Modelagem do crescimento de truta arco-íris na fase de engorda

Detalhes bibliográficos
Autor(a) principal: Janampa-Sarmiento, Peter Charrie
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/14864
Resumo: A utilização de modelos matemáticos através do uso de equações não lineares é uma importante ferramenta para representar o crescimento animal. No presente estudo foram utilizados quatro modelos não lineares (Gompertz, Von Bertalanffy, Logístico e Brody) para modelar o crescimento em peso e comprimento de truta arco-íris (Oncorhynchus mykiss) durante 98 dias de cultivo na fase de engorda em condições de cultivo comercial. Esses modelos possuem 03 parâmetros: A (peso “g” ou comprimento “cm” na primeira maturação do peixe), B (Índice de precocidade), T (idade “dias” em que a taxa de crescimento é máxima, nos modelos Logistico e Gompertz), K (parâmetro de integração sem interpretação biológica, nos modelos Brody e Bertalanffy). Foram mantidas 900 trutas com peso e comprimento médio inicial e idade pós-eclosão de 122,11 ± 15,6g; 22,42 ± 0,71cm; e 273 dias, respectivamente, em nove tanques de material nobre, sendo que a cada três tanques foram alimentados com 03 rações comerciais diferentes. O ajuste baseou-se na teoria dos Mínimos Quadrados por meio do método iterativo de Marquardt. Os prodecimentos computacionais foram realizados pelo PROC NLIN do SAS. Foram realizados três níveis de analises para peso e comprimento a fim de testar a robusticidade do ajuste dos modelos utilizados: i) análiseindividual de cada tanque), ii) análises de três tanques submetidas a uma mesma ração, e iii) análise que envolve todos os tanques. A avaliação dos modelos ajustados foi procedida por critérios de ajustes: capacidade de convergência, coeficiente de determinação (R2), quadrado médio do resíduo (QMR), critério de Akaike (AIC), desvio médio absoluto dos resíduos(DMA), erro porcentual médio (EPM), a congruência e utilidade das informações geradas pelo modelo ajustado respeito ao crescimento biológico da truta, e examinação e distribuição dos resíduos e resíduos studentizados. Só os modelos Logistico, Gompertz e Bertalanffy convergeram aos dados em peso para cada um dos níveis, dos quais os parâmetros A (≤580,10 - 714,10≥), B (≤0,0196 - 0,0346≥) e T (≤311,80 - 341,40≥) obtidos pelo modelo Logístico atingiram os melhores valores dos avaliadores de ajuste (R2≤0,9460 – 0,8051≥; QMR ≤2889,60 - 1223,80≥; AIC ≤14062,06 - 1391,37≥; DMA ≤35,92 - 24,59≥). Já para dados em comprimento, se observaram casos de não convergência em todos os modelos nos níveis 1 e 2, entretanto os parâmetros A (≤39,63 - 387,30≥), B (≤0,0041 - 0,0144≥) e T (≤255,20 -959,80≥) obtidos pelo modelo Logístico atingiram os melhores valores dos avaliadores de ajuste (R2≤0,9984 – 0,9970≥; QMR ≤2,20 - 1,18≥; AIC ≤1395,20 – 37,48≥; DMA ≤1,08 -0,82≥). Conclui-se que informações em peso tiveram maior capacidade de se ajustar ao modelo Logístico, apesar que esse modelo tem tendência à superestimativa (EPM ≤-1,00 - - 3,78≥) e presença de valores discrepantes. Finalmente, observou-se que os dados em comprimento se apresentaram com um padrão de distribuição demais complexos e, portanto, os dados apresentaram dificuldade em se ajustar em todos os modelos, sendo não recomendáveis para modelar o crescimento em comprimento em truta arco-íris na fase de engorda.
id UFRRJ-1_305ec9c4f9ac82f30e3fa3b62774a68f
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/14864
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Janampa-Sarmiento, Peter CharriePereira, Marcelo Maia9342701451815217http://lattes.cnpq.br/9342701451815217Silva, Vinícius Pimentel1899895022524077http://lattes.cnpq.br/1899895022524077Mansano, Cleber Fernando Menegasso7516566874692253http://lattes.cnpq.br/75165668746922531162869059660247http://lattes.cnpq.br/11628690596602472023-12-22T03:07:12Z2023-12-22T03:07:12Z2018-08-03JANAMPA-SARMIENTO, Peter Charrie. Modelagem do crescimento de truta arco-íris na fase de engorda. 2018. 49 f. Dissertação (Mestrado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2018.https://rima.ufrrj.br/jspui/handle/20.500.14407/14864A utilização de modelos matemáticos através do uso de equações não lineares é uma importante ferramenta para representar o crescimento animal. No presente estudo foram utilizados quatro modelos não lineares (Gompertz, Von Bertalanffy, Logístico e Brody) para modelar o crescimento em peso e comprimento de truta arco-íris (Oncorhynchus mykiss) durante 98 dias de cultivo na fase de engorda em condições de cultivo comercial. Esses modelos possuem 03 parâmetros: A (peso “g” ou comprimento “cm” na primeira maturação do peixe), B (Índice de precocidade), T (idade “dias” em que a taxa de crescimento é máxima, nos modelos Logistico e Gompertz), K (parâmetro de integração sem interpretação biológica, nos modelos Brody e Bertalanffy). Foram mantidas 900 trutas com peso e comprimento médio inicial e idade pós-eclosão de 122,11 ± 15,6g; 22,42 ± 0,71cm; e 273 dias, respectivamente, em nove tanques de material nobre, sendo que a cada três tanques foram alimentados com 03 rações comerciais diferentes. O ajuste baseou-se na teoria dos Mínimos Quadrados por meio do método iterativo de Marquardt. Os prodecimentos computacionais foram realizados pelo PROC NLIN do SAS. Foram realizados três níveis de analises para peso e comprimento a fim de testar a robusticidade do ajuste dos modelos utilizados: i) análiseindividual de cada tanque), ii) análises de três tanques submetidas a uma mesma ração, e iii) análise que envolve todos os tanques. A avaliação dos modelos ajustados foi procedida por critérios de ajustes: capacidade de convergência, coeficiente de determinação (R2), quadrado médio do resíduo (QMR), critério de Akaike (AIC), desvio médio absoluto dos resíduos(DMA), erro porcentual médio (EPM), a congruência e utilidade das informações geradas pelo modelo ajustado respeito ao crescimento biológico da truta, e examinação e distribuição dos resíduos e resíduos studentizados. Só os modelos Logistico, Gompertz e Bertalanffy convergeram aos dados em peso para cada um dos níveis, dos quais os parâmetros A (≤580,10 - 714,10≥), B (≤0,0196 - 0,0346≥) e T (≤311,80 - 341,40≥) obtidos pelo modelo Logístico atingiram os melhores valores dos avaliadores de ajuste (R2≤0,9460 – 0,8051≥; QMR ≤2889,60 - 1223,80≥; AIC ≤14062,06 - 1391,37≥; DMA ≤35,92 - 24,59≥). Já para dados em comprimento, se observaram casos de não convergência em todos os modelos nos níveis 1 e 2, entretanto os parâmetros A (≤39,63 - 387,30≥), B (≤0,0041 - 0,0144≥) e T (≤255,20 -959,80≥) obtidos pelo modelo Logístico atingiram os melhores valores dos avaliadores de ajuste (R2≤0,9984 – 0,9970≥; QMR ≤2,20 - 1,18≥; AIC ≤1395,20 – 37,48≥; DMA ≤1,08 -0,82≥). Conclui-se que informações em peso tiveram maior capacidade de se ajustar ao modelo Logístico, apesar que esse modelo tem tendência à superestimativa (EPM ≤-1,00 - - 3,78≥) e presença de valores discrepantes. Finalmente, observou-se que os dados em comprimento se apresentaram com um padrão de distribuição demais complexos e, portanto, os dados apresentaram dificuldade em se ajustar em todos os modelos, sendo não recomendáveis para modelar o crescimento em comprimento em truta arco-íris na fase de engorda.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorThe mathematical modelling through the use of nonlinear equations is an important tool to represent animal growth. In the present study, four nonlinear models (Gompertz, Von Bertalanffy, Logistic and Brody) were used to model the growth in weight and length of rainbow trout (Oncorhynchus mykiss) during 98 days of culture on the fattening phase. These models have 03 parameters: A (weight "g" or length "cm" in the first maturation of the fish), B (precocity index), T (age "days" where the growth rate is maximum, in Logistic and Gompertz equation), K (integration parameter without biological interpretation, in the Brody and Bertalanffy equation). Nine hundred trouts of average initial weight and length and post hatch age of 122.11 ± 15.6g, 22.42 ± 0.71cm and 273 days, respectively, were maintained in nine similar tanks (100 fish by tank). Each three tanks were fed with 03 different commercial rations. The adjustment was based on the Least Squares theory using the Marquardt iterative method. The computational procedures were performed by PROC NLIN of SAS. Three levels of weight and length analyzes were performed to test the robustness of fit of the models used: i) individual analysis of data growth for each tank), ii) analyzes of data growth from three tanks submitted to the same feed, and iii) analysis involving data growth from all the tanks. Adjustment criteria was: convergence capacity, coefficient of determination (R2 ), mean square of residue (QMR), Akaike criterion (AIC), mean absolute residue deviation (DMA), mean percentage error (EPM), congruence and usefulness of the information generated by the adjusted model regarding the biological growth of the trout, and the examination and distribution of the residues and studentized residues. Only the Logistico, Gompertz and Bertalanffy models converged to weight data for all the levels analyzes. Parameters A (≤580,10 – 714,10≥), B (≤0,0196 – 0,0346≥) and T (≤311,80 – 341,40≥) obtained by the Logistic model reached the best values of the fitters (R2 ≤0,9460 – 0,8051≥ QMR ≤2889,60 –1223,80≥; AIC ≤14062,06 – 1391,37≥; DMA ≤35,92 – 24,59≥). For length data, there were cases of non-convergence in all models at level analyses i and ii. However, the parameters A (≤39,63 - 387,30≥), B (≤0,0041 – 0,0144≥) and T (≤255,20 – 959,80≥) obtained by the Logistic model reached the best values of the fitters (R2≤0,9984 – 0,9970≥; QMR ≤2,20 –1,18≥; AIC ≤1395,20 – 37,48≥; DMA ≤1,08 – 0,82≥) and their calculated growth values were congruent with biological features growth of rainbow trout. Notwithstanding, this model tends to overestimate growth (EPM ≤-1.00 – -3.78≥) and presents discrepant values.We concluded, weight data growth of rainbow trout on fattening phase was more able to fit to the Logistic model. Finally, length data growth have presented more complex distribution pattern and, therefore, difficulties in adjusting by all the models. Then, these models are not recommended for length growth modelling of rainbow trout on fattening phas.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em ZootecniaUFRRJBrasilInstituto de ZootecniaModelagemCrescimentoGompertzLogísticoBertalanffyBrodyModellingGrowth, Logistic, Gompertz, Bertalanffy, Brody.LogisticGompertzBertalanffyBrodyZootecniaModelagem do crescimento de truta arco-íris na fase de engordaFitting nonlinear equations to the growth-out phase of commercial rainbow troutinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisALLAMAN I.; NETO R.; FREITAS R.; FREATO T.; LAGO A.; COSTA A.; LIMA R. Weight and morphometric growth of different strains of tilapia (Oreochromis sp). Revista Brasileira de Zootecnia, v.42, n.5, p.305-311, 2013. AGUILAR, F. A. Modelos matemáticos no lineales como herramienta para evaluar el crecimiento de tilapia roja (Oreochromis spp.) y tilapia nilótica (Oreochromis niloticus Var. Chitralada) alimentadas con dietas peletizadas o extruidas. 2010. 135p, Dissertação (Mestrado em Produção Animal) - Faculdade de Medicina Veterinária e de Zootecnia, Universidade Nacional de Colômbia, Bogotá, 2010. AMANCIO, ALDA LÚCIA DE LIMA; SILVA, JOSÉ HUMBERTO VILAR DA; FERNANDES, JOÃO BATISTA KOCHENBORGER; SAKOMURA, NILVA KAZUE; CRUZ, GEORGE RODRIGO BELTRÃO DA. Use of mathematical models in the study of bodily growth in GIFT strain Nile tilapia. Revista Ciência Agronômica, v.45, n.2, p.257-266. 2014. Disponível em <https://dx.doi.org/10.1590/S1806- 66902014000200005> Acesso em 28 jan. 2018 ARAGÓN-NORIEGA, EUGENIO ALBERTO. Crecimiento individual de camarón blanco Litopenaeus vannamei (Boone, 1931) y camarón azul Litopenaeus stylirostris (Stimpson, 1874) (Decapoda: Penaeidae) con un enfoque multi-modelo. Latin American Journal of Aquatic Research, v.44, n.3, p.480-486, 2016. Disponível em: <https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718- 560X2016000300006&lng=en&tlng=es> Acesso em: 28 jan. 2018 BACA R, IC LAS. A Short History of Mathematical Population Dynamics. 1 ed. London: Springer-Verlag London Ltd, 160p, 2011. BARDSLEY, W. G.; ACKERMAN, R. A.; BUKHARI, N. A.; DEEMING, D. C.; FERGUSON, M. W. Mathematical models for growth in alligator (Alligator mississippiensis) embryos developing at different incubation temperatures. Journal of Anatomy, n.187, p.181–190, 1995. BERNARD, D.; HOLMSTROM, C. Growth and food habits of strains of rainbow trout (Salmo gairdneri; Richardson) in Winterkill Lakes of Western Manitoba. Fisheries and Marine Service Manuscript Report n.1477, pp.20, 1978. BLAIR, J. M.; OSTROVSKY, I.; HICKS, B. J.; PITKETHLEY, R. J.; SCHOLES, P. Growth of rainbow trout (Oncorhynchus mykiss) in warm-temperate lakes: implications for environmental change. Canadian Journal Fishery and Aquatic Science. v.70, n.5, p.815-823, 2013. BERTALANFFY, L. VON. Untersuchungen uber die Gesetzlichkeit des Wachstums. I. Allgemeine Grundlagen der Theorie: Mathematische und physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Wilhelm Roux Arch Entwickl Mech Org, v.131, n.4, p.613-653, 1934. BRODY, S. Bioenergetics and Growth. 1 ed. New York: Rheinhold Publishing, 1023p. 1945 35 BUREAU, B. P.; AZEVEDO, P. A.; TAPIA-SALAZAR, M.; CUZON, G. Pattern and cost of growth and nutrient deposition in fish and shrimp: Potential implications and applications. In: CRUZ -SUÁREZ, L.E.; RICQUE-MARIE, D.; TAPIA-SALAZAR, M.; OLVERA-NOVOA, M.A.; CIVERA-CERECEDO, R.; (Eds.). Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola, Mérida, Yucatán, Mexico. Noviembre, p.19-22. 2000. CAILLIET, G. M.; SMITH, W. D.; MOLLET, H. F.; GOLDMAN K. J. Age and growth studies of chondrichthyan fishes: the need for consistency in terminology, verification, validation, and growth function fitting. Enviromental Biology of Fishes, v.77, p.211-228. 2006. Disponível em: <https://doi.org/10.1007/s10641-006-9105-5> Acesso em: 28 jan. 2018 CARVALHO J. C. Desempenho zootécnico e curvas de crescimento de tilápia do Nilo (Oreochromis niloticus) melhoradas geneticamente para ganho em peso. Dissertação (Mestrado em Ciência Animal), Universidade Federal de Mato Grosso do Sul. Campo Grande, Brazil. 2016. CILBIZ, M.; YALIM, F. B. Growth, Mortality, Recruitment and Yield of Rainbow Trout, Oncorhynchus mykiss Walbaum, 1792 in Karacaören-I Dam Lake, Turkey. Pakistan Journal of Zoology, v.49, p.825-832, 2017. COSTA, A. C.; REIS NETO, R. V.; FREITAS, R. T. F.; FREATO, T. A.; LAGO, A. A.; SANTOS, V. B. Avaliação do crescimento de tilápias de diferentes linhagens através de modelos não lineares. Archivos de Zootecnia, v.58, supl.1 p.561-564, 2009. Disponível em: <http://www.redalyc.org/articulo.oa?id=49515040021> Acesso em: 28 jan. 2018 DAVIDSON, J. W.; KENNEY, P. B.; MANOR, M.; GOOD, C. M.; WEBER, G. M.; AUSSANASUWANNAKUL, A.; TURK, P. J.; WELSH, C.; SUMMERFELT S. T. Growth Performance, Fillet Quality, and Reproductive Maturity of Rainbow Trout (Oncorhynchus mykiss) Cultured to 5 Kilograms within Freshwater Recirculating Systems. Journal of Aquaculture Research and Development, v.5, n.4, pp.9, 2014. DUMAS, A.; FRANCE, J.; BUREAU, D. P. Evidence of three growth stanzas in rainbow trout (Oncorhynchus mykiss) across life stages and adaptation of the thermal-unit growth coe⁄cient. Aquaculture v.267, p.139-146. 2007. DUMAS, A.; FRANCE, J.; BUREAU, D. Modelling growth and body composition in fish nutrition: where have we been and where are we going? Aquaculture Research, v.41, p.161-181, 2010. ESMAEILI, A.; M. H. TARAZKAR. Prediction of shrimp growth using an artificial neural network and regression models. Aquaculture International, v.19, n.4, p.705-713, 2011. ESPITIA-MANRIQUE, C. H.; FERNANDES, J. B. K.; SAKOMURA, N. K.; ARIAS VIGOYA, Á. A.; NASCIMENTO, T. M. T.; SILVA, E. P.; MANSANO, C. F. M. Description of growth and body composition of freshwater angelfish (Pterophyllum scalare) by Gompertz model. Revista Brasileira de Zootecnia, v.46, n.8, p.631-637, 2017. Disponível em: <https://dx.doi.org/10.1590/s1806-92902017000800001> Acesso em: 28 jan. 2018. 36 FAO - Fisheries and Aquaculture Information and Statistics Branch. 2018. Disponível em:<http://www.fao.org/figis/servlet/TabLandArea?tb_ds=Aquaculture&tb_mode=TABL E&tb_act=SELECT&tb_grp=COUNTRY> 07 de junho de 2018. FAO - Cultured Aquatic Species Information Programme. Oncorhynchus mykiss. Cultured Aquatic Species Information Programme. Text by Cowx, I. G. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 15 June 2005. [Cited 20 September 2018]. FIALHO, FLAVIO BELLO. 1999, Interpretação da curva de crescimento de Gompertz. Embrapa Suínos e Aves, Comunicado Técnico n.237, p.1–4, 1999. FITZHUGH H. A. Analysis of growth curves and strategies for altering their shape. Journal of Animal Science, v.42, n.4, p.1036-1051, 1976. FRANCE J.; DIJKSTRA J.; DHANOA M. S. Growth functions and their application in animal science. Annales de zootechnie, INRA/EDP Sciences, v.45, (Supl1), p.165-174, 1996. FREITAS, ALFREDO RIBEIRO DE. Curva de Crescimento na Produção animal. Revista Brasileira de Zootecnia, v.34, n.3, p.786-795, 2005. GOMIERO, J. S. G.; FREITAS, R. T. F.; SANTOS, V. B.; SILVA, F. F.; RODRIGUES, P. B.; LOGATO, P. V. R. Curvas de crescimento morfométrico de piracanjuba (Brycon orbignyanus). Ciência e Agrotecnologia, v.33, n.3, p.882-889, 2009. GOMPERTZ, B. On the nature of the function expressive of the law of human mortality and on a new model of determining life contingencies. Philosophical Transaction of the Royal Society, v.115, p.513–585, 1825. GOONEWARDENE, L. A.; BERG, R. T.; HARDIN, R. T. A. growth study of beef cattle. Canadian Journal of Animal Science, Ottawa, v.61, p.1041-1048, 1981. GRIMM, K. J.; RAM, N.; HAMAGAMI, F. Nonlinear Growth Curves in Developmental Research. Child Development, 82: 1357–1371, 2011. GUERRERO C. A.; LAFARGA A. M.; CATALDO D. H.; QUIRÓS R. Evaluación del rendimiento pesquero potencial de la República Argentina. I. Datos. Informe Técnico Nro 11, Dpto. Aguas Continentales, INIDEP, 1988 HERNANDEZ-LLLAMAS A.; RATKOWSKY D. A. Growth of fishes, crustaceans and molluscs: estimation of the von Bertalanffy, Logistic, Gompertz and Richards curves and a new growth model. Marine Ecology Progress Series, v.282, p.237–244. 2004. IBGE - Pesquisa pecuária 2016. Instituto Brasileiro de Geografia e estatística. Disponível em: https://cidades.ibge.gov.br/brasil/mg/pesquisa/18/16459> Acesso em: 28 de fev de 2018. IGFA. World Records. The International Game Fish Association. 2018. Disponível em: http://wrec.igfa.org/WRecDetail.aspx?uid=34448&cn=Trout,%20rainbow#.WwYKVO7t7 IU Acesso em: 28 de fev de 2018. JOBLING, MALCOLM. The thermal growth coefficient (TGC) model of fish growth: a cautionary note. Aquaculture Research, v.34, p.581-584, 2003. 37 KATSANEVAKIS, S.; MARAVELIAS, C. D. Modelling fish growth: multi‐model inference as a better alternative to a priori using von Bertalanffy equation. Fish and Fisheries, v.9, p.178-187, 2008. KIRKWOOD, T. B. L. Deciphering death: a commentary on Gompertz (1825) ‘ n the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’. Philosophical Transasctions of the Royal Society. Biological Sciences. v.370, pp.8 2015. Disponível em: <http://dx.doi.org/10.1098/rstb.2014.0379> Acesso em: 28 de jan 2018. KOYA, P. R.; GOSHU A. T. Generalized Mathematical Model for Biological Growths. Open Journal of Modelling and Simulation, v.1, p.42-53, 2013. LAWRENCE, T. L. J.; FOWLER, V. R. Growth of Farm Animals. 2 ed. Wallingford: CAB International. 346p. 2002. LAZZAROTTO, H.; CARAMASCHI, É. P. Introdução da Truta no Brasil e na bacia do rio Macaé, Estado do Rio de Janeiro: Histórico, Legislação e Perspectivas. Oecologia Brasiliensis,v.13, n.4 p.649-659, 2009. LEMONTE, A. J. Diagnóstico em regressão normal linear: princípios e aplicação. Revista Brasileira de Biometria, v.26, p.07-26, 2008. LÔBO, R. N. B.; MARTINS F. R. Avaliação de Métodos de Padronização dos Pesos Corporais às Idades de 205, 365 e 550 Dias. Revista Brasileira de Zootecnia, v.31, n.4, p.1695-1706. 2002. Disponível em: <https://dx.doi.org/10.1590/S1516- 35982002000700012> Acesso em: 28 de jan 2018. LÓPEZ, S. Non-linear Functions in Animal Nutrition. In: Mathematical Modelling in Animal Nutrition, J. France and E. Kebreab. 1ed, CAB International. pp.640, 2008. LUGERT, V.; TETENS J.; THALLER G.; SCHULZ C.; KRIETER J.; Finding suitable growth models for turbot (Scophthalmus maximus L.) in aquaculture 1 (length application). Aquaculture Research, p.1–13. 2015. LUGERT, V.; THALLER, G.; TETENS, J.; SCHULZ, C.; KRIETER, J. A review on fish growth calculation: multiple functions in fish production and their specific application, Reviews in Aquaculture, v.6, p.1–13, 2014. Disponível em: <http://dx.doi.org/10.1111/raq.1207> 28 de janeiro de 2018. MACHADO, T. M. Tecnologia e viabilidade econômica do sucedâneo de caviar das ovas de truta arco-íris (Oncorhynchus mykiss). 72 p. Dissertação (Mestrado. Instituto de Pesca, APTA). 2013. Disponível em: <http://www.pesca.sp.gov.br/dissertacoes_pg.php> Acesso em: 4 de junho. 2018. MACHADO, T.; RIGOLINO, M. M.; TABATA, Y. A. Manejo reprodutivo da truta arco-íris. Instituto de Pesca de São Paulo. 2007. Disponível em: <http:// ftp://ftp.sp.gov.br/ftppesca/truta_arco-iris.pdf> Acesso em: 4 de junho de 2018. MALHADO, C. H. M.; CARNEIRO, P. L. S.; AFFONSO, P. R. A. M.; SOUZA, A. A. O.; SARMENTO, J. L. R. Growth curves in Dorper sheep crossed with the local Brazilian breeds, Morada Nova, Rabo Largo, and Santa Inês, Small Ruminant Research, v.84, n.1–3, p.16-21, 2009. Disponível em: < https://doi.org/10.1016/j.smallrumres.2009.04.006> 28 de janeiro de 2018. 38 MANSANO, C. F. M; MACENTE, B. I.; KHAN, K. U.; DO NASCIMENTO, T. M.T.; DA SILVA, E.P.; SAKOMURA, N. K.; FERNANDES, J. B. K. Chapter 2: Morphometric growth characteristics and body composition of fish and amphibians. New Insights into Morphometry Studies. In: Pares-Casanova PM, ed. London. p.7-28, 2017. MANSANO, C.; STÉFANI, M.; PEREIRA, M.; MACENTE, B. Non-linear growth models for bullfrog tadpoles. Ciência e Agrotecnologia, Lavras, v. 36, n. 4, p. 454-462, 2012. MARQUARDT, D. W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, v.11, n.2, p.431-441, 1963. MDIC. Dados do Comércio Exterior. Brasil: Ministério do Desenvolvimento, da Indústria e Comércio Exterior, Junho 2018. Anual. Disponível em: <http://comexstat.mdic.gov.br/es/home> Acesso em: 07 de junho de 2018. ORTEGA-LIZÁRRAGA, G. G.; RODRÍGUEZ-DOMÍNGUEZ, G.; PÉREZ GONZÁLEZ, R.; CASTAÑEDA-LOMAS, N.; ARAGÓN-NORIEGA, E. A. Estimation of growth parameters of male blue crabs Callinectes arcuatus (Brachyura: Portunidae) from the Gulf of California using the Schnute model. Latin American Journal of Aquatic Research, v.44 n.2, p.371-379, 2016. Disponível em: <https://dx.doi.org/10.3856/vol44-issue2-fulltext-18> Acesso em: 28 de janeiro de 2018. PANIK, M. J. Growth Curve Modeling: Theory and Applications. 1 ed. John Wiley & Sons, Inc, Hoboken, NJ. p.454, 2014. PAWLAK, C.; HANUMARA, R.C. A comparison of nonlinear growth models for fisheries. Fishery Research (Amsterdam), v.11, p.143-154, 1991. PEARL, R. Biology of Population Growth, 1 ed, Knopf, New York, p.260, 1930. PEREIRA, M. M.; MANSANO, C. F. M.; SILVA, E. P.; STÉFANI, M. V. Growth in weight and of some tissues in the bullfrog: fitting nonlinear models during the fattening phase. Ciência e Agrotecnologia, v.38 n.6, p.598-606, 2014. Disponível em: <https://dx.doi.org/10.1590/S1413-70542014000600009> Acesso em: 28 de janeiro de 2018. POBLETE, A. T. S. Life history of rainbow trout and considerations for introducing steelhead into southern Chile. Dissertação (Master Thesis in Fisheries and Wildlife). Oregon State University. USA. 1988. Disponível em: <http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/v405sd18q> Acesso em: 28 de jan de 2018. POWELL, C.; DUMAS, S.; BUREAU, D.; HOOK, S.; FRANCE, J. Mathematical descriptions of indeterminate growth, Journal of Theoretical Biology, pp.37 2017. PUTTER, A. Studien Uber physiologische Ahnlichkeit. VI. Wachstumsahnlichkeiten. Pftig. Arch. ges. Physiol. v.180, p.298-340, 1920. QUISPE, P. C. Determinación del crecimiento de la trucha arco iris Oncorhynchus mykiss cultivada extensivamente en la laguna Suches - Tacna desde 1996 a 2005, mediante modelo Von Bertalanffy. Universidad Nacional Jorge Basadre Grohmann, 2008. 39 RAWLINGS J. O.; PANTULA S. G.; DICKEY D. A. Applied Regression Analysis. 2 ed. New York:Springer-Verlag, p.659, 1998. RODRIGUES, A.; CHAVES, L. M.; SILVA, F. F.; ZEVIANI, W. M. Utilização da regressão isotônica em estudos de curvas de crescimento. Revista Brasileira de Biometria, São Paulo, v.28, n.4, p.85-101, 2010. RODRIGUES, A. P. O.; LIMA, A. F.; ALVES, A. L.; ROSA, D. K.; TORATI, L. S.; SANTOS, V. R. V. Piscicultura de água doce: multiplicando conhecimento. 1º ed. Brasília: Embrapa. 440p. 2013. RODRIGUES, M. L.; LIMA, S. L.; MOURA, O. M.; AGOSTINHO, C. A.; SILVA, J. H. V.; CRUZ, G. R. B.; CAMPOS, V. M.; CASALI, A. P.; MENDES, R. R. B.; ALBUQUERQUE, A. G. Curva de crescimento em rã-touro na fase de recria. Archivos de Zootecnia. v.56, n.214 p.125-136, 2007. ROGERS-BENNETT, L.; ROGERS, D. W.; BENNETT, W.A.; EBERT, T.A.; Modeling red sea urchin (Strongylocentrotus franciscanus) growth using six growth functions. Fisheries Bulletin, v.101, p.614–626, 2003. ROSA, M. D.; SILVA, J. A.; SILVA, A. L.; Modelling growth in cultures of Oreochromis niloticus (L.) and Cyprinus carpio L. in Pernambuco, Brazil. Aquaculture Research, v.28, p.199-204, 1997. SABETIAN, M.; DELSHAD, S. T.; MOINI, S.; ISLAMI, H.R.; MOTALEBI, A. Identification of fatty acid content, amino acid profile and proximate composition in rainbow trout (Oncorhynchus mykiss). Journal of American Science. v.8, p.670-677, 2012. SALEM, M.; MANOR, M.; AUSSANASUWANNAKUL, A.; KENNEY, B.; WEBER, G.; YAO, J. Effect of sexual maturation on muscle gene expression of rainbow trout: RNA-Seq approach. Physiological Reports, v.1, n.5, 15p, 2013. SANTOS, V. B.; MARECO, E. A.; SILVA, M. D. P. Growth curves of Nile tilapia (Oreochromis niloticus) strains cultivated at different temperatures. Acta Scientiarum, Animal Science, Maringá, v.35, n.3, p.235-242, 2013. SANTOS, V.; FREITAS, R.; SILVA, F.; FREATO, T. Avaliação de curvas de crescimento morfométrico de linhagens de tilápia do nilo (Oreochromis niloticus). Ciência e Agrotecnologia, Lavras, v.31, n.5, p.1486-1492, 2007. SAS. Institute Inc. SAS/ACCESS 9.4 interfaces to ADABAS: Reference. SAS Institute Inc., Cary, NC; 2013 SARMENTO, J. L. R.; REGAZZI, A. J.; SOUZA, W. H.; TORRES, R. A.; BREDA, F. C.; MENEZES, G. R. O. Analysis of the growth curve of Santa Ines sheep. Revista Brasileira de Zootecnia, v.35, p.435-442, 2006. SCHERR, C.; GAGLIARDI, A.; MINAME, M.; SANTOS, R. Fatty Acid and Cholesterol Concentrations in Usually Consumed Fish in Brazil. Arquivos Brasileiros de Cardiologia, v.104 n.2, p.152-158, 2014. Disponível em: <https://dx.doi.org/10.5935/abc.20140176> Acesso em: 28 de jan. de 2018. SEBRAE. Aquicultura no Brasil. Série estudos mercadológicos. Serviço brasileiro de apoio às micro e pequenas empresas. 2015. 40 SILLIMAN, R. P. 1969. Comparison between Gompertz and von Bertalanffy Curves for Expressing Growth in Weight of Fishes. Journal of the Fisheries Research Board of Canada, v.26 n.1, p.161-165, 1969. Disponível em: <https://doi.org/10.1139/f69-017> Acesso em: 28 de janeiro de 2018. SILVA, T.; SANTOS, L.; SILVA, L.; MICHELATO, M.; FURUYA, V.; FURUYA, W. Length–weight relationship and prediction equations of body composition for growing finishing cage-farmed Nile tilapia. Revista Brasileira de Zootecnia, v.44, n.4, p.133-137, 2015. SHAH, M.A. Stochastic logistic model for fish growth, Open Journal of Statistics, v.4, p.11–18, 2014. Disponível em: http://dx.doi.org/10.4236/ojs.2014.41002 Acesso em: 28 de jan. de 2018. SLOAT, M. R.; REEVES, G. H. Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories. Canadian Journal of Fisheries and Aquatic Sciences, v.71, p.491–501, 2014. SOUSA, J.; JOSÉ, A. G.; MARLON S.; CARVALHO, P. G. S.; ROCHA, L. G.; CAMPECHE, D. F. B. Mathematical modeling applied to the growth of tilapia in net cages in the sub middle of the São Francisco river. Engenharia Agrícola, v.34, n.5, p.1001-1011, 2014. Disponível em: <https://dx.doi.org/10.1590/S0100-69162014000500019> Acesso em: 28 de jan. de 2018. TIAN, X.; LEUNG, P.S.; HOCHMAN, E. Shrimp growth functions and their economics implications. Aquaculture Engineering, v.12, p.81–96, 1993. TJØRVE, K. M. C.; TJØRVE, E. Shapes and functions of bird-growth models: how to characterize chick postnatal growth. Zoology, v.113, n.6, p.326-333, 2010. Disponível em: <https://doi.org/10.1016/j.zool.2010.05.003> 28 de jan de 2018. TJØRVE, K. M. C.; TJØRVE, E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE v.12, n.6, 17p, 2017. Disponível em: <https://doi.org/10.1371/journal.pone.0178691> Acesso em: 28 de jan. de 2018. WIDOWSSON, E. M. Chapter 1: Definitions of growth. In Growth in Animals: Studies in the Agricultural and Food Sciences By Lawrence T. L. J. 1 ed. 316p, 1980. YU, RUN; LEUNG, PING SUN. A Bayesian hierarchical model for modeling white shrimp (Litopenaeus vannamei) growth in a commercial shrimp farm, Aquaculture, v.306, n.1–4, p.205-210, 2010. YUN, B.; YU, X.; XUE, M.; LIU, Y.; WANG, J.; WU, X.; HAN F.; LIANG X. Effects of dietary protein levels on the long-term growth response and fitting growth models of gibel carp (Carassius auratus gibelio), Journal of Animal Nutrition, v.1, n.2, p.70-76, 2015.https://tede.ufrrj.br/retrieve/66519/2018%20-%20Peter%20Charrie%20Janampa%20Sarmiento.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/4979Submitted by Leticia Schettini (leticia@ufrrj.br) on 2021-08-30T14:54:26Z No. of bitstreams: 1 2018 - Peter Charrie Janampa Sarmiento.pdf: 1407782 bytes, checksum: 4ad7a98574708b3c2706f56809a8ce38 (MD5)Made available in DSpace on 2021-08-30T14:54:26Z (GMT). No. of bitstreams: 1 2018 - Peter Charrie Janampa Sarmiento.pdf: 1407782 bytes, checksum: 4ad7a98574708b3c2706f56809a8ce38 (MD5) Previous issue date: 2018-08-03info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2018 - Peter Charrie Janampa Sarmiento.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14864/1/2018%20-%20Peter%20Charrie%20Janampa%20Sarmiento.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2018 - Peter Charrie Janampa Sarmiento.pdf.txtExtracted Texttext/plain116017https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14864/2/2018%20-%20Peter%20Charrie%20Janampa%20Sarmiento.pdf.txt72a7391fe13d754dfd403c9c51499d76MD52ORIGINAL2018 - Peter Charrie Janampa Sarmiento.pdf2018 - Peter Charrie Janampa Sarmientoapplication/pdf1407782https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14864/3/2018%20-%20Peter%20Charrie%20Janampa%20Sarmiento.pdf4ad7a98574708b3c2706f56809a8ce38MD53LICENSElicense.txttext/plain2165https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14864/4/license.txtbd3efa91386c1718a7f26a329fdcb468MD5420.500.14407/148642023-12-22 00:07:13.014oai:rima.ufrrj.br:20.500.14407/14864Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T03:07:13Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Modelagem do crescimento de truta arco-íris na fase de engorda
dc.title.alternative.eng.fl_str_mv Fitting nonlinear equations to the growth-out phase of commercial rainbow trout
title Modelagem do crescimento de truta arco-íris na fase de engorda
spellingShingle Modelagem do crescimento de truta arco-íris na fase de engorda
Janampa-Sarmiento, Peter Charrie
Modelagem
Crescimento
Gompertz
Logístico
Bertalanffy
Brody
Modelling
Growth, Logistic, Gompertz, Bertalanffy, Brody.
Logistic
Gompertz
Bertalanffy
Brody
Zootecnia
title_short Modelagem do crescimento de truta arco-íris na fase de engorda
title_full Modelagem do crescimento de truta arco-íris na fase de engorda
title_fullStr Modelagem do crescimento de truta arco-íris na fase de engorda
title_full_unstemmed Modelagem do crescimento de truta arco-íris na fase de engorda
title_sort Modelagem do crescimento de truta arco-íris na fase de engorda
author Janampa-Sarmiento, Peter Charrie
author_facet Janampa-Sarmiento, Peter Charrie
author_role author
dc.contributor.author.fl_str_mv Janampa-Sarmiento, Peter Charrie
dc.contributor.advisor1.fl_str_mv Pereira, Marcelo Maia
dc.contributor.advisor1ID.fl_str_mv 9342701451815217
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9342701451815217
dc.contributor.referee1.fl_str_mv Silva, Vinícius Pimentel
dc.contributor.referee1ID.fl_str_mv 1899895022524077
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/1899895022524077
dc.contributor.referee2.fl_str_mv Mansano, Cleber Fernando Menegasso
dc.contributor.referee2ID.fl_str_mv 7516566874692253
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/7516566874692253
dc.contributor.authorID.fl_str_mv 1162869059660247
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1162869059660247
contributor_str_mv Pereira, Marcelo Maia
Silva, Vinícius Pimentel
Mansano, Cleber Fernando Menegasso
dc.subject.por.fl_str_mv Modelagem
Crescimento
Gompertz
Logístico
Bertalanffy
Brody
topic Modelagem
Crescimento
Gompertz
Logístico
Bertalanffy
Brody
Modelling
Growth, Logistic, Gompertz, Bertalanffy, Brody.
Logistic
Gompertz
Bertalanffy
Brody
Zootecnia
dc.subject.eng.fl_str_mv Modelling
Growth, Logistic, Gompertz, Bertalanffy, Brody.
Logistic
Gompertz
Bertalanffy
Brody
dc.subject.cnpq.fl_str_mv Zootecnia
description A utilização de modelos matemáticos através do uso de equações não lineares é uma importante ferramenta para representar o crescimento animal. No presente estudo foram utilizados quatro modelos não lineares (Gompertz, Von Bertalanffy, Logístico e Brody) para modelar o crescimento em peso e comprimento de truta arco-íris (Oncorhynchus mykiss) durante 98 dias de cultivo na fase de engorda em condições de cultivo comercial. Esses modelos possuem 03 parâmetros: A (peso “g” ou comprimento “cm” na primeira maturação do peixe), B (Índice de precocidade), T (idade “dias” em que a taxa de crescimento é máxima, nos modelos Logistico e Gompertz), K (parâmetro de integração sem interpretação biológica, nos modelos Brody e Bertalanffy). Foram mantidas 900 trutas com peso e comprimento médio inicial e idade pós-eclosão de 122,11 ± 15,6g; 22,42 ± 0,71cm; e 273 dias, respectivamente, em nove tanques de material nobre, sendo que a cada três tanques foram alimentados com 03 rações comerciais diferentes. O ajuste baseou-se na teoria dos Mínimos Quadrados por meio do método iterativo de Marquardt. Os prodecimentos computacionais foram realizados pelo PROC NLIN do SAS. Foram realizados três níveis de analises para peso e comprimento a fim de testar a robusticidade do ajuste dos modelos utilizados: i) análiseindividual de cada tanque), ii) análises de três tanques submetidas a uma mesma ração, e iii) análise que envolve todos os tanques. A avaliação dos modelos ajustados foi procedida por critérios de ajustes: capacidade de convergência, coeficiente de determinação (R2), quadrado médio do resíduo (QMR), critério de Akaike (AIC), desvio médio absoluto dos resíduos(DMA), erro porcentual médio (EPM), a congruência e utilidade das informações geradas pelo modelo ajustado respeito ao crescimento biológico da truta, e examinação e distribuição dos resíduos e resíduos studentizados. Só os modelos Logistico, Gompertz e Bertalanffy convergeram aos dados em peso para cada um dos níveis, dos quais os parâmetros A (≤580,10 - 714,10≥), B (≤0,0196 - 0,0346≥) e T (≤311,80 - 341,40≥) obtidos pelo modelo Logístico atingiram os melhores valores dos avaliadores de ajuste (R2≤0,9460 – 0,8051≥; QMR ≤2889,60 - 1223,80≥; AIC ≤14062,06 - 1391,37≥; DMA ≤35,92 - 24,59≥). Já para dados em comprimento, se observaram casos de não convergência em todos os modelos nos níveis 1 e 2, entretanto os parâmetros A (≤39,63 - 387,30≥), B (≤0,0041 - 0,0144≥) e T (≤255,20 -959,80≥) obtidos pelo modelo Logístico atingiram os melhores valores dos avaliadores de ajuste (R2≤0,9984 – 0,9970≥; QMR ≤2,20 - 1,18≥; AIC ≤1395,20 – 37,48≥; DMA ≤1,08 -0,82≥). Conclui-se que informações em peso tiveram maior capacidade de se ajustar ao modelo Logístico, apesar que esse modelo tem tendência à superestimativa (EPM ≤-1,00 - - 3,78≥) e presença de valores discrepantes. Finalmente, observou-se que os dados em comprimento se apresentaram com um padrão de distribuição demais complexos e, portanto, os dados apresentaram dificuldade em se ajustar em todos os modelos, sendo não recomendáveis para modelar o crescimento em comprimento em truta arco-íris na fase de engorda.
publishDate 2018
dc.date.issued.fl_str_mv 2018-08-03
dc.date.accessioned.fl_str_mv 2023-12-22T03:07:12Z
dc.date.available.fl_str_mv 2023-12-22T03:07:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv JANAMPA-SARMIENTO, Peter Charrie. Modelagem do crescimento de truta arco-íris na fase de engorda. 2018. 49 f. Dissertação (Mestrado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2018.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/14864
identifier_str_mv JANAMPA-SARMIENTO, Peter Charrie. Modelagem do crescimento de truta arco-íris na fase de engorda. 2018. 49 f. Dissertação (Mestrado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2018.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/14864
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ALLAMAN I.; NETO R.; FREITAS R.; FREATO T.; LAGO A.; COSTA A.; LIMA R. Weight and morphometric growth of different strains of tilapia (Oreochromis sp). Revista Brasileira de Zootecnia, v.42, n.5, p.305-311, 2013. AGUILAR, F. A. Modelos matemáticos no lineales como herramienta para evaluar el crecimiento de tilapia roja (Oreochromis spp.) y tilapia nilótica (Oreochromis niloticus Var. Chitralada) alimentadas con dietas peletizadas o extruidas. 2010. 135p, Dissertação (Mestrado em Produção Animal) - Faculdade de Medicina Veterinária e de Zootecnia, Universidade Nacional de Colômbia, Bogotá, 2010. AMANCIO, ALDA LÚCIA DE LIMA; SILVA, JOSÉ HUMBERTO VILAR DA; FERNANDES, JOÃO BATISTA KOCHENBORGER; SAKOMURA, NILVA KAZUE; CRUZ, GEORGE RODRIGO BELTRÃO DA. Use of mathematical models in the study of bodily growth in GIFT strain Nile tilapia. Revista Ciência Agronômica, v.45, n.2, p.257-266. 2014. Disponível em <https://dx.doi.org/10.1590/S1806- 66902014000200005> Acesso em 28 jan. 2018 ARAGÓN-NORIEGA, EUGENIO ALBERTO. Crecimiento individual de camarón blanco Litopenaeus vannamei (Boone, 1931) y camarón azul Litopenaeus stylirostris (Stimpson, 1874) (Decapoda: Penaeidae) con un enfoque multi-modelo. Latin American Journal of Aquatic Research, v.44, n.3, p.480-486, 2016. Disponível em: <https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718- 560X2016000300006&lng=en&tlng=es> Acesso em: 28 jan. 2018 BACA R, IC LAS. A Short History of Mathematical Population Dynamics. 1 ed. London: Springer-Verlag London Ltd, 160p, 2011. BARDSLEY, W. G.; ACKERMAN, R. A.; BUKHARI, N. A.; DEEMING, D. C.; FERGUSON, M. W. Mathematical models for growth in alligator (Alligator mississippiensis) embryos developing at different incubation temperatures. Journal of Anatomy, n.187, p.181–190, 1995. BERNARD, D.; HOLMSTROM, C. Growth and food habits of strains of rainbow trout (Salmo gairdneri; Richardson) in Winterkill Lakes of Western Manitoba. Fisheries and Marine Service Manuscript Report n.1477, pp.20, 1978. BLAIR, J. M.; OSTROVSKY, I.; HICKS, B. J.; PITKETHLEY, R. J.; SCHOLES, P. Growth of rainbow trout (Oncorhynchus mykiss) in warm-temperate lakes: implications for environmental change. Canadian Journal Fishery and Aquatic Science. v.70, n.5, p.815-823, 2013. BERTALANFFY, L. VON. Untersuchungen uber die Gesetzlichkeit des Wachstums. I. Allgemeine Grundlagen der Theorie: Mathematische und physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Wilhelm Roux Arch Entwickl Mech Org, v.131, n.4, p.613-653, 1934. BRODY, S. Bioenergetics and Growth. 1 ed. New York: Rheinhold Publishing, 1023p. 1945 35 BUREAU, B. P.; AZEVEDO, P. A.; TAPIA-SALAZAR, M.; CUZON, G. Pattern and cost of growth and nutrient deposition in fish and shrimp: Potential implications and applications. In: CRUZ -SUÁREZ, L.E.; RICQUE-MARIE, D.; TAPIA-SALAZAR, M.; OLVERA-NOVOA, M.A.; CIVERA-CERECEDO, R.; (Eds.). Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola, Mérida, Yucatán, Mexico. Noviembre, p.19-22. 2000. CAILLIET, G. M.; SMITH, W. D.; MOLLET, H. F.; GOLDMAN K. J. Age and growth studies of chondrichthyan fishes: the need for consistency in terminology, verification, validation, and growth function fitting. Enviromental Biology of Fishes, v.77, p.211-228. 2006. Disponível em: <https://doi.org/10.1007/s10641-006-9105-5> Acesso em: 28 jan. 2018 CARVALHO J. C. Desempenho zootécnico e curvas de crescimento de tilápia do Nilo (Oreochromis niloticus) melhoradas geneticamente para ganho em peso. Dissertação (Mestrado em Ciência Animal), Universidade Federal de Mato Grosso do Sul. Campo Grande, Brazil. 2016. CILBIZ, M.; YALIM, F. B. Growth, Mortality, Recruitment and Yield of Rainbow Trout, Oncorhynchus mykiss Walbaum, 1792 in Karacaören-I Dam Lake, Turkey. Pakistan Journal of Zoology, v.49, p.825-832, 2017. COSTA, A. C.; REIS NETO, R. V.; FREITAS, R. T. F.; FREATO, T. A.; LAGO, A. A.; SANTOS, V. B. Avaliação do crescimento de tilápias de diferentes linhagens através de modelos não lineares. Archivos de Zootecnia, v.58, supl.1 p.561-564, 2009. Disponível em: <http://www.redalyc.org/articulo.oa?id=49515040021> Acesso em: 28 jan. 2018 DAVIDSON, J. W.; KENNEY, P. B.; MANOR, M.; GOOD, C. M.; WEBER, G. M.; AUSSANASUWANNAKUL, A.; TURK, P. J.; WELSH, C.; SUMMERFELT S. T. Growth Performance, Fillet Quality, and Reproductive Maturity of Rainbow Trout (Oncorhynchus mykiss) Cultured to 5 Kilograms within Freshwater Recirculating Systems. Journal of Aquaculture Research and Development, v.5, n.4, pp.9, 2014. DUMAS, A.; FRANCE, J.; BUREAU, D. P. Evidence of three growth stanzas in rainbow trout (Oncorhynchus mykiss) across life stages and adaptation of the thermal-unit growth coe⁄cient. Aquaculture v.267, p.139-146. 2007. DUMAS, A.; FRANCE, J.; BUREAU, D. Modelling growth and body composition in fish nutrition: where have we been and where are we going? Aquaculture Research, v.41, p.161-181, 2010. ESMAEILI, A.; M. H. TARAZKAR. Prediction of shrimp growth using an artificial neural network and regression models. Aquaculture International, v.19, n.4, p.705-713, 2011. ESPITIA-MANRIQUE, C. H.; FERNANDES, J. B. K.; SAKOMURA, N. K.; ARIAS VIGOYA, Á. A.; NASCIMENTO, T. M. T.; SILVA, E. P.; MANSANO, C. F. M. Description of growth and body composition of freshwater angelfish (Pterophyllum scalare) by Gompertz model. Revista Brasileira de Zootecnia, v.46, n.8, p.631-637, 2017. Disponível em: <https://dx.doi.org/10.1590/s1806-92902017000800001> Acesso em: 28 jan. 2018. 36 FAO - Fisheries and Aquaculture Information and Statistics Branch. 2018. Disponível em:<http://www.fao.org/figis/servlet/TabLandArea?tb_ds=Aquaculture&tb_mode=TABL E&tb_act=SELECT&tb_grp=COUNTRY> 07 de junho de 2018. FAO - Cultured Aquatic Species Information Programme. Oncorhynchus mykiss. Cultured Aquatic Species Information Programme. Text by Cowx, I. G. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 15 June 2005. [Cited 20 September 2018]. FIALHO, FLAVIO BELLO. 1999, Interpretação da curva de crescimento de Gompertz. Embrapa Suínos e Aves, Comunicado Técnico n.237, p.1–4, 1999. FITZHUGH H. A. Analysis of growth curves and strategies for altering their shape. Journal of Animal Science, v.42, n.4, p.1036-1051, 1976. FRANCE J.; DIJKSTRA J.; DHANOA M. S. Growth functions and their application in animal science. Annales de zootechnie, INRA/EDP Sciences, v.45, (Supl1), p.165-174, 1996. FREITAS, ALFREDO RIBEIRO DE. Curva de Crescimento na Produção animal. Revista Brasileira de Zootecnia, v.34, n.3, p.786-795, 2005. GOMIERO, J. S. G.; FREITAS, R. T. F.; SANTOS, V. B.; SILVA, F. F.; RODRIGUES, P. B.; LOGATO, P. V. R. Curvas de crescimento morfométrico de piracanjuba (Brycon orbignyanus). Ciência e Agrotecnologia, v.33, n.3, p.882-889, 2009. GOMPERTZ, B. On the nature of the function expressive of the law of human mortality and on a new model of determining life contingencies. Philosophical Transaction of the Royal Society, v.115, p.513–585, 1825. GOONEWARDENE, L. A.; BERG, R. T.; HARDIN, R. T. A. growth study of beef cattle. Canadian Journal of Animal Science, Ottawa, v.61, p.1041-1048, 1981. GRIMM, K. J.; RAM, N.; HAMAGAMI, F. Nonlinear Growth Curves in Developmental Research. Child Development, 82: 1357–1371, 2011. GUERRERO C. A.; LAFARGA A. M.; CATALDO D. H.; QUIRÓS R. Evaluación del rendimiento pesquero potencial de la República Argentina. I. Datos. Informe Técnico Nro 11, Dpto. Aguas Continentales, INIDEP, 1988 HERNANDEZ-LLLAMAS A.; RATKOWSKY D. A. Growth of fishes, crustaceans and molluscs: estimation of the von Bertalanffy, Logistic, Gompertz and Richards curves and a new growth model. Marine Ecology Progress Series, v.282, p.237–244. 2004. IBGE - Pesquisa pecuária 2016. Instituto Brasileiro de Geografia e estatística. Disponível em: https://cidades.ibge.gov.br/brasil/mg/pesquisa/18/16459> Acesso em: 28 de fev de 2018. IGFA. World Records. The International Game Fish Association. 2018. Disponível em: http://wrec.igfa.org/WRecDetail.aspx?uid=34448&cn=Trout,%20rainbow#.WwYKVO7t7 IU Acesso em: 28 de fev de 2018. JOBLING, MALCOLM. The thermal growth coefficient (TGC) model of fish growth: a cautionary note. Aquaculture Research, v.34, p.581-584, 2003. 37 KATSANEVAKIS, S.; MARAVELIAS, C. D. Modelling fish growth: multi‐model inference as a better alternative to a priori using von Bertalanffy equation. Fish and Fisheries, v.9, p.178-187, 2008. KIRKWOOD, T. B. L. Deciphering death: a commentary on Gompertz (1825) ‘ n the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’. Philosophical Transasctions of the Royal Society. Biological Sciences. v.370, pp.8 2015. Disponível em: <http://dx.doi.org/10.1098/rstb.2014.0379> Acesso em: 28 de jan 2018. KOYA, P. R.; GOSHU A. T. Generalized Mathematical Model for Biological Growths. Open Journal of Modelling and Simulation, v.1, p.42-53, 2013. LAWRENCE, T. L. J.; FOWLER, V. R. Growth of Farm Animals. 2 ed. Wallingford: CAB International. 346p. 2002. LAZZAROTTO, H.; CARAMASCHI, É. P. Introdução da Truta no Brasil e na bacia do rio Macaé, Estado do Rio de Janeiro: Histórico, Legislação e Perspectivas. Oecologia Brasiliensis,v.13, n.4 p.649-659, 2009. LEMONTE, A. J. Diagnóstico em regressão normal linear: princípios e aplicação. Revista Brasileira de Biometria, v.26, p.07-26, 2008. LÔBO, R. N. B.; MARTINS F. R. Avaliação de Métodos de Padronização dos Pesos Corporais às Idades de 205, 365 e 550 Dias. Revista Brasileira de Zootecnia, v.31, n.4, p.1695-1706. 2002. Disponível em: <https://dx.doi.org/10.1590/S1516- 35982002000700012> Acesso em: 28 de jan 2018. LÓPEZ, S. Non-linear Functions in Animal Nutrition. In: Mathematical Modelling in Animal Nutrition, J. France and E. Kebreab. 1ed, CAB International. pp.640, 2008. LUGERT, V.; TETENS J.; THALLER G.; SCHULZ C.; KRIETER J.; Finding suitable growth models for turbot (Scophthalmus maximus L.) in aquaculture 1 (length application). Aquaculture Research, p.1–13. 2015. LUGERT, V.; THALLER, G.; TETENS, J.; SCHULZ, C.; KRIETER, J. A review on fish growth calculation: multiple functions in fish production and their specific application, Reviews in Aquaculture, v.6, p.1–13, 2014. Disponível em: <http://dx.doi.org/10.1111/raq.1207> 28 de janeiro de 2018. MACHADO, T. M. Tecnologia e viabilidade econômica do sucedâneo de caviar das ovas de truta arco-íris (Oncorhynchus mykiss). 72 p. Dissertação (Mestrado. Instituto de Pesca, APTA). 2013. Disponível em: <http://www.pesca.sp.gov.br/dissertacoes_pg.php> Acesso em: 4 de junho. 2018. MACHADO, T.; RIGOLINO, M. M.; TABATA, Y. A. Manejo reprodutivo da truta arco-íris. Instituto de Pesca de São Paulo. 2007. Disponível em: <http:// ftp://ftp.sp.gov.br/ftppesca/truta_arco-iris.pdf> Acesso em: 4 de junho de 2018. MALHADO, C. H. M.; CARNEIRO, P. L. S.; AFFONSO, P. R. A. M.; SOUZA, A. A. O.; SARMENTO, J. L. R. Growth curves in Dorper sheep crossed with the local Brazilian breeds, Morada Nova, Rabo Largo, and Santa Inês, Small Ruminant Research, v.84, n.1–3, p.16-21, 2009. Disponível em: < https://doi.org/10.1016/j.smallrumres.2009.04.006> 28 de janeiro de 2018. 38 MANSANO, C. F. M; MACENTE, B. I.; KHAN, K. U.; DO NASCIMENTO, T. M.T.; DA SILVA, E.P.; SAKOMURA, N. K.; FERNANDES, J. B. K. Chapter 2: Morphometric growth characteristics and body composition of fish and amphibians. New Insights into Morphometry Studies. In: Pares-Casanova PM, ed. London. p.7-28, 2017. MANSANO, C.; STÉFANI, M.; PEREIRA, M.; MACENTE, B. Non-linear growth models for bullfrog tadpoles. Ciência e Agrotecnologia, Lavras, v. 36, n. 4, p. 454-462, 2012. MARQUARDT, D. W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, v.11, n.2, p.431-441, 1963. MDIC. Dados do Comércio Exterior. Brasil: Ministério do Desenvolvimento, da Indústria e Comércio Exterior, Junho 2018. Anual. Disponível em: <http://comexstat.mdic.gov.br/es/home> Acesso em: 07 de junho de 2018. ORTEGA-LIZÁRRAGA, G. G.; RODRÍGUEZ-DOMÍNGUEZ, G.; PÉREZ GONZÁLEZ, R.; CASTAÑEDA-LOMAS, N.; ARAGÓN-NORIEGA, E. A. Estimation of growth parameters of male blue crabs Callinectes arcuatus (Brachyura: Portunidae) from the Gulf of California using the Schnute model. Latin American Journal of Aquatic Research, v.44 n.2, p.371-379, 2016. Disponível em: <https://dx.doi.org/10.3856/vol44-issue2-fulltext-18> Acesso em: 28 de janeiro de 2018. PANIK, M. J. Growth Curve Modeling: Theory and Applications. 1 ed. John Wiley & Sons, Inc, Hoboken, NJ. p.454, 2014. PAWLAK, C.; HANUMARA, R.C. A comparison of nonlinear growth models for fisheries. Fishery Research (Amsterdam), v.11, p.143-154, 1991. PEARL, R. Biology of Population Growth, 1 ed, Knopf, New York, p.260, 1930. PEREIRA, M. M.; MANSANO, C. F. M.; SILVA, E. P.; STÉFANI, M. V. Growth in weight and of some tissues in the bullfrog: fitting nonlinear models during the fattening phase. Ciência e Agrotecnologia, v.38 n.6, p.598-606, 2014. Disponível em: <https://dx.doi.org/10.1590/S1413-70542014000600009> Acesso em: 28 de janeiro de 2018. POBLETE, A. T. S. Life history of rainbow trout and considerations for introducing steelhead into southern Chile. Dissertação (Master Thesis in Fisheries and Wildlife). Oregon State University. USA. 1988. Disponível em: <http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/v405sd18q> Acesso em: 28 de jan de 2018. POWELL, C.; DUMAS, S.; BUREAU, D.; HOOK, S.; FRANCE, J. Mathematical descriptions of indeterminate growth, Journal of Theoretical Biology, pp.37 2017. PUTTER, A. Studien Uber physiologische Ahnlichkeit. VI. Wachstumsahnlichkeiten. Pftig. Arch. ges. Physiol. v.180, p.298-340, 1920. QUISPE, P. C. Determinación del crecimiento de la trucha arco iris Oncorhynchus mykiss cultivada extensivamente en la laguna Suches - Tacna desde 1996 a 2005, mediante modelo Von Bertalanffy. Universidad Nacional Jorge Basadre Grohmann, 2008. 39 RAWLINGS J. O.; PANTULA S. G.; DICKEY D. A. Applied Regression Analysis. 2 ed. New York:Springer-Verlag, p.659, 1998. RODRIGUES, A.; CHAVES, L. M.; SILVA, F. F.; ZEVIANI, W. M. Utilização da regressão isotônica em estudos de curvas de crescimento. Revista Brasileira de Biometria, São Paulo, v.28, n.4, p.85-101, 2010. RODRIGUES, A. P. O.; LIMA, A. F.; ALVES, A. L.; ROSA, D. K.; TORATI, L. S.; SANTOS, V. R. V. Piscicultura de água doce: multiplicando conhecimento. 1º ed. Brasília: Embrapa. 440p. 2013. RODRIGUES, M. L.; LIMA, S. L.; MOURA, O. M.; AGOSTINHO, C. A.; SILVA, J. H. V.; CRUZ, G. R. B.; CAMPOS, V. M.; CASALI, A. P.; MENDES, R. R. B.; ALBUQUERQUE, A. G. Curva de crescimento em rã-touro na fase de recria. Archivos de Zootecnia. v.56, n.214 p.125-136, 2007. ROGERS-BENNETT, L.; ROGERS, D. W.; BENNETT, W.A.; EBERT, T.A.; Modeling red sea urchin (Strongylocentrotus franciscanus) growth using six growth functions. Fisheries Bulletin, v.101, p.614–626, 2003. ROSA, M. D.; SILVA, J. A.; SILVA, A. L.; Modelling growth in cultures of Oreochromis niloticus (L.) and Cyprinus carpio L. in Pernambuco, Brazil. Aquaculture Research, v.28, p.199-204, 1997. SABETIAN, M.; DELSHAD, S. T.; MOINI, S.; ISLAMI, H.R.; MOTALEBI, A. Identification of fatty acid content, amino acid profile and proximate composition in rainbow trout (Oncorhynchus mykiss). Journal of American Science. v.8, p.670-677, 2012. SALEM, M.; MANOR, M.; AUSSANASUWANNAKUL, A.; KENNEY, B.; WEBER, G.; YAO, J. Effect of sexual maturation on muscle gene expression of rainbow trout: RNA-Seq approach. Physiological Reports, v.1, n.5, 15p, 2013. SANTOS, V. B.; MARECO, E. A.; SILVA, M. D. P. Growth curves of Nile tilapia (Oreochromis niloticus) strains cultivated at different temperatures. Acta Scientiarum, Animal Science, Maringá, v.35, n.3, p.235-242, 2013. SANTOS, V.; FREITAS, R.; SILVA, F.; FREATO, T. Avaliação de curvas de crescimento morfométrico de linhagens de tilápia do nilo (Oreochromis niloticus). Ciência e Agrotecnologia, Lavras, v.31, n.5, p.1486-1492, 2007. SAS. Institute Inc. SAS/ACCESS 9.4 interfaces to ADABAS: Reference. SAS Institute Inc., Cary, NC; 2013 SARMENTO, J. L. R.; REGAZZI, A. J.; SOUZA, W. H.; TORRES, R. A.; BREDA, F. C.; MENEZES, G. R. O. Analysis of the growth curve of Santa Ines sheep. Revista Brasileira de Zootecnia, v.35, p.435-442, 2006. SCHERR, C.; GAGLIARDI, A.; MINAME, M.; SANTOS, R. Fatty Acid and Cholesterol Concentrations in Usually Consumed Fish in Brazil. Arquivos Brasileiros de Cardiologia, v.104 n.2, p.152-158, 2014. Disponível em: <https://dx.doi.org/10.5935/abc.20140176> Acesso em: 28 de jan. de 2018. SEBRAE. Aquicultura no Brasil. Série estudos mercadológicos. Serviço brasileiro de apoio às micro e pequenas empresas. 2015. 40 SILLIMAN, R. P. 1969. Comparison between Gompertz and von Bertalanffy Curves for Expressing Growth in Weight of Fishes. Journal of the Fisheries Research Board of Canada, v.26 n.1, p.161-165, 1969. Disponível em: <https://doi.org/10.1139/f69-017> Acesso em: 28 de janeiro de 2018. SILVA, T.; SANTOS, L.; SILVA, L.; MICHELATO, M.; FURUYA, V.; FURUYA, W. Length–weight relationship and prediction equations of body composition for growing finishing cage-farmed Nile tilapia. Revista Brasileira de Zootecnia, v.44, n.4, p.133-137, 2015. SHAH, M.A. Stochastic logistic model for fish growth, Open Journal of Statistics, v.4, p.11–18, 2014. Disponível em: http://dx.doi.org/10.4236/ojs.2014.41002 Acesso em: 28 de jan. de 2018. SLOAT, M. R.; REEVES, G. H. Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories. Canadian Journal of Fisheries and Aquatic Sciences, v.71, p.491–501, 2014. SOUSA, J.; JOSÉ, A. G.; MARLON S.; CARVALHO, P. G. S.; ROCHA, L. G.; CAMPECHE, D. F. B. Mathematical modeling applied to the growth of tilapia in net cages in the sub middle of the São Francisco river. Engenharia Agrícola, v.34, n.5, p.1001-1011, 2014. Disponível em: <https://dx.doi.org/10.1590/S0100-69162014000500019> Acesso em: 28 de jan. de 2018. TIAN, X.; LEUNG, P.S.; HOCHMAN, E. Shrimp growth functions and their economics implications. Aquaculture Engineering, v.12, p.81–96, 1993. TJØRVE, K. M. C.; TJØRVE, E. Shapes and functions of bird-growth models: how to characterize chick postnatal growth. Zoology, v.113, n.6, p.326-333, 2010. Disponível em: <https://doi.org/10.1016/j.zool.2010.05.003> 28 de jan de 2018. TJØRVE, K. M. C.; TJØRVE, E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE v.12, n.6, 17p, 2017. Disponível em: <https://doi.org/10.1371/journal.pone.0178691> Acesso em: 28 de jan. de 2018. WIDOWSSON, E. M. Chapter 1: Definitions of growth. In Growth in Animals: Studies in the Agricultural and Food Sciences By Lawrence T. L. J. 1 ed. 316p, 1980. YU, RUN; LEUNG, PING SUN. A Bayesian hierarchical model for modeling white shrimp (Litopenaeus vannamei) growth in a commercial shrimp farm, Aquaculture, v.306, n.1–4, p.205-210, 2010. YUN, B.; YU, X.; XUE, M.; LIU, Y.; WANG, J.; WU, X.; HAN F.; LIANG X. Effects of dietary protein levels on the long-term growth response and fitting growth models of gibel carp (Carassius auratus gibelio), Journal of Animal Nutrition, v.1, n.2, p.70-76, 2015.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Zootecnia
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Zootecnia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14864/1/2018%20-%20Peter%20Charrie%20Janampa%20Sarmiento.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14864/2/2018%20-%20Peter%20Charrie%20Janampa%20Sarmiento.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14864/3/2018%20-%20Peter%20Charrie%20Janampa%20Sarmiento.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14864/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
72a7391fe13d754dfd403c9c51499d76
4ad7a98574708b3c2706f56809a8ce38
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810107859046760448