Síntese de adesivo lignina-fenol-formaldeído para painéis de madeira

Detalhes bibliográficos
Autor(a) principal: Souza, Rafael Eloy de
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/11249
Resumo: A lignina é um subproduto gerado em larga escala no processo de polpação da madeira e atualmente tem sido utilizada para geração de energia na própria fábrica. Devido a sua estrutura fenólica, ela vem sendo estudada para diversos fins de aplicação em diferentes produtos no mercado. Uma alternativa para utilização dessa lignina tem sido a de usos em adesivos fenólicos para painéis de madeira. Porém, devido a baixa reatividade da lignina kraft de eucalipto com o formaldeído durante o processo de síntese do adesivo, muitos estudos vêm sendo realizados para melhorar essa característica da lignina e assim obter um adesivo com propriedades comparativas aos atuais adesivos para madeiras encontrados no mercado. A fenolação tem sido uma metodologia promissora para aumentar a reatividade da lignina. A partir dessa premissa, esse trabalho objetivou-se em fenolar a lignina kraft de eucalipto para síntese e caracterização de adesivos fenólicos. Foram sintetizados seis adesivos lignina-fenol-formaldeído usando lignina fenolada e não fenolada em proporções de substituição de 30%, 40% e 50% do fenol, e adicionalmente foi preparado uma amostra controle, em que não houve substituição do fenol por lignina. Utilizou-se também uma amostra de adesivo comercial a fim de comparação dos resultados, totalizando oito tratamentos. Para cada tratamento foram confeccionados um painel compensado sob mesmas condições (tempo, temperatura e pressão) e produzidos oito corpos de prova para realização do teste de resistência da linha de cola ao esforço de cisalhamento. O processo de fenolação aumentou em 14,7% a reatividade da lignina kraft, havendo incremento de componentes fenólicos nas estruturas da lignina. A utilização de lignina teve efeitos nas propriedades dos adesivos sintetizados, tanto para os de lignina não fenolada, quanto para os de lignina fenolada. De acordo com os resultados encontrados, não houve diferença estatística, ao nível de 95% de probabilidade pelo teste de Scott-Knott, entre os tratamentos para o teste de resistência da linha de cola ao esforço de cisalhamento, exceto pelos tratamentos com 30% de substituição por lignina fenolada e não fenolada, atendendo os requisitos mínimos de resistência ao cisalhamento especificado pela norma europeia EN 314-2 (1993). Foi possível a utilização da lignina kraft para síntese dos adesivos fenol formaldeído em substituição parcial ao fenol. O adesivo considerado melhor foi o de 50% de substituição de lignina fenolada devido a maior taxa de substituição e melhor tempo de formação de gel.
id UFRRJ-1_18270d7f112026d145e148cad7ea3c75
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/11249
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Souza, Rafael Eloy deGomes, Fernando José Borges064.999.456-81http://lattes.cnpq.br/0502504979310236Brito, Edvá Oliveira208.400.981-20Lelis, Roberto Carlos Costa497.049.906-34Gomes, Fernando José BorgesSantos, Fernando AlmeidaLongue Júnior, DaltonBatalha, Larisse Aparecida Ribas086.921.466-76http://lattes.cnpq.br/06482506036207692023-12-22T01:49:20Z2023-12-22T01:49:20Z2020-02-18SOUZA, Rafael Eloy de. Síntese de adesivo lignina-fenol-formaldeído para painéis de madeira. 2020. 40 f. Dissertação (Mestrado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.https://rima.ufrrj.br/jspui/handle/20.500.14407/11249A lignina é um subproduto gerado em larga escala no processo de polpação da madeira e atualmente tem sido utilizada para geração de energia na própria fábrica. Devido a sua estrutura fenólica, ela vem sendo estudada para diversos fins de aplicação em diferentes produtos no mercado. Uma alternativa para utilização dessa lignina tem sido a de usos em adesivos fenólicos para painéis de madeira. Porém, devido a baixa reatividade da lignina kraft de eucalipto com o formaldeído durante o processo de síntese do adesivo, muitos estudos vêm sendo realizados para melhorar essa característica da lignina e assim obter um adesivo com propriedades comparativas aos atuais adesivos para madeiras encontrados no mercado. A fenolação tem sido uma metodologia promissora para aumentar a reatividade da lignina. A partir dessa premissa, esse trabalho objetivou-se em fenolar a lignina kraft de eucalipto para síntese e caracterização de adesivos fenólicos. Foram sintetizados seis adesivos lignina-fenol-formaldeído usando lignina fenolada e não fenolada em proporções de substituição de 30%, 40% e 50% do fenol, e adicionalmente foi preparado uma amostra controle, em que não houve substituição do fenol por lignina. Utilizou-se também uma amostra de adesivo comercial a fim de comparação dos resultados, totalizando oito tratamentos. Para cada tratamento foram confeccionados um painel compensado sob mesmas condições (tempo, temperatura e pressão) e produzidos oito corpos de prova para realização do teste de resistência da linha de cola ao esforço de cisalhamento. O processo de fenolação aumentou em 14,7% a reatividade da lignina kraft, havendo incremento de componentes fenólicos nas estruturas da lignina. A utilização de lignina teve efeitos nas propriedades dos adesivos sintetizados, tanto para os de lignina não fenolada, quanto para os de lignina fenolada. De acordo com os resultados encontrados, não houve diferença estatística, ao nível de 95% de probabilidade pelo teste de Scott-Knott, entre os tratamentos para o teste de resistência da linha de cola ao esforço de cisalhamento, exceto pelos tratamentos com 30% de substituição por lignina fenolada e não fenolada, atendendo os requisitos mínimos de resistência ao cisalhamento especificado pela norma europeia EN 314-2 (1993). Foi possível a utilização da lignina kraft para síntese dos adesivos fenol formaldeído em substituição parcial ao fenol. O adesivo considerado melhor foi o de 50% de substituição de lignina fenolada devido a maior taxa de substituição e melhor tempo de formação de gel.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorLignin is a by-product generated on a large scale in the wood pulping process and has currently been used to generate energy in the pulp mill itself. Due to its phenolic structure, it has been studied for several application purposes in different products on the market. An alternative to the use of this lignin has been to use phenolic adhesives for wood boards. However, due to the low reactivity of eucalypt kraft lignin with formaldehyde during the adhesive synthesis process, many studies have been carried out to improve this characteristic of lignin and thus obtain an adhesive with properties comparable to the current wood adhesives found on the market. Phenolation has been a promising methodology for increasing the reactivity of lignin. Based on this premise, this work aimed to phenolate an eucalypt kraft lignin for the synthesis and characterization of phenolic adhesives. Six lignin-phenol-formaldehyde adhesives samples were synthesized using phenolated and non-phenolated lignin in substitution proportions of 30%, 40% and 50% of the phenol, in addition it was prepared a control sample, in which there was no substitution of phenol by lignin. A commercial adhesive sample was also used in order to compare the results, totalizing eight treatments. For each treatment, a plywood was made under the same conditions (time, temperature, and pressure), and eight specimens were produced to perform the test of resistance of the glue line to shear strength. The phenolation process increased the reactivity of lignin kraft by 14.7%, with an increase in phenolic components in the lignin structure. The use of lignin had effects on the properties of the synthesized adhesives, both for non-phenolated lignin and for phenolated lignin. According to the results found, there was no statistical difference, at the 95% probability level in the Scott-Knott test, among the treatments for the test of resistance of the glue line to shear strength, except for the treatments with 30% substitution by phenolated lignin and non-phenolated. The other treatments met the minimum requirements for shear strength specified by the European standard EN 314-2 (1993). Kraft lignin has shown promise in the production of lignin-based bioproducts. It was possible to use kraft lignin to synthesize phenol formaldehyde adhesives in partial replacement to phenol. The adhesive with 50% of replacement with phenolated lignin was considered the best from the adhesives synthesized due to higher percentage of replacement and faster gel time.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciências Ambientais e FlorestaisUFRRJBrasilInstituto de Florestaslignina kraftsubprodutoeucaliptofenolaçãofenol formaldeídobyproducteucalyptusphenolationphenol formaldehydekraft ligninRecursos Florestais e Engenharia FlorestalSíntese de adesivo lignina-fenol-formaldeído para painéis de madeiraSynthesis of lignin-phenol-formaldehyde adhesive for wood panelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisABNT (Associação Brasileira de Normas Técnicas), 1986. ABNT. NBR ISO 12466-1: Madeira Compensada - Qualidade de colagem parte 1: métodos de ensaio. Rio de Janeiro, Brazil. ASTM (AMerican Society for Testing and Materials), 1994. Annual book of ASTM standards: Adhesives. Washington D.C., USA Bajwa D.S., Pourhashem G., Ullah A.H., Bajwa S.G., 2019. A concise review of current lignin production, applications, products, and their environmental impact. Industrial Crops and Products 139, 111526, 11p. https://doi.org/10.1016/j.indcrop.2019.111526 Baker D., Rials, T., 2013. Recent advances in low-cost carbon fiber manufacture from lignin. J. Appl. Polym. Sci. 130(2), 713-728. https://doi.org/10.1002/app.39273 Bianche J.J., 2014. Interface madeira-adesivo e resistência de juntas coladas com diferentes adesivos e gramatura. Thesis (Federal University of Viçosa), Minas Gerais, Brazil. Bianche J.J., Carneiro A.C.O., Ladeira J.P.S., Teixeira A.P.M., Pereira F.A., Oliveira B.S., 2016. Shear strength in the glue line of Eucalyptus sp. and Pinus sp.wood. Revista Árvore 40(6), 1109-1117. http://dx .doi.org/10.1590/0100-67622016000600017 Boschetti W.T.N., Carvalho A.M.M.L., Carneiro A.C.O., Santos L.C., Poyares L.B.Q., 2019. Potential of kraft lignin as an additive in briquette production. Nordic Pulp & Paper Research Journal v .34(1), 6p. https://doi.org.10.1515/npprj-2018-0002 Brunow G., Lundquist K., Gellerstedt G., 1999. Lignin. In: Sjöström E., Alén, R. Analytical methods in Wood Chemistry, Pulping, and Papermaking. Springer Series in Wood Science. Springer-Verlag. New York., USA. Chakar F.S., Ragauskas A.J., 2004. Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products 20(2), 131–141. https://doi.org/10.1016/j.indcrop.2004.04.016 Chung H., Washburn N.R., 2016. Extraction and Types of Lignin, in Faruk, O., Sain, M. (Eds.), Lignin in polymer composites. Elsevier, UK, pp.13-26. Danielson B., Simonson R., 1998. Kraft lignin in phenol formaldehyde resin. Part 1. Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood. Journal of Adhesion Science and Technology 12(9), 923-939. https://doi.org/10.1163/156856198X00542 Dias, L.M.S., 2014. Síntese e caracterização de adesivos de lignina Kraft de eucalipto. Dissertation (Federal University of Lavras), Minas Gerais, Brazil. Du X., Li J., Lindstrom M.E., 2014. Modification of industrial softwood kraft lignin using Mannich reaction with and without phenolation pretreatment. Industrial Crops and Products 54, 729-735. https://doi.org/10.1016/j.indcrop.2013.11.035 Du J., 2018. Utilization of Kraft Softwood Lignin in Phenol Formaldehyde Adhesives and Phenolic Foams. Dissertation (North Carolina State University), North Carolina, USA. European Standart (EN), 1993. EN 314-1: Plywood – bonding quality: part 1 – test methods. In: Comité Européen de Normalisation (CEN), Bruxelas. Ferdosian F., Pan Z., Gao G., Zhao B., 2017. Bio, -Based Adhesives and Evaluation for Wood Composites Application. Polymers 9, 70. https://www.doi.org/10.3390/polym9020070 Ghorbani M., Mahendran A.R., Van Herwijnen H.W.G., Liebner F., Konnerth J., 2018. Paperbased laminates produced with kraft lignin-rich phenol–formaldehyde resoles meet requirements for outdoor usage. European Journal of Wood and Wood Products 76(2), 481- 487. https://doi.org/10.1007/s00107-017-1248-x Ghorbani M., Liebner F., Van Herwijnen H.W.G., Pfungen L., Krahofer M., Budjav E., Konnerth J., 2016. Liginin Phenol Formaldehyde Resoles: The Impact of Lignin type on Adhesive Properties. Bioresources 11(3), 6727-6741. https://doi.org/10.15376/biores.11.3.6727-6741 Goldmann W.M., Ahola J., Mankinen O., Kantola A.M., Telkki V-V., Transkanen J., 2017. Determination of Phenolic Hydroxyl Groups in Technical Lignins by Ionization Difference Ultraviolet Spectrophotometry (Δε-IDUS method). Periodica Ploytechnica Chemical Engineering, 9269. https://doi.org/10.3311/PPch.9269 Goldschmid O., 1954. Determination of phenolic hydroxyl content of lignin preparations by Ultraviolet Spectrophotometry. Analytical chemistry, 26, p. 1421-1423. https://doi.org.10.1021/ac60093a009 Ház A., Jablonský M., Surina I., Kacik F., Bubeníková T., Durkovic J., 2019. Chemical Composition and Thermal Behavior of Kraft Lignins. Forests 10(6): 483, p. 1-12. https://doi.org/10.3390.f10060483 Huang J., Fu S., Gan L, 2019. Lignin Chemistry and Applications. Chemical Industrial Press. Elsevier, Amsterdam, Netherlands. Hu L., Pan H., Zhou Y., Zhang M., 2011. Methods to improve lignin’s reactivity as a phenol substitute and as a replacement for other phenolic compounds: a brief review. Bioresources 6, p. 3515-3525. https://doi.org/10.15376/biores.6.3.3515-3125 Jablonsky M., Kocis J., Ház A., Sima J., 2015. Characterization and comparison by UV spectroscopy of precipitated lignins and commercial lignosulfonates, Cellulose Chemistry and Technology, v.49, p. 267-274. Jiang X., Liu J., Du X., Hu Z., Chang H-m, Jammel H., 2018. Phenolation to improve lignin reactivity toward thermosets application. ACS Sustainable Chemistry & Engineering, v. 6, n. 4, p. 5504-5512. https://doi.org/10.1021/acssuschemeng.8b00369 Kalami S., Arefmanesh M., Master E., Nejad M., 2017. Replacing 100% of phenol in phenolic adhesive formulations with lignin. Journal of Applied Polymer Science 134(30), 45124. https://doi.org/10.1002/app.45124 Khan M.A., Ashraf S.M., Malhotra, V. P., 2004. Development and characterization of a wood adhesive using bagasse lignin. International Journal of Adhesion and Adhesives 24(6), 485- 493. https://doi.org/10.1016/j.ijadhadh.2004.01.003 Klett A.S., 2017. Purification, Fractionation, and Characterization of Lignin from Kraft Black Liquor for Use as a Renewable Biomaterial. Dissertation (Clemson University), South Carolina, USA. Kosiková B., Duris M., Demianová V., 2000. Conversion of lignin biopolymer into surfaceactive derivatives. European Polymer Journal 36, 1209-1212. https://doi.org/10.1016/S0014- 3057(99)00163-9 Kouisni L., Holt-Hindle P., Maki, Paleologou M., 2012. The LignoForce System: A new process for the production of high-quality lignin from black liquor. Pulp and Paper Canada - Ontario115(1), 18-22. Laurichesse S., Averous L., 2014. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 39(7), 1266-1290. https//doi.org/10.1016/j.progpolymsci.2013.11.004 Lin S.Y., Dence C.W.,1992.Methods in Lignin Chemistry. Springer-Verlag. State University of New York. USA. https://doi.org/10.1007/978-3-642-74065-7 Lu L., Pan H., Zhou Y., Zhang M., 2011. Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review. Bioresources 6(3), 3515-3525. https://doi.org/10.15376/biores.6.3.3515-3525 Machado G., Santos F., Lourega R., Mattia J., Faria D., Eichler P., Auler A., 2020. Biopolymers from Lignocellulosic Biomass. In: Ingle A.P., Chandel A.K.; Silva, S.S.(Eds.), Lignocellulosic Biorefining Technologies, First Edition. John Wiley & Sons Ltd., USA, pp.125-158. Magalhães M., Vital B.R.; Carneiro A.C.O., Silva C.M.S., Fialho L.F., Figueiró C.G., Ferreira J.C., 2019. Adição de lignina Kraft à resina fenólica para a fabricação de compensados. Revista Ciência da Madeira 10 (2), 142-149. https://doi.org/10.12953/2177-6830/rcm.v10n2p142-149 Mainka H., Täger O., Körner E., Hilfert L., Busse S., Edelmann F.T., Herrmann A.S., 2015. Lignin - an alternative precursor for sustainable and cost-effective automotive carbon fiber. Journal of Materials Research and Technology 4(3), 283-296. https://doi.org/10.1016/j.jmrt.2015.03.004 Mankar, S., Chaudhari, A., Soni, I., 2012. Lignin in phenol formaldehyde adhesive. Int. J. Knowl. Eng. 3(1), 116-118. ISSN: 0976-5824 McCarthy J.L., Islam A., 2000. Lignin chemistry, technology, and utilization: A brief history. In Lignin: Historical, Biological, and Materials Perspectives; ACS. Symp. Ser. 742; American Chemical Society: Washington, DC, 2-99. https://doi.org/10.1021/bk-2000-0742.ch00 Pilato L., 2010. Phenolic Resins: A Century of Progress. Springer: Bound Brook, New Jersey. Pizzi A., Mittal K.L., 2011. Wood Adhesives. CRC Press: Boca Raton, Florida. Pizzi A., Mittal K.L., 2003. Handbook of Adhesives Technology, 2nd edition, Revised and Expanded. Taylor & Francis Group, New York. Prado R., Erdocia X., Serrano L., Labidi, J., 2012. Lignin purification with green solvents. Cellulose Chemistry and Technology 46 (3-4), 221-225. Sameni J., Krigstin S., Rosa D.S., Leao A., Sain M., 2013. Thermal characteristics of lignin residue from industrial processes. BioResources 9(1), 725-737. https://doi.org/10.15376/biores.9.1.725-737 Santos L.C., 2015. Síntese e caracterização de adesivos lignina fenol formaldeído para madeiras e derivados. Dissertation (Federal University of Viçosa), Minas Gerais, Brazil. SCAN (Scandinavian Pulp, Paper and Board) (2009). SCAN 38:01. Scan Test Methods. Stockholm, Sweden. Sedliacik, J., 2010.Technology of low-temperature production of plywood bonded with modified phenol-formaldehyde resin. Wood Res. 55(4), 123-130. ISSN: 1336-4561 Smolarski, N. High-Value Opportunities for Lignin: unlocking its potential. Frost & Sullivan, 2012. Solt P., Van Herwijnen H.W.G., Konnerth J., 2019. Thermoplastic and moisture-dependent behavior of lignin phenol formaldehyde resins. J. Appl. Polym. Sci. 136(40), 1-8. https://doi.org/10.1002/app.48011 Stewart, D., 2008. Lignin as a base material for materials applications: Chemistry, application and economics. Industrial Crops and Products 27, 202-207. https://doi.org/10.1016/j.indcrop.2007.07.008 TAPPI (Technical Association of Pulp and Paper Industry) (1998). T222 om- 98 - Tappi Test Methods. Atlanta, GA, USA. TAPPI (Technical Association of Pulp and Paper Industry) (2002). T211 om-93 - Ash in wood, pulp, paper and paperboard: combustion at 525°C. Tappi Test Methods. Atlanta, GA, USA. Tarasov D., Leitch M., Fatehi, P., 2018. Lignin–carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnology for biofuels, 11(1), 269. https://doi.org/10.1186/s13068-018-1262-1 TAPPI (Technical Association of the Pulp and Paper Industry) (1991). Tappi UM 250- Acidsoluble lignin in wood and pulp. TAPPI Standard Methods, Atlanta, GA, USA. Terzioglu P., Parn F.N., Sicak Y., 2020. Lignin composites or biomedical applications: status, challenges and perspectives. In: Sharma S., Kumar A. (Eds.), Lignin, Biosynthesis and transformation for industrial applications. Springer Series on Polymer and Composite Materials. Springer Nature Switzerland, pp. 253- 272. Tomani P., 2010. The Lignoboost Process. Celulose Chemistry and technology 44, 53-58. Wang H., Eberhardt T.L., Wang C., Gao S., Pan H., 2019. Demethylation of Alkali Lignin with Halogen Acids and Its Application to Phenolic Resins. Polymers 11, 1771. https://doi.org/10.3390/polym11111771 Wensley A., 2004. Corrosion in Alkaline Pulping Liquors. NACE International Corrosion 2004 Conference, New Orleans, LA., 1-13. Yang S., Wen J-L., Yuan T-Q., Sun R-C., 2014. Characterization and phenolation of biorefinery technical lignins for lignin–phenol–formaldehyde resin adhesive synthesis. RSC Adv., 4, p. 57996-58004. https://doi.org/10.1039/C4RA09595B Zhang F., Jiang X., Lin J., Zhao G., Chang H-M., Jameel H., 2018. Reactivity improvement by phenolation of wheat straw lignin isolated from a biorefinery process. New Journal of Chemistry 5. httphttps://tede.ufrrj.br/retrieve/72045/2020%20-%20Rafael%20Eloy%20de%20Souza.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/6297Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-01-31T18:20:38Z No. of bitstreams: 1 2020 - Rafael Eloy de Souza.pdf: 1505766 bytes, checksum: 82eedd4cd4e486c28fe2d213061b27f5 (MD5)Made available in DSpace on 2023-01-31T18:20:38Z (GMT). No. of bitstreams: 1 2020 - Rafael Eloy de Souza.pdf: 1505766 bytes, checksum: 82eedd4cd4e486c28fe2d213061b27f5 (MD5) Previous issue date: 2020-02-18info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2020 - Rafael Eloy de Souza.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11249/1/2020%20-%20Rafael%20Eloy%20de%20Souza.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2020 - Rafael Eloy de Souza.pdf.txtExtracted Texttext/plain103005https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11249/2/2020%20-%20Rafael%20Eloy%20de%20Souza.pdf.txt09387667e3f4a368edef77435a43f081MD52ORIGINAL2020 - Rafael Eloy de Souza.pdfapplication/pdf1505766https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11249/3/2020%20-%20Rafael%20Eloy%20de%20Souza.pdf82eedd4cd4e486c28fe2d213061b27f5MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11249/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/112492023-12-21 22:49:20.172oai:rima.ufrrj.br:20.500.14407/11249Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:49:20Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Síntese de adesivo lignina-fenol-formaldeído para painéis de madeira
dc.title.alternative.eng.fl_str_mv Synthesis of lignin-phenol-formaldehyde adhesive for wood panels
title Síntese de adesivo lignina-fenol-formaldeído para painéis de madeira
spellingShingle Síntese de adesivo lignina-fenol-formaldeído para painéis de madeira
Souza, Rafael Eloy de
lignina kraft
subproduto
eucalipto
fenolação
fenol formaldeído
byproduct
eucalyptus
phenolation
phenol formaldehyde
kraft lignin
Recursos Florestais e Engenharia Florestal
title_short Síntese de adesivo lignina-fenol-formaldeído para painéis de madeira
title_full Síntese de adesivo lignina-fenol-formaldeído para painéis de madeira
title_fullStr Síntese de adesivo lignina-fenol-formaldeído para painéis de madeira
title_full_unstemmed Síntese de adesivo lignina-fenol-formaldeído para painéis de madeira
title_sort Síntese de adesivo lignina-fenol-formaldeído para painéis de madeira
author Souza, Rafael Eloy de
author_facet Souza, Rafael Eloy de
author_role author
dc.contributor.author.fl_str_mv Souza, Rafael Eloy de
dc.contributor.advisor1.fl_str_mv Gomes, Fernando José Borges
dc.contributor.advisor1ID.fl_str_mv 064.999.456-81
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0502504979310236
dc.contributor.advisor-co1.fl_str_mv Brito, Edvá Oliveira
dc.contributor.advisor-co1ID.fl_str_mv 208.400.981-20
dc.contributor.advisor-co2.fl_str_mv Lelis, Roberto Carlos Costa
dc.contributor.advisor-co2ID.fl_str_mv 497.049.906-34
dc.contributor.referee1.fl_str_mv Gomes, Fernando José Borges
dc.contributor.referee2.fl_str_mv Santos, Fernando Almeida
dc.contributor.referee3.fl_str_mv Longue Júnior, Dalton
dc.contributor.referee4.fl_str_mv Batalha, Larisse Aparecida Ribas
dc.contributor.authorID.fl_str_mv 086.921.466-76
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0648250603620769
contributor_str_mv Gomes, Fernando José Borges
Brito, Edvá Oliveira
Lelis, Roberto Carlos Costa
Gomes, Fernando José Borges
Santos, Fernando Almeida
Longue Júnior, Dalton
Batalha, Larisse Aparecida Ribas
dc.subject.por.fl_str_mv lignina kraft
subproduto
eucalipto
fenolação
fenol formaldeído
byproduct
eucalyptus
phenolation
phenol formaldehyde
topic lignina kraft
subproduto
eucalipto
fenolação
fenol formaldeído
byproduct
eucalyptus
phenolation
phenol formaldehyde
kraft lignin
Recursos Florestais e Engenharia Florestal
dc.subject.eng.fl_str_mv kraft lignin
dc.subject.cnpq.fl_str_mv Recursos Florestais e Engenharia Florestal
description A lignina é um subproduto gerado em larga escala no processo de polpação da madeira e atualmente tem sido utilizada para geração de energia na própria fábrica. Devido a sua estrutura fenólica, ela vem sendo estudada para diversos fins de aplicação em diferentes produtos no mercado. Uma alternativa para utilização dessa lignina tem sido a de usos em adesivos fenólicos para painéis de madeira. Porém, devido a baixa reatividade da lignina kraft de eucalipto com o formaldeído durante o processo de síntese do adesivo, muitos estudos vêm sendo realizados para melhorar essa característica da lignina e assim obter um adesivo com propriedades comparativas aos atuais adesivos para madeiras encontrados no mercado. A fenolação tem sido uma metodologia promissora para aumentar a reatividade da lignina. A partir dessa premissa, esse trabalho objetivou-se em fenolar a lignina kraft de eucalipto para síntese e caracterização de adesivos fenólicos. Foram sintetizados seis adesivos lignina-fenol-formaldeído usando lignina fenolada e não fenolada em proporções de substituição de 30%, 40% e 50% do fenol, e adicionalmente foi preparado uma amostra controle, em que não houve substituição do fenol por lignina. Utilizou-se também uma amostra de adesivo comercial a fim de comparação dos resultados, totalizando oito tratamentos. Para cada tratamento foram confeccionados um painel compensado sob mesmas condições (tempo, temperatura e pressão) e produzidos oito corpos de prova para realização do teste de resistência da linha de cola ao esforço de cisalhamento. O processo de fenolação aumentou em 14,7% a reatividade da lignina kraft, havendo incremento de componentes fenólicos nas estruturas da lignina. A utilização de lignina teve efeitos nas propriedades dos adesivos sintetizados, tanto para os de lignina não fenolada, quanto para os de lignina fenolada. De acordo com os resultados encontrados, não houve diferença estatística, ao nível de 95% de probabilidade pelo teste de Scott-Knott, entre os tratamentos para o teste de resistência da linha de cola ao esforço de cisalhamento, exceto pelos tratamentos com 30% de substituição por lignina fenolada e não fenolada, atendendo os requisitos mínimos de resistência ao cisalhamento especificado pela norma europeia EN 314-2 (1993). Foi possível a utilização da lignina kraft para síntese dos adesivos fenol formaldeído em substituição parcial ao fenol. O adesivo considerado melhor foi o de 50% de substituição de lignina fenolada devido a maior taxa de substituição e melhor tempo de formação de gel.
publishDate 2020
dc.date.issued.fl_str_mv 2020-02-18
dc.date.accessioned.fl_str_mv 2023-12-22T01:49:20Z
dc.date.available.fl_str_mv 2023-12-22T01:49:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA, Rafael Eloy de. Síntese de adesivo lignina-fenol-formaldeído para painéis de madeira. 2020. 40 f. Dissertação (Mestrado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/11249
identifier_str_mv SOUZA, Rafael Eloy de. Síntese de adesivo lignina-fenol-formaldeído para painéis de madeira. 2020. 40 f. Dissertação (Mestrado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/11249
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ABNT (Associação Brasileira de Normas Técnicas), 1986. ABNT. NBR ISO 12466-1: Madeira Compensada - Qualidade de colagem parte 1: métodos de ensaio. Rio de Janeiro, Brazil. ASTM (AMerican Society for Testing and Materials), 1994. Annual book of ASTM standards: Adhesives. Washington D.C., USA Bajwa D.S., Pourhashem G., Ullah A.H., Bajwa S.G., 2019. A concise review of current lignin production, applications, products, and their environmental impact. Industrial Crops and Products 139, 111526, 11p. https://doi.org/10.1016/j.indcrop.2019.111526 Baker D., Rials, T., 2013. Recent advances in low-cost carbon fiber manufacture from lignin. J. Appl. Polym. Sci. 130(2), 713-728. https://doi.org/10.1002/app.39273 Bianche J.J., 2014. Interface madeira-adesivo e resistência de juntas coladas com diferentes adesivos e gramatura. Thesis (Federal University of Viçosa), Minas Gerais, Brazil. Bianche J.J., Carneiro A.C.O., Ladeira J.P.S., Teixeira A.P.M., Pereira F.A., Oliveira B.S., 2016. Shear strength in the glue line of Eucalyptus sp. and Pinus sp.wood. Revista Árvore 40(6), 1109-1117. http://dx .doi.org/10.1590/0100-67622016000600017 Boschetti W.T.N., Carvalho A.M.M.L., Carneiro A.C.O., Santos L.C., Poyares L.B.Q., 2019. Potential of kraft lignin as an additive in briquette production. Nordic Pulp & Paper Research Journal v .34(1), 6p. https://doi.org.10.1515/npprj-2018-0002 Brunow G., Lundquist K., Gellerstedt G., 1999. Lignin. In: Sjöström E., Alén, R. Analytical methods in Wood Chemistry, Pulping, and Papermaking. Springer Series in Wood Science. Springer-Verlag. New York., USA. Chakar F.S., Ragauskas A.J., 2004. Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products 20(2), 131–141. https://doi.org/10.1016/j.indcrop.2004.04.016 Chung H., Washburn N.R., 2016. Extraction and Types of Lignin, in Faruk, O., Sain, M. (Eds.), Lignin in polymer composites. Elsevier, UK, pp.13-26. Danielson B., Simonson R., 1998. Kraft lignin in phenol formaldehyde resin. Part 1. Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood. Journal of Adhesion Science and Technology 12(9), 923-939. https://doi.org/10.1163/156856198X00542 Dias, L.M.S., 2014. Síntese e caracterização de adesivos de lignina Kraft de eucalipto. Dissertation (Federal University of Lavras), Minas Gerais, Brazil. Du X., Li J., Lindstrom M.E., 2014. Modification of industrial softwood kraft lignin using Mannich reaction with and without phenolation pretreatment. Industrial Crops and Products 54, 729-735. https://doi.org/10.1016/j.indcrop.2013.11.035 Du J., 2018. Utilization of Kraft Softwood Lignin in Phenol Formaldehyde Adhesives and Phenolic Foams. Dissertation (North Carolina State University), North Carolina, USA. European Standart (EN), 1993. EN 314-1: Plywood – bonding quality: part 1 – test methods. In: Comité Européen de Normalisation (CEN), Bruxelas. Ferdosian F., Pan Z., Gao G., Zhao B., 2017. Bio, -Based Adhesives and Evaluation for Wood Composites Application. Polymers 9, 70. https://www.doi.org/10.3390/polym9020070 Ghorbani M., Mahendran A.R., Van Herwijnen H.W.G., Liebner F., Konnerth J., 2018. Paperbased laminates produced with kraft lignin-rich phenol–formaldehyde resoles meet requirements for outdoor usage. European Journal of Wood and Wood Products 76(2), 481- 487. https://doi.org/10.1007/s00107-017-1248-x Ghorbani M., Liebner F., Van Herwijnen H.W.G., Pfungen L., Krahofer M., Budjav E., Konnerth J., 2016. Liginin Phenol Formaldehyde Resoles: The Impact of Lignin type on Adhesive Properties. Bioresources 11(3), 6727-6741. https://doi.org/10.15376/biores.11.3.6727-6741 Goldmann W.M., Ahola J., Mankinen O., Kantola A.M., Telkki V-V., Transkanen J., 2017. Determination of Phenolic Hydroxyl Groups in Technical Lignins by Ionization Difference Ultraviolet Spectrophotometry (Δε-IDUS method). Periodica Ploytechnica Chemical Engineering, 9269. https://doi.org/10.3311/PPch.9269 Goldschmid O., 1954. Determination of phenolic hydroxyl content of lignin preparations by Ultraviolet Spectrophotometry. Analytical chemistry, 26, p. 1421-1423. https://doi.org.10.1021/ac60093a009 Ház A., Jablonský M., Surina I., Kacik F., Bubeníková T., Durkovic J., 2019. Chemical Composition and Thermal Behavior of Kraft Lignins. Forests 10(6): 483, p. 1-12. https://doi.org/10.3390.f10060483 Huang J., Fu S., Gan L, 2019. Lignin Chemistry and Applications. Chemical Industrial Press. Elsevier, Amsterdam, Netherlands. Hu L., Pan H., Zhou Y., Zhang M., 2011. Methods to improve lignin’s reactivity as a phenol substitute and as a replacement for other phenolic compounds: a brief review. Bioresources 6, p. 3515-3525. https://doi.org/10.15376/biores.6.3.3515-3125 Jablonsky M., Kocis J., Ház A., Sima J., 2015. Characterization and comparison by UV spectroscopy of precipitated lignins and commercial lignosulfonates, Cellulose Chemistry and Technology, v.49, p. 267-274. Jiang X., Liu J., Du X., Hu Z., Chang H-m, Jammel H., 2018. Phenolation to improve lignin reactivity toward thermosets application. ACS Sustainable Chemistry & Engineering, v. 6, n. 4, p. 5504-5512. https://doi.org/10.1021/acssuschemeng.8b00369 Kalami S., Arefmanesh M., Master E., Nejad M., 2017. Replacing 100% of phenol in phenolic adhesive formulations with lignin. Journal of Applied Polymer Science 134(30), 45124. https://doi.org/10.1002/app.45124 Khan M.A., Ashraf S.M., Malhotra, V. P., 2004. Development and characterization of a wood adhesive using bagasse lignin. International Journal of Adhesion and Adhesives 24(6), 485- 493. https://doi.org/10.1016/j.ijadhadh.2004.01.003 Klett A.S., 2017. Purification, Fractionation, and Characterization of Lignin from Kraft Black Liquor for Use as a Renewable Biomaterial. Dissertation (Clemson University), South Carolina, USA. Kosiková B., Duris M., Demianová V., 2000. Conversion of lignin biopolymer into surfaceactive derivatives. European Polymer Journal 36, 1209-1212. https://doi.org/10.1016/S0014- 3057(99)00163-9 Kouisni L., Holt-Hindle P., Maki, Paleologou M., 2012. The LignoForce System: A new process for the production of high-quality lignin from black liquor. Pulp and Paper Canada - Ontario115(1), 18-22. Laurichesse S., Averous L., 2014. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 39(7), 1266-1290. https//doi.org/10.1016/j.progpolymsci.2013.11.004 Lin S.Y., Dence C.W.,1992.Methods in Lignin Chemistry. Springer-Verlag. State University of New York. USA. https://doi.org/10.1007/978-3-642-74065-7 Lu L., Pan H., Zhou Y., Zhang M., 2011. Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review. Bioresources 6(3), 3515-3525. https://doi.org/10.15376/biores.6.3.3515-3525 Machado G., Santos F., Lourega R., Mattia J., Faria D., Eichler P., Auler A., 2020. Biopolymers from Lignocellulosic Biomass. In: Ingle A.P., Chandel A.K.; Silva, S.S.(Eds.), Lignocellulosic Biorefining Technologies, First Edition. John Wiley & Sons Ltd., USA, pp.125-158. Magalhães M., Vital B.R.; Carneiro A.C.O., Silva C.M.S., Fialho L.F., Figueiró C.G., Ferreira J.C., 2019. Adição de lignina Kraft à resina fenólica para a fabricação de compensados. Revista Ciência da Madeira 10 (2), 142-149. https://doi.org/10.12953/2177-6830/rcm.v10n2p142-149 Mainka H., Täger O., Körner E., Hilfert L., Busse S., Edelmann F.T., Herrmann A.S., 2015. Lignin - an alternative precursor for sustainable and cost-effective automotive carbon fiber. Journal of Materials Research and Technology 4(3), 283-296. https://doi.org/10.1016/j.jmrt.2015.03.004 Mankar, S., Chaudhari, A., Soni, I., 2012. Lignin in phenol formaldehyde adhesive. Int. J. Knowl. Eng. 3(1), 116-118. ISSN: 0976-5824 McCarthy J.L., Islam A., 2000. Lignin chemistry, technology, and utilization: A brief history. In Lignin: Historical, Biological, and Materials Perspectives; ACS. Symp. Ser. 742; American Chemical Society: Washington, DC, 2-99. https://doi.org/10.1021/bk-2000-0742.ch00 Pilato L., 2010. Phenolic Resins: A Century of Progress. Springer: Bound Brook, New Jersey. Pizzi A., Mittal K.L., 2011. Wood Adhesives. CRC Press: Boca Raton, Florida. Pizzi A., Mittal K.L., 2003. Handbook of Adhesives Technology, 2nd edition, Revised and Expanded. Taylor & Francis Group, New York. Prado R., Erdocia X., Serrano L., Labidi, J., 2012. Lignin purification with green solvents. Cellulose Chemistry and Technology 46 (3-4), 221-225. Sameni J., Krigstin S., Rosa D.S., Leao A., Sain M., 2013. Thermal characteristics of lignin residue from industrial processes. BioResources 9(1), 725-737. https://doi.org/10.15376/biores.9.1.725-737 Santos L.C., 2015. Síntese e caracterização de adesivos lignina fenol formaldeído para madeiras e derivados. Dissertation (Federal University of Viçosa), Minas Gerais, Brazil. SCAN (Scandinavian Pulp, Paper and Board) (2009). SCAN 38:01. Scan Test Methods. Stockholm, Sweden. Sedliacik, J., 2010.Technology of low-temperature production of plywood bonded with modified phenol-formaldehyde resin. Wood Res. 55(4), 123-130. ISSN: 1336-4561 Smolarski, N. High-Value Opportunities for Lignin: unlocking its potential. Frost & Sullivan, 2012. Solt P., Van Herwijnen H.W.G., Konnerth J., 2019. Thermoplastic and moisture-dependent behavior of lignin phenol formaldehyde resins. J. Appl. Polym. Sci. 136(40), 1-8. https://doi.org/10.1002/app.48011 Stewart, D., 2008. Lignin as a base material for materials applications: Chemistry, application and economics. Industrial Crops and Products 27, 202-207. https://doi.org/10.1016/j.indcrop.2007.07.008 TAPPI (Technical Association of Pulp and Paper Industry) (1998). T222 om- 98 - Tappi Test Methods. Atlanta, GA, USA. TAPPI (Technical Association of Pulp and Paper Industry) (2002). T211 om-93 - Ash in wood, pulp, paper and paperboard: combustion at 525°C. Tappi Test Methods. Atlanta, GA, USA. Tarasov D., Leitch M., Fatehi, P., 2018. Lignin–carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnology for biofuels, 11(1), 269. https://doi.org/10.1186/s13068-018-1262-1 TAPPI (Technical Association of the Pulp and Paper Industry) (1991). Tappi UM 250- Acidsoluble lignin in wood and pulp. TAPPI Standard Methods, Atlanta, GA, USA. Terzioglu P., Parn F.N., Sicak Y., 2020. Lignin composites or biomedical applications: status, challenges and perspectives. In: Sharma S., Kumar A. (Eds.), Lignin, Biosynthesis and transformation for industrial applications. Springer Series on Polymer and Composite Materials. Springer Nature Switzerland, pp. 253- 272. Tomani P., 2010. The Lignoboost Process. Celulose Chemistry and technology 44, 53-58. Wang H., Eberhardt T.L., Wang C., Gao S., Pan H., 2019. Demethylation of Alkali Lignin with Halogen Acids and Its Application to Phenolic Resins. Polymers 11, 1771. https://doi.org/10.3390/polym11111771 Wensley A., 2004. Corrosion in Alkaline Pulping Liquors. NACE International Corrosion 2004 Conference, New Orleans, LA., 1-13. Yang S., Wen J-L., Yuan T-Q., Sun R-C., 2014. Characterization and phenolation of biorefinery technical lignins for lignin–phenol–formaldehyde resin adhesive synthesis. RSC Adv., 4, p. 57996-58004. https://doi.org/10.1039/C4RA09595B Zhang F., Jiang X., Lin J., Zhao G., Chang H-M., Jameel H., 2018. Reactivity improvement by phenolation of wheat straw lignin isolated from a biorefinery process. New Journal of Chemistry 5. http
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Ambientais e Florestais
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Florestas
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11249/1/2020%20-%20Rafael%20Eloy%20de%20Souza.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11249/2/2020%20-%20Rafael%20Eloy%20de%20Souza.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11249/3/2020%20-%20Rafael%20Eloy%20de%20Souza.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11249/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
09387667e3f4a368edef77435a43f081
82eedd4cd4e486c28fe2d213061b27f5
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108044183339008