2057http://localhost:8080/tede/bitstream/jspui/5888/4/2021+-+Amanda+Queiroz+Bastos.pdf.jpg401f6192b5d305db5258cad75a028b02MD54TEXT2021 - Amanda Queiroz Bastos.pdf.txt2021 - Amanda Queiroz Bastos.pdf.txttext/plain289184http://localhost:8080/tede/bitstream/jspui/5888/3/2021+-+Amanda+Queiroz+Bastos.pdf.txt8d355a91c6f93059d6406f38f078fa34MD53ORIGINAL2021 - Amanda Queiroz Bastos.pdf2021 - Amanda Queiroz Bastos.pdfapplication/pdf3012328http://localhost:8080/tede/bitstream/jspui/5888/2/2021+-+Amanda+Queiroz+Bastos.pdf27c9491acf7f0d897512ab857cdbd4f1MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/5888/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/58882022-08-17 01:00:20.339oai:localhost:jspui/5888Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2022-08-17T04:00:20Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Bionomia de Culicidae e investiga??o natural por Flavivirus em uma paisagem do bioma Mata Atl?ntica do Estado do Rio de Janeiro, Brasil
dc.title.alternative.eng.fl_str_mv Bionomy of culicidae and natural investigation for Flavivirus in a landscape of the Atlantic Forest biome in the state of Rio de Janeiro, Brazil
title Bionomia de Culicidae e investiga??o natural por Flavivirus em uma paisagem do bioma Mata Atl?ntica do Estado do Rio de Janeiro, Brasil
spellingShingle Bionomia de Culicidae e investiga??o natural por Flavivirus em uma paisagem do bioma Mata Atl?ntica do Estado do Rio de Janeiro, Brasil
Bastos, Amanda Queiroz
mosquitos
diversidade
infec??o natural
Zika
mosquitoes
diversity
natural infection
Zoologia
Parasitologia
Biologia Geral
title_short Bionomia de Culicidae e investiga??o natural por Flavivirus em uma paisagem do bioma Mata Atl?ntica do Estado do Rio de Janeiro, Brasil
title_full Bionomia de Culicidae e investiga??o natural por Flavivirus em uma paisagem do bioma Mata Atl?ntica do Estado do Rio de Janeiro, Brasil
title_fullStr Bionomia de Culicidae e investiga??o natural por Flavivirus em uma paisagem do bioma Mata Atl?ntica do Estado do Rio de Janeiro, Brasil
title_full_unstemmed Bionomia de Culicidae e investiga??o natural por Flavivirus em uma paisagem do bioma Mata Atl?ntica do Estado do Rio de Janeiro, Brasil
title_sort Bionomia de Culicidae e investiga??o natural por Flavivirus em uma paisagem do bioma Mata Atl?ntica do Estado do Rio de Janeiro, Brasil
author Bastos, Amanda Queiroz
author_facet Bastos, Amanda Queiroz
author_role author
dc.contributor.advisor1.fl_str_mv Alencar, Jeronimo Augusto Fonseca
dc.contributor.advisor1ID.fl_str_mv 005.893.247-05
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6783152813274111
dc.contributor.advisor-co1.fl_str_mv Mallet, Jacenir Reis dos Santos
dc.contributor.advisor-co1ID.fl_str_mv 710.008.957-34
dc.contributor.referee1.fl_str_mv Pereira, Ronaldo Figueir? Portella
dc.contributor.referee2.fl_str_mv Santana, H?lcio Reinaldo Gil
dc.contributor.referee3.fl_str_mv Silva, Julia dos Santos
dc.contributor.referee4.fl_str_mv M?ller, Gerson Azulim
dc.contributor.referee5.fl_str_mv Souza, Nataly Ara?jo
dc.contributor.authorID.fl_str_mv 094.479.3074-00
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8675065910087576
dc.contributor.author.fl_str_mv Bastos, Amanda Queiroz
contributor_str_mv Alencar, Jeronimo Augusto Fonseca
Mallet, Jacenir Reis dos Santos
Pereira, Ronaldo Figueir? Portella
Santana, H?lcio Reinaldo Gil
Silva, Julia dos Santos
M?ller, Gerson Azulim
Souza, Nataly Ara?jo
dc.subject.por.fl_str_mv mosquitos
diversidade
infec??o natural
Zika
topic mosquitos
diversidade
infec??o natural
Zika
mosquitoes
diversity
natural infection
Zoologia
Parasitologia
Biologia Geral
dc.subject.eng.fl_str_mv mosquitoes
diversity
natural infection
dc.subject.cnpq.fl_str_mv Zoologia
Parasitologia
Biologia Geral
description The mosquitoes, family Culicidae, have 3,588 species classified in two subfamilies: Anophelinae and Culicinae. Both have species of epidemiological importance. The fauna inventory of mosquitoes in areas of natural environment is condiderably important in ecological studies. The natural populations of animals in a given biogeographic area distributed in communities subject to constant fluctuations in response to the environment. During the processes of anthropic action or in the possible periods of recovery of the vegetation cover, knowledge of the biodiversity of mosquito communities in na Atlantic Forest environment is of relevant importance. Since this knowledge is useful to evaluate possible changes in behavior and adaptations in the pattern of activities of mosquitoes considered to be, until then, of wild habit, preferably. The sampling resulted from collections made in two fragments of Atlantic Forest in the state of Rio de Janeiro in municipality of Nova Igua?u in the Associa??o de Taifeiros da Armada (ATA) and in Boa Esperan?a site. The duration of collections in both locations was one year. The present study aimed to assess the richness, diversity, equitability and preference of immatures and adults in both fragments and the influence of climatic factors (temperature, relative humidity and rainfall) on the abundance of mosquitoes. In the two study areas, biweekly visits, sytematic and standardized sampling were performed using a manual sucker to collect the larvae. In ATA, the natural breeding sites surveyed were bamboo stalks, while in the Boa Esperan?a site, ovitraps were randomly distributed and the natural bamboo and bromeliad breeding sites were monitored. Adult spcimens were captured using CDC light traps with CO2 attractiveness, part of the specimens from the collected eggs were used to perform the analysis of possible natural infection by flavivirus (Zika, yellow fever). During the sampling period in the ATA, 3170 larvae were collected in perforated bamboo in eight stems of Five plants, of which 688 specimens reached the adult stage, distributed in 10 genera and 16 species. The richness of the immatures collected in the ATA was 16 species, with a recorded diversity of 1.10 and Shannon?s equitability of 0.57. In the sample area of the Boa Esperan?a site, 5514 larvae were collected and 1322 reached the adult stage: 949 in the plastic container, 80 in the bromeliad and 293 in the bamboo. Of the 5818 eggs collected, 3941 hatched, and 3807 reached the pupal stage and 2370 reached the adult stage. The species from the eggs with the greatest abundance were Aedes albopictus with 61% and Haemagogus leucocelaenus 34%. In the CDC light trap with CO2 attractiveness, 2621 specimens of mosquitoes of these genera were: Culex (84,9%), Wyeomyia (5,3%), Aedes (3,5%) and Limatus (3,1%). A total of 1,229 specimens of mosquitoes: Ae. albopictus (651), Hg. leucocelaenus (565) and Hg. janthinomys (13) from eggs collected at the Boa Esperan?a site were submitted to RT-PCR to detect Flavivirus. The bamboo breeding area showed the greatest diversity and fairness, however, the plastic container had the lowest indexes. Regarding the richness of the immatures found, it was showed greater richness in the bamboo. The adults captured at sample point 5 of the Boa Esperan?a site had the highest levels of diversity, equatability and richness. Evidence was found through the polymerase chain reaction (RT-PCR), partial sequences of Zika v?rus in sample of Hg. leucocelaenus, an important species from the epidemiological point of view in the transmission of the yellow fever v?rus.
publishDate 2021
dc.date.issued.fl_str_mv 2021-10-29
dc.date.accessioned.fl_str_mv 2022-08-16T19:40:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BASTOS, Amanda Queiroz. Bionomia de Culicidae e investiga??o natural por Flavivirus em uma paisagem do bioma Mata Atl?ntica do Estado do Rio de Janeiro, Brasil. 2021. 122 f. Tese (Doutorado em Biologia Animal) - Instituto de Ci?ncias Biol?gicas e da Sa?de, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2021.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/5888
identifier_str_mv BASTOS, Amanda Queiroz. Bionomia de Culicidae e investiga??o natural por Flavivirus em uma paisagem do bioma Mata Atl?ntica do Estado do Rio de Janeiro, Brasil. 2021. 122 f. Tese (Doutorado em Biologia Animal) - Instituto de Ci?ncias Biol?gicas e da Sa?de, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2021.
url https://tede.ufrrj.br/jspui/handle/jspui/5888
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ABREU, F.V.S.; RIBEIRO, I.P.; FERREIRA-DE-BRITO, A.; SANTOS, A.A.C.D.; MIRANDA, R.M.; BONELY, I.S.; NEVES, M.S.A.S.; BERSOT, M.I., SANTOS, T.P.D.; GOMES, M.Q.; SILVA, J.L.D.; ROMANO, A.P.M.; CARVALHO, R.G.; DITO, R.F.D.C.; RIBEIRO, M.S.; LAPERRI?RE, R.D.C.; FONSECA, E.O.L.; FALQUETO, A.; PAUPY, C.; FAILLOUX, A.B.; MOUTAILLER, S.; CASTRO, M.G.; G?MEZ, M.M.; MOTTA, M.A.; BONALDO, M.C.; LOUREN?O-DE-OLIVEIRA, R. Haemagogus leucocelaenus and Haemagogus janthinomys are the primaryv ectors in the major yellow fever outbreak in Brazil, 2016-2018. Emerging Microbes Infections, v. 8, p. 218?231, 2019. ALENCAR, J.; MARCONDES, C.B.; SERRA-FREIRE, N.M.; LOROSA, E.S.; PACHECO, J.B.; GUIMAR?ES, A.?. Feeding patterns of Haemagogus capricornii and Hg. leucocelaenus (Diptera: Culicidae) in two Brazilian states (Rio de Janeiro and Goi?s). J. Med. Entomol., v. 45, p. 873?876, 2008a. ALENCAR, J.; DE ALMEIDA, H.M.; MARCONDES, C.B.; GUIMAR?ES, A.?. Effect of multiple immersions on eggs and development of immature forms of Haemagogus janthinomys from south-eastern Brazil (Diptera: Culicidae). Entomol. News, v. 119, p. 239?244, 2008b. ALENCAR, J.; DEMELLO, C.F.; GIL-SANTANA, H.R.; GUIMAR?ES, A.?.; DE ALMEIDA, S.A.; GLEISER, R.M. Vertical oviposition activity of mosquitoes in the Atlantic Forest of Brazil with emphasis on the sylvan vector, Haemagogus leucocelaenus (Diptera: Culicidae). J. Vector Ecol., v. 41, p. 18?26, 2016. BALEOTTI, F.G.; MORELI, M.L.; FIGUEIREDO, L.T.M. Brazilian Flavivirus Phylogeny Based on NS5. Mem. Inst. Oswaldo Cruz, v. 98, p. 379?382, 2003. BRASIL, M. DA S. Boletim Epidemiol?gico 13: Monitoramento dos casos de arboviroses urbanas transmitidas pelo Aedes (dengue, chikungunya e Zika) at? a Semana Epidemiol?gica 12 de 2019; 2019; v. 50, pp. 1?18. Dispon?vel em: https://portalarquivos2.saude.gov.br/images/pdf/2019/abril/30/2019-013-Monitoramentodos- casos-de-arboviroses-urbanas-transmitidas-pelo-Aedes-publicacao.pdf. Acesso em: 2021. BUENO, M.G.; MARTINEZ, N.; ABDALLA, L.; DUARTE DOS SANTOS, C.N.; CHAME, M. Animals in the Zika Virus Life Cycle: What to Expect from Megadiverse Latin American Countries. PLoS Negl. Trop. Dis., v. 10, p. 1?13, 2016. CALVET, G.; AGUIAR, R.S.; MELO, A.S.O.; SAMPAIO, S.A.; DE FILIPPIS, I.; FABRI, A.; ARAUJO, E.S.M.; DE SEQUEIRA, P.C.; DE MENDON?A, M.C.L.; DE OLIVEIRA, L.; et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in a case study. Lancet Infect. Dis., v. 16, p. 653?660, 2016. CATENACCI, L.S.; NUNES-NETO, J.; DEEM, S.L.; PALMER, J.L.; TRAVASSOS-DAROSA, E.S.; TELLO, J.S. Diversity patterns of hematophagous insects in Atlantic forest fragments and human-modified areas of southern Bahia, Brazil. J. Vector Ecol., v.43, p. 293?304, 2018. CAMPOS, G.S.; BANDEIRA, A.C.; SARDI, S.I. Zika Virus Outbreak, Bahia, Brazil. Emerg. Infect. Dis., v. 21, p. 1885?1886, 2015. CARDOSO, J.d.C; CORSEUIL, E.; BARATA, J.M.S. Culicinae (Diptera, Culicidae) ocorrentes no Estado do Rio Grande do Sul, Brasil. Rev. Bras. Entomol., 2005, v. 49, p. 275?287, 2005. CARDOSO, J.D.C.; DE ALMEIDA, M.A.B.; DOS SANTOS, E.; DA FONSECA, D.F.; SALLUM, M.A.M.; NOLL, C.A.; MONTEIRO, H.A.D.O.; CRUZ, A.C.R.; CARVALHO, V.L.; PINTO, E.V.; et al. Yellow Fever Virus in Haemagogus leucocelaenus and Aedes serratus Mosquitoes, Southern Brazil, 2008. Emerg. Infect. Dis., v. 16, p. 1918?1924, 2010. CHANG, G.J.; CROPP, B.C.; KINNEY, R.M.; TRENT, D.W.; GUBLER, D.J. Nucleotide sequence variation of the envelope protein gene identifies two distinct genotypes of yellow fever virus. J. Virol., v. 69, p. 5773?5780, 1995. CIOTA, A.T.; BIALOSUKNIA, S.M.; EHRBAR, D.J.; KRAMER, L.D. Vertical Transmission of Zika Virus by Aedes aegypti and Ae. Albopictus Mosquitoes. Emerg. Infect. Dis., v. 23, p. 880?882, 2017. CONSOLI, R.AG.B.; LOUREN?O-DE-OLIVEIRA, R. Principais mosquitos de import?ncia sanit?ria no Brasil. 1st ed. Rio de Janeiro: Fiocruz; 1994. COSTA-DA-SILVA, A.L.; IOSHINO, R.S.; DE ARA?JO, H.R.C.; KOJIN, B.B.; DE ANDRADE ZANOTTO, P.M.; OLIVEIRA, D.B.L.; MELO, S.R.; DURIGON, E.L.; CAPURRO, M.L. Laboratory strains of Aedes aegypti are competent to Brazilian Zika virus. PLoS One, v. 12, p. 1?13, 2017. CHOUIN-CARNEIRO, T.; VEGA-RUA, A.; VAZEILLE, M.; YEBAKIMA, A.; GIROD, R.; GOINDIN, D.; DUPONT-ROUZEYROL, M.; LOUREN?O-DE-OLIVEIRA, R.; FAILLOUX, A.B. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus. PLoS Negl. Trop. Dis., v. 10, p. 1?11, 2016. DA COSTA, C.F.; DA SILVA, A.V.; NASCIMENTO, V.A.D.; DE SOUZA, V.C.; MONTEIRO, D.C.D.S.; TERRAZAS, W.C.M.; DOS PASSOS, R.A.; NASCIMENTO, S.; LIMA, J.B.P.; NAVECA, F.G. Evidence of vertical transmission of Zika virus in fieldcollected eggs of in the Brazilian Amazon. PLoS Negl.Trop. Dis., v. 12, p. 1?12, 2018. DI LUCA, M.; SEVERINI, F.; TOMA, L.; BOCCOLINI, D.; ROMI, R.; REMOLI, M.E.; SABBATUCCI, M.; RIZZO, C.; VENTURI, G.; REZZA, G.; et al. Experimental studies of susceptibility of Italian Aedes albopictus to Zika virus. Euro Surveill., v. 21, 2016. DU, S.; LIU, Y.; LIU, J.; ZHAO, J.; CHAMPAGNE, C.; TONG, L.; ZHANG, R.; ZHANG, F.; QIN, C.F.; MA, P.; et al. Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments. Nat. Commun., v. 10, p. 1?11, 2019. EPELBOIN, Y.; TALAGA, S.; EPELBOIN, L.; DUSFOUR, I. Zika virus: An updated review of competent or naturally infected mosquitoes. PLoS Negl. Trop. Dis., v. 11, p.1?22, 2017. DOS SANTOS, B.M.C.; COELHO, F.C.; ARMSTRONG, M.; SARACENI, V.; LEMOS, C. Zika: an ongoing threat to women and infants. Cad. Sa?de P?blica, v. 34, 2018. FARAJI, A.; EGIZI, A.; FONSECA, D.M.; UNLU, I.; CREPEAU, T.; HEALY, S.P.; GAUGLER, R. Comparative Host Feeding Patterns of the Asian Tiger Mosquito, Aedes albopictus, in Urban and Suburban Northeastern USA and Implications for Disease Transmission. PLoS Negl. Trop. Dis., v. 8, 2014. FAVORETTO, S.; ARA?JO, D.; OLIVEIRA, D.; DUARTE, N.; MESQUITA, F.; ZANOTTO, P.; DURIGON, E. First detection of Zika virus in neotropical primates in Brazil: A possible new reservoir. BioRxiv, 2016. FERNANDES, R.S.; BERSOT, M.I.; CASTRO, M.G.; TELLERIA, E.L.; FERREIRA-DEBRITO, A.; RAPHAEL, L.M.; BONALDO, M.C.; LOUREN?O-DE-OLIVEIRA, R. Low vector competence in sylvatic mosquitoes limits Zika virus to initiate an enzootic cycle in South America. Sci. Rep., v. 9, p. 1?7, 2019. FERREIRA-DE-BRITO, A.; RIBEIRO, I.P.; MIRANDA, R.M.; FERNANDES, R.S.; CAMPOS, S.S.; DA SILVA, K.A.B.; DE CASTRO, M.G.; BONALDO, M.C.; BRASIL, P.; LOUREN?O-DE-OLIVEIRA, R. First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America. Mem. Inst. Oswaldo Cruz, v. 111, p. 655?658, 2016. FIGUEIREDO, L.T.M. The Brazilian flaviviruses. Microbes Infect., v. 2, p. 1643?1649, 2000. FRANCO, O. Hist?ria da Febre Amarela no Brasil. Minist?rio da Sa?de, Dep. Nac. Endem. Rurais., v. 1, p.1?8. 1969. INSTITUTO NACIONAL DE METEOROLOGIA?INMET. Dispon?vel em: https://portal.inmet.gov.br/ Acesso em: 2021. GRARD, G.; CARON, M.; MOMBO, I.M.; NKOGHE, D.; MBOUI ONDO, S.; JIOLLE, D.; FONTENILLE, D.; PAUPY, C.; LEROY, E.M. Zika Virus in Gabon (Central Africa) - 2007: A New Threat from Aedes albopictus? PLoSNegl. Trop. Dis., v. 8, p. 1?6, 2014. JOHNSON, B.K.; CHANAS, A.C.; SHOCKLEY, P.; SQUIRES, E.J.; GARDNER, P.; WALLACE, C.; SIMPSON, D.I.H.; BOWEN, E.T.W.; PLATT, G.S.; WAY, H.; et al. Arbovirus isolations from, and serological studies on, wild and domestic vertebrates from Kano Plain, kenya. Trans. R. Soc. Trop. Med. Hyg., v. 71, p. 512?517, 1977. JOHNSON, B.W.; CHAMBERS, T.V.; CRABTREE, M.B.; FILIPPIS, A.M.B.; VILARINHOS, P.T.R.; RESENDE, M.C.; MACORIS, M. de L.G.; MILLER, B.R. Vector competence of Brazilian Aedes aegypti and Ae. albopictus for a Brazilian yellow fever virus isolate. Trans. R. Soc. Trop. Med. Hyg., v. 96, p. 611?613, 2002. LEROY, E.M.; NKOGHE, D.; OLLOMO, B.; NZE-NKOGUE, C.; BECQUART, P.; GRARD, G.; POURRUT, X.; CHARREL, R.; MOUREAU, G.; NDJOYI-MBIGUINO, A.; et al. Concurrent chikungunya and dengue virus infections during simultaneous outbreaks, Gabon, 2007. Emerg. Infect. Dis., v. 15, p. 591?593, 2009. LIU, Z.; ZHANG, Z.; LAI, Z.; ZHOU, T.; JIA, Z.; GU, J.; WU, K.; CHEN, X.G. Temperature Increase Enhances Aedes albopictus Competence to Transmit Dengue Virus. Front. Microbiol., v. 8, p. 1?7, 2017. LOUREN?O DE OLIVEIRA, R.; VAZEILLE, M.; DE FILIPPIS, A.M.B.; FAILLOUX, A.B. Large genetic differentiation and low variation in vector competence for dengue and yellow fever viruses of Aedes albopictus from Brazil, the United States, and the Cayman Islands. Am. J. Trop. Med. Hyg., v. 69, p. 105?114, 2003. MACIEL-DE-FREITAS, R.; NETO, R.B.; GON?ALVES, J.M.; Code?o, C.T.; LOUREN?O-DE-OLIVEIRA, R. Movement of dengue vectors between the human modified environment and an urban forest in Rio de Janeiro. J. Med. Entomol., v. 43, p. 1112?1120, 2006. MARCONDES, C.B.; ALENCAR, J. Revis?o de mosquitos Haemagogus Williston (Diptera: Culicidae) do Brasil. Rev. Biomed. v. 21, p. 221?238, 2010. MILLER, B.R.; MITCHELL, C.J.; BALLINGER, M.E. Replication, tissue tropisms and transmission of yellow fever virus in Aedes albopictus. Trans. R. Soc. Trop. Med. Hyg. v. 83, p. 252?255, 1989. MITCHELL, C.J.; MILLER, B.R.; GUBLER, D.J. Vector competence of Aedes albopictus from Houston, Texas, for dengue serotypes 1 to 4, yellow fever and Ross River viruses. J. Am. Mosq. Control Assoc., v. 3, p. 460?465, 1987. MLAKAR, J.; KORVA, M.; TUL, N.; POPOVIC, M.; POLJSAK-PRIJATELJ, M.; MRAZ, J.; KOLENC, M.; RESMAN RUS, K.; VESNAVER VIPOTNIK, T.; FABJAN, VODUSEK, V.; et al. Zika Virus Associated with Microcephaly. N. Engl. J. Med., v. 374, p. 951?958, 2016. MOREIRA-SOTO, A.; CARNEIRO, I. DE O.; FISCHER, C.; FELDMANN, M.; K?MMERER, B.M.; SILVA, N.S.; SANTOS, U.G.; SOUZA, B.F. de C.D.; LIBORIO, F. de A.; VALEN?A-MONTENEGRO, M.M.; et al. Limited Evidence for Infection of Urban and Peri-urban Nonhuman Primates with Zika and Chikungunya Viruses in Brazil. MSphere, v. 3, p. 1?10, 2018. NIEBYLSKI, M.L.; CRAIG, G.B.Jr. Dispersal and survival of Aedes albopictus at a scrap tire yard in Missouri. J Am Mosq Control Assoc, v. 10, p. 339?343, 1994. OTTO, T.D.; VASCONCELLOS, E.A.; GOMES, L.H.F.; MOREIRA, A.S.; DEGRAVE, W.M.; MENDON?A-LIMA, L.; ALVES-FERREIRA, M. ChromaPipe: a pipeline for analysis, quality control and management for a DNA sequencing facility. Genet. Mol. Res., v. 7, p. 861?871, 2008. PATEL, P.; LANDT, O.; KAISER, M.; FAYE, O.; KOPPE, T.; LASS, U.; SALL, A.A.; NIEDRIG, M. Development of one-step quantitative reverse transcription PCR for the rapid detection of flaviviruses. Virol. J., v. 10, 2013. PAUVOLID-CORR?A, A.; KENNEY, J.L.; COUTO-LIMA, D.; CAMPOS, Z.M.S.; SCHATZMAYR, H.G.; NOGUEIRA, R.M.R.; BRAULT, A.C.; KOMAR, N. Ilheus Virus Isolation in the Pantanal, West-Central Brazil. PLoS Negl. Trop. Dis., v. 7, 2013. PAUVOLID-CORR?A, A.; CAMPOS, Z.; JULIANO, R.; VELEZ, J.; NOGUEIRA, R.M.R.; KOMAR, N. Serological Evidence of Widespread Circulation of West Nile Virus and Other Flaviviruses in Equines of the Pantanal, Brazil. PLoS Negl. Trop. Dis., v. 8, 2014. REINERT, J.F. List of abbreviations for currently valid generic-level taxa in family Culicidae (Diptera). J. Eur. Mosq. Control Assoc., v. 27, p. 68?76, 2009. RICHARDS, S.L.; PONNUSAMY, L.; UNNASCH, T.R.; HASSAN, H.K.; APPERSON, C.S. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in relation to availability of human and domestic animals in suburban landscapes of central North Carolina. J. Med. Entomol., v. 43, p. 543?551, 2006. SES Informe Epidemiol?gico 001/2018: Monitoramento das Emerg?ncias em Sa?de P?blica (Febre Amarela) 04 de janeiro de 2018; pp. 1-6. Dispon?vel em: http://www.riocomsaude.rj.gov.br/Publico/MostrarArquivo.aspx?C=%2Bp77vqe5mOs%3 D. Acesso em: 2021. SILVA, N.I.O.; SACCHETTO, L.; DE REZENDE, I.M.; TRINDADE, G.S.; LABEAUD, A.D.; DE THOISY, B.; DRUMOND, B.P. Recent sylvatic yellow fever virus transmission in Brazil: the news from an old disease. Virol. J., v. 17, p. 1?12, 2020. SILVER, J.B. Mosquito ecology: field sampling methods. 3rd ed. New York: Springer, 2008. SOPER, F.L.; PENNA, H.; CARDOSO, E.; SERAFIM, J.; FROBISHER, M.Jr.; PINHEIRO, J. Yellow fever without Aedes aegypti. Study of a rural epidemic in the Valle do Chanaan, Espirito Santo, Brazil, 1932. Am. J. Epidemiol., v. 18, p. 555?587, 1933. SCHULER-FACCINI, L.; RIBEIRO, E.M.; FEITOSA, I.M.L.; HOROVITZ, D.D.G.; CAVALCANTI, D.P.; PESSOA, A.; DORIQUI, M.J.R.; NERI, J.I.; DE PINA NETO, J.M.; WANDERLEY, H.Y.C.; et al. Possible Association Between Zika Virus Infection and Microcephaly ? Brazil, 2015. MMWR. Morb. Mortal. Wkly. Rep., p. 59?62, 2016. TERZIAN, A.C.B.; AUGUSTE, A.J.; VEDOVELLO, D.; FERREIRA, M.U.; DA SILVANUNES, M.; SPERAN?A, M.A.; SUZUKI, R.B.; JUNCANSEN, C.; ARA?JO, J.P.JR., WEAVER, S.C.; et al. Isolation and characterization of Mayaro virus from a human in Acre, Brazil. Am. J. Trop. Med. Hyg., v. 92, p. 401?404, 2015. TERZIAN, A.C.B.; ZINI, N.; SACCHETTO, L.; ROCHA, R.F.; PARRA, M.C.P.; DEL SARTO, J.L.; DIAS, A.C.F.; COUTINHO, F.; RAYRA, J.; DA SILVA, R.A.; et al. Evidence of natural Zika virus infection in neotropical non-human primates in Brazil. Sci. Rep., v. 8, p. 1?15, 2018. WHO | Yellowfever ? Brazil. Dispon?vel em: http://www.who.int/csr/don/11-february-2019- yellow-fever-brazil/en/ Acesso em: 2021.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Biologia Animal
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ci?ncias Biol?gicas e da Sa?de
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/5888/4/2021+-+Amanda+Queiroz+Bastos.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/5888/3/2021+-+Amanda+Queiroz+Bastos.pdf.txt
http://localhost:8080/tede/bitstream/jspui/5888/2/2021+-+Amanda+Queiroz+Bastos.pdf
http://localhost:8080/tede/bitstream/jspui/5888/1/license.txt
bitstream.checksum.fl_str_mv 401f6192b5d305db5258cad75a028b02
8d355a91c6f93059d6406f38f078fa34
27c9491acf7f0d897512ab857cdbd4f1
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1800313554163728384