Influência de linfócitos B-1 na dinâmica de leucócitos de animais deficientes da Tirosina Quinase de Bruton (XID)

Detalhes bibliográficos
Autor(a) principal: Correia, Carolina de Albuquerque
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/11805
Resumo: A inflamação é uma reação fisiológica do organismo a um agente agressor e pode ser desencadeada por uma infecção e/ou por uma injúria. A fase aguda desse processo é uma resposta rápida e ocorre nos primeiros minutos e horas após o reconhecimento do patógeno. Sua resolução geralmente resulta na eliminação dos agentes infecciosos e reparo da arquitetura e função normais dos tecidos. A fase crônica se instaura quando as tentativas de restabelecimento da homeostase não são bem-sucedidas. Muitas vezes, apenas a ação dos fagócitos é suficiente para conter a inflamação, entretanto, se o estímulo nocivo perdurar, outros agentes do sistema imunológico são acionados, configurando a inflamação dentro da resposta adaptativa. As células dendríticas fazem a ligação entre a resposta imune inata e a adaptativa, pois são especializadas em processar e expor fragmentos dos antígenos para os linfócitos T. Esses, por sua vez, auxiliam na ativação de linfócitos B, que são células capazes de produzir e secretar anticorpos e formar células de memória. Os linfócitos B-1 constituem uma subpopulação de linfócitos B e têm como características a produção de anticorpos naturais, apresentação de antígenos aos linfócitos T e a liberação de várias citocinas, dentre elas a citocina anti-inflamatória IL-10. Assim, eles têm o potencial de modular a resposta inflamatória. Neste trabalho, nós avaliamos a dinâmica populacional dos leucócitos no sangue e na cavidade peritoneal de camundongos BALB/c e XID durante a resposta inflamatória aguda desencadeada por LPS. Para isso, usamos camundongos XID, cujo peritônio é um ambiente com pouquíssimos linfócitos B-1. Nossos resultados revelaram que os animais XID, espontaneamente, tem um número elevado de neutrófilos no sangue periférico e essa população fica ainda maior após a estimulação com LPS. Concomitantemente, altos níveis de IL-6 foram detectados. Além disso, a cavidade peritoneal desses animais também tem quantidade maior de neutrófilos, em comparação com camundongos BALB/c. Esse dado não sofre alteração após estimulação em nossas condições experimentais. Nos ensaios com fagócitos, observamos que o número de macrófagos capazes de fagocitar é estatisticamente igual entre BALB/c e XID, mas o número de leveduras internalizadas é menor no grupo XID LPS+IFN-γ. Isso sugere uma maior atividade microbicida dos macrófagos desses camundongos. Esse resultado é corroborado pela dosagem de nitrito no sobrenadante das culturas, na qual os macrófagos XID estimulados produziram mais óxido nítrico que o grupo controle. Nossos resultados, em conjunto, sugerem uma habilidade em desenvolver resposta inflamatória mais intensa nos camundongos XID em comparação com camundongos BALB/c, provavelmente devido a baixa produção da citocina anti-inflamatória IL-10. Logo, nossa análise reporta pela primeira vez que camundongos XID possuem número aumentado na população de neutrófilos no sangue e cavidade peritoneal, quando comparado com BALB/c, indicando a importância dos linfócitos B-1 na modulação da resposta inflamatória e sugerindo que esses possam ser futuros alvos de investigações em estratégias de imunoterapia
id UFRRJ-1_3701426d0952258791740f245c2085d2
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/11805
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Correia, Carolina de AlbuquerqueLima, Debora Decote Ricardo de875.362.007-06https://orcid.org/0000-0001-8761-7641http://lattes.cnpq.br/3572066508469025Lima, Célio Geraldo Freire de002.031.157-59https://orcid.org/0000-0002-4148-3657http://lattes.cnpq.br/9591632153788667Lima, Debora Decote Ricardo de875.362.007-06https://orcid.org/0000-0001-8761-7641http://lattes.cnpq.br/3572066508469025Nascimento, Danielle de Oliveirahttp://lattes.cnpq.br/7254526945220214Fonseca, Leonardo Marques dahttp://lattes.cnpq.br/2723305557021149Silva, Lucia Helena Pinto dahttps://orcid.org/0000-0002-7085-8649http://lattes.cnpq.br/0013386072339397Guedes, Herbert Leonel de Matoshttps://orcid.org/0000-0002-3819-3069http://lattes.cnpq.br/7011121250058339121.231.357-71http://lattes.cnpq.br/79162887552366102023-12-22T01:57:07Z2023-12-22T01:57:07Z2020-02-17CORREIA, Carolina de Albuquerque. Influência de linfócitos B-1 na dinâmica de leucócitos de animais deficientes da Tirosina Quinase de Bruton (XID). 2020. 36 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020.https://rima.ufrrj.br/jspui/handle/20.500.14407/11805A inflamação é uma reação fisiológica do organismo a um agente agressor e pode ser desencadeada por uma infecção e/ou por uma injúria. A fase aguda desse processo é uma resposta rápida e ocorre nos primeiros minutos e horas após o reconhecimento do patógeno. Sua resolução geralmente resulta na eliminação dos agentes infecciosos e reparo da arquitetura e função normais dos tecidos. A fase crônica se instaura quando as tentativas de restabelecimento da homeostase não são bem-sucedidas. Muitas vezes, apenas a ação dos fagócitos é suficiente para conter a inflamação, entretanto, se o estímulo nocivo perdurar, outros agentes do sistema imunológico são acionados, configurando a inflamação dentro da resposta adaptativa. As células dendríticas fazem a ligação entre a resposta imune inata e a adaptativa, pois são especializadas em processar e expor fragmentos dos antígenos para os linfócitos T. Esses, por sua vez, auxiliam na ativação de linfócitos B, que são células capazes de produzir e secretar anticorpos e formar células de memória. Os linfócitos B-1 constituem uma subpopulação de linfócitos B e têm como características a produção de anticorpos naturais, apresentação de antígenos aos linfócitos T e a liberação de várias citocinas, dentre elas a citocina anti-inflamatória IL-10. Assim, eles têm o potencial de modular a resposta inflamatória. Neste trabalho, nós avaliamos a dinâmica populacional dos leucócitos no sangue e na cavidade peritoneal de camundongos BALB/c e XID durante a resposta inflamatória aguda desencadeada por LPS. Para isso, usamos camundongos XID, cujo peritônio é um ambiente com pouquíssimos linfócitos B-1. Nossos resultados revelaram que os animais XID, espontaneamente, tem um número elevado de neutrófilos no sangue periférico e essa população fica ainda maior após a estimulação com LPS. Concomitantemente, altos níveis de IL-6 foram detectados. Além disso, a cavidade peritoneal desses animais também tem quantidade maior de neutrófilos, em comparação com camundongos BALB/c. Esse dado não sofre alteração após estimulação em nossas condições experimentais. Nos ensaios com fagócitos, observamos que o número de macrófagos capazes de fagocitar é estatisticamente igual entre BALB/c e XID, mas o número de leveduras internalizadas é menor no grupo XID LPS+IFN-γ. Isso sugere uma maior atividade microbicida dos macrófagos desses camundongos. Esse resultado é corroborado pela dosagem de nitrito no sobrenadante das culturas, na qual os macrófagos XID estimulados produziram mais óxido nítrico que o grupo controle. Nossos resultados, em conjunto, sugerem uma habilidade em desenvolver resposta inflamatória mais intensa nos camundongos XID em comparação com camundongos BALB/c, provavelmente devido a baixa produção da citocina anti-inflamatória IL-10. Logo, nossa análise reporta pela primeira vez que camundongos XID possuem número aumentado na população de neutrófilos no sangue e cavidade peritoneal, quando comparado com BALB/c, indicando a importância dos linfócitos B-1 na modulação da resposta inflamatória e sugerindo que esses possam ser futuros alvos de investigações em estratégias de imunoterapiaCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPQ - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPERJ - Fundação de Amparo à Pesquisa do Estado do Rio de JaneiroInflammation is a physiological reaction of the body to an offending agent and can be triggered by infection and/or injury. The acute phase of this process is a rapid response and occurs in the first minutes and hours after pathogen recognition. Its resolution usually results in the elimination of infectious agents and repair of the normal tissue architecture and function. The chronic phase begins when attempts to restore homeostasis are unsuccessful. Often, the action of phagocytes is sufficient to contain inflammation, however, if the harmful stimulus lasts, other agents of the immune system are activated, configuring the inflammation within the adaptive response. Dendritic cells make the connection between the innate and adaptive immune responses, as they are specialized in processing and exposing fragments of antigens to T lymphocytes. These, in turn, assist in the activation of B-lymphocytes, which are cells capable of producing and secrete antibodies and form memory cells. B-1 lymphocytes are a subpopulation of B-lymphocytes, characterized by the production of natural antibodies, presentation of antigens to T lymphocytes and the release of various cytokines, including the anti-inflammatory cytokine IL-10. Thus, they have the potential to modulate the inflammatory response. In this work, we evaluated the population dynamics of leukocytes in the blood and in the peritoneal cavity of BALB/c and XID mice during the acute inflammatory response, triggered by LPS. Thus, we used XID mice, whose peritoneum is an environment with very few B-1 lymphocytes. Our results revealed that XID animals spontaneously have a high number of neutrophils in peripheral blood and this population is even greater after stimulation with LPS. Concomitantly, high levels of IL-6 were detected. In addition, the peritoneal cavity of these animals also has a greater amount of neutrophils, compared to BALB/c mice. This data does not change after stimulation in our experimental conditions. In phagocyte assays, we found out that the number of macrophages capable of phagocyting is statistically equal between BALB/c and XID, but the number of internalized yeasts is lower in the XID LPS+IFN-γ group. This suggests an increased microbicidal activity of the macrophages of these mice. This result is corroborated by the dosage of nitrite in the culture supernatant, in which the stimulated XID macrophages produced more nitric oxide than the control group. Our results together suggest an ability to develop a more intense inflammatory response in XID mice compared to BALB/c mice, probably due to the impairment in the production of the anti-inflammatory cytokine IL-10. Therefore, our analysis reports for the first time that XID mice have an increased number of neutrophil populations in the blood and peritoneal cavity when compared to BALB/c, indicating the importance of B-1 lymphocytes in modulating the inflammatory response and suggesting that these may be future targets of investigations in immunotherapy strategiesapplication/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciências VeterináriasUFRRJBrasilInstituto de VeterináriaLinfócitos B-1InflamaçãoModulaçãoB-1 lymphocytesInflammationModulationMedicina VeterináriaInfluência de linfócitos B-1 na dinâmica de leucócitos de animais deficientes da Tirosina Quinase de Bruton (XID)Influence of B-1 lymphocytes on the leucocyte dynamics of Bruton’s Tyrosine Kinase deficient animals (XID)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisARNARDOTTIR, H.H.; FREYSDOTTIR, J.; HARDARDOTTIR, I. Dietary fish oil increases the proportion of a specific neutrophil subpopulation in blood and total neutrophils in peritoneum of mice following endotoxin-induced inflammation. The Journal of Nutritional Biochemistry, v. 24, n. 1, p. 248-255, 2013. ARCANJO, A.F.; LAROCQUE-DE-FREITAS, I.F.; ROCHA, J.D.B.; ZAMITH, D.; COSTA-DA-SILVA, A.C.; NUNES, M.P.; MESQUITA-SANTOS, F.P.; MORROT, A.; FILARDY, A.A.; MARIANO, M.; BANDEIRA-MELO, C.; DOSREIS, G.A.; DECOTE-RICARDO, D.; FREIRE-DE-LIMA, C.G. The PGE2/IL-10 axis determines susceptibility of B-1 cell-derived phagocytes (B-1CDP) to Leishmania major infection. PLoS One, v. 10, n. 5, 2015. ARCANJO, A.F. ; NICO, D. ; CASTRO, G.M.M.; FONTES, Y.S.; SALTARELLI, P.; DECOTE-RICARDO, D.; NUNES, M.P.; FERREIRA-PEREIRA, A.; PALATINIK-DE-SOUSA, C.B.; FREIRE-DE-LIMA, C.G.; MORROT, A. Dependency of B-1 cells in the maintenance of splenic interleukin-10 producing cells and impairment of macrophage resistance in visceral leishmaniasis. Frontiers in Microbiology, v. 8, n. 978, p. 1-7, 2017a. ARCANJO, A.F.; NUNES, M.P.; SILVA-JUNIOR, E.B.; LEANDRO, M.; ROCHA, J.D.B.; MORROT, A.; DECOTE-RICARDO, D.; FREIRE-DE-LIMA, C.G. B-1 cells modulate the murine macrophage response to Leishmania major infection. World Journal of Biological Chemistry, v. 8, n. 2, p. 151-162, 2017b. AZIZ, M.; HOLODICK, N.E.; ROTHSTEIN, T.L.; WANG, P. The role of B-1 cells in inflammation. Immunologic Research, v. 63, n. 1-3, p. 153-166, 2015. BARBEIRO, D.F.; BARBEIRO, H.V.; FAINTUCH, J.; ARIGA, S.K.K.; MARIANO, M.; POPI, A.F.; SOUZA, H.P.; VELASCO, I.T.; SORIANO, F.G. B-1 cells temper endotoxemic inflammatory responses. Immunobiology, v. 216, n. 3, p. 02-308, 2011. BAUMGARTH, N. Innate-like B cells and their rules of engagement. In: KATSIKIS, P.; SCHOENBERGER, S.; PULENDRAN, B. (eds.). Crossroads between innate and adaptive immunity IV. 1. ed. Nova Iorque: Springer, 2013. cap. 7, p. 57-66. BAUMGARTH, N. A Hard(y) look at B-1 cell development and function. Journal of Immunology, v. 199, n. 10, p. 3387-3394, 2017. BAUMGARTH, N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nature Reviews Immunology, v. 11, n. 1, p. 34-46, 2011. CHAMBERLAIN, J.L.; ATTRIDGE, K.; WANG, C.J.; RYAN, G.A.; WALKER, L.S.K. B cell depletion in autoimmune diabetes: insights from murine models. Expert Opinion on Therapeutic Targets, v. 15, n. 6, p. 703-714, 2011. CHOI, Y.S.; BAUMGARTH, N. Dual role for B-1a cells in immunity to influenza virus infection. The Journal of Experimental Medicine, v. 205, n. 13, p. 3053-3064, 2008. 29 COSTA, L.F.V.; ALVARES-SARAIVA, A.M.; ROCHA, P.R.D.A.; SPADACCI-MORENA, D.D.; PEREZ, E.C.; MARIANO, M.; LALLO, M.A. B-1 cell decreases susceptibility to encephalitozoonosis in mice. Immunobiology, v. 222, n. 2, p. 218-227, 2017. CRANE, D.D.; GRIFFIN, A.J.; WEHRLY, T.D.; BOSIO, C.M. B1a cells enhance susceptibility to infection with virulent Francisella tularensis via modulation of NK/NKT cell responses. Journal of Immunology, v. 190, p. 2756-2766, 2013. DENG, J.; WANG, X.; CHEN, Q.; SUN, X.; XIAO, F.; KO, K.H.; ZHANG, M.; LU, L. B1a cells play a pathogenic role in the development of autoimmune arthritis. Oncotarget, v. 7, n. 15, p. 19299-19311, 2016. FEEHAN, K.T.; GILROY, D.W. Is resolution the end of inflammation? Trends in Molecular Medicine, v. 25, n. 3, p. 198-214, 2019. GEHERIN, S.A. ; GÓMEZ, D.; GLABMAN, R.A.; RUTHEL, G.; HAMANN, A.; DEBES, G.F. IL-10+ Innate-like B cells are part of the skin immune system and require α4β1 integrin to migrate between the peritoneum and inflamed skin. The Journal of Immunology. v. 196, n. 6, p. 2514-2525, 2016. GIL, Á. Polyunsaturated fatty acids and inflammatory diseases. Biomedicine & Pharmacotherapy, v. 56, n. 8, p. 388-396, 2002. GONZAGA, R.; MATZINGER, P.; PEREZ-DIEZ, A. Resident peritoneal NK cells. Journal of Immunology, v. 187, n. 12, p. 6235-6242, 2011. GRIFFIN, D.O.; HOLODICK, N.E.; ROTHSTEIN, T.L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70−. Journal of Experimental Medicine, v. 208, n. 1, p. 67-80, 2011a. GRIFFIN, D.O.; ROTHSTEIN, T.L. A small CD11b+ human B1 cell subpopulation stimulates T cells and is expanded in lupus. Journal of Experimental Medicine, v. 208, n. 13, p. 2591-2598, 2011b. GRIFFIN, D.O.; ROTHSTEIN, T.L. Human “orchestrator” CD11b+ B1 cells spontaneously secrete interleukin-10 and regulate T-cell activity. Molecular Medicine, v. 18, n. 6, p. 1003-1008, 2012. HAAS, K.M.; POE, J.C.; STEEBER, D.A.; TEDDER, T.F. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity, v. 23, n. 1, p. 7–18, 2005. HARDY, R.R.; HAYAKAWA, K. Perspectives on fetal derived CD5+ B1 B cells. European Journal of Immunology, v. 45, n. 11, p. 2978-2984, 2015. HAUGHTON, G.; ARNOLD, L.W.; WHITMORE, A.C.; CLARKE, S.H. B-1 cells are made, not born. Immunology Today, v. 14, n. 2, p. 84-87, 1993. HAWIGER, J.; ZIENKIEWICZ, J. Decoding inflammation, its causes, genomic responses and emerging countermeasures. Scandinavian Journal of Immunology, v. 90, n. 6, 2019. 30 HAYAKAWA, K.; HARDY, R.R.; PARKS, D.R.; HERZENBERG, L.A. The "Ly-1 B" cell subpopulation in normal immunodefective, and autoimmune mice. Journal of Experimental Medicine, v. 157, n. 1, p. 202-218, 1983. HOFFMAN, W.; LAKKIS, F.G.; CHALASANI, G. B cells, antibodies, and more. Clinical Journal of the American Society of Nephrology, v. 11, n. 1, p. 137-154, 2015. IQBAL, A.J.; FISHER, E.A.; GREAVES, D.R. Inflammation – a critical appreciation of the role of myeloid cells. Microbiology Spectrum, v. 4, n. 5, 2016. KANTOR, A.B.; HERZENBERG, L.A. Origin of murine B cell lineages. Annual Review of Immunology, v. 11, n. 1, p. 501-538, 1993. KONDRATIEVA, T.K.; RUBAKOVA, E.I.; EVSTIFEEV, V.V.; MAJOROV, K.B.; APT, A.S. B cells delay neutrophil migration toward the site of stimulus: tardiness critical for effective bacillus Calmette-Guérin vaccination against tuberculosis infection in mice. Journal of Immunology. v. 184, n. 3, p. 1227-1234, 2010. KUBES, P. The enigmatic neutrophil: what we do not know. Cell And Tissue Research. v. 371, n. 3, p.399-406, 2018. LALOR, P.A.; HERZENBERG, L.A.; ADAMS, S.; STALL, A.M. Feedback regulation of murine Ly‐1 B cell development. European Journal of Immunology, v. 19, n. 3, p. 507-513, 1989. LAMBDEN, S. Bench to bedside review: therapeutic modulation of nitric oxide in sepsis—an update. Intensive Care Medicine Experimental. v. 7, n. 1, p.1-14, 2019. LEE, J.G.; JANG, J.Y.; FANG, T.; XUAN, X.Y.; YAN, J.J.; RYU, J.H.; JEON, H.J.; KOO, T.Y.; KIM, D.K.; OH, K.H.; KIM, T.J.; YANG, J. Identification of human B-1 helper T cells with a Th1-like memory phenotype and high integrin CD49d expression. Frontiers in Immunology, v. 9, n. 1617, 2018. LIEW, P.X.; KUBES, P. The neutrophil’s role during health and disease. Physiological Reviews. v. 99, n. 2, p.1223-1248, 2019. LOPES, J.D.; MARIANO, M. B-1 cell: the precursor of a novel mononuclear phagocyte with immuno-regulatory properties. Anais da Academia Brasileira de Ciências, v. 81, n. 3, p. 489-496, 2009. MAKAROV, S.S. NF-κB as a therapeutic target in chronic inflammation: recent advances. Molecular medicine today, v. 6, n. 11, p. 441-448, 2000. MANFREDI, A.A.; RAMIREZ, G.A.; QUERINI, P.R.; MAUGERI, N. The neutrophil’s choice: phagocytose vs make neutrophil extracellular traps. Frontiers in Immunology. v. 9, p.1-13, 2018. MEDZHITOV, R. Origin and physiological roles of inflammation. Nature, v. 545, n. 7203, p. 428-435, 2008. 31 MEURER, S.K.; NEß, M.; WEISKIRCHEN, S.; KIM, P.; TAG, C.G.; KAUFFMANN, M.; HUBER, M.; WEISKIRCHEN, R. Isolation of mature (peritoneum-derived) mast cells and immature (bone marrow-derived) mast cell precursors from mice. PLoS One, v. 11, n. 6, p. e0158104, 2016. MEYER‐BAHLBURG, A. B‐1 cells as a source of IgA. Annals of the New York Academy of Sciences, v. 1362, n. 1, p. 122-131, 2015. MINOPRIO, P.; EL CHEIKH, M.C.; MURPHY, E.; HONTEBEYRIE-JOSKOWICZ, M.; COFFMAN, R.; COUTINHO, A.; O'GARRA, A. Xid-associated resistance to experimental Chagas' disease is IFN-gamma dependent. Journal of Immunology, v. 151, n. 8, p. 4200-4208, 1993. MONTECINO-RODRIGUEZ, E.; DORSHKIND, K. B-1 B cell development in the fetus and adult. Immunity, v. 36, n. 1, p. 13-21, 2012. MONTECINO-RODRIGUEZ, E.; DORSHKIND, K. New perspectives in B-1 B cell development and function. Trends in Immunology, v. 27, n. 9, p. 428-433, 2006. MOON, H.; LEE, J.G.; SHIN, S.H.; KIM, T.J. LPS-induced migration of peritoneal B-1 cells is associated with upregulation of CXCR4 and increased migratory sensitivity to CXCL12. Journal of Korean Medical Science. v. 27, n. 1, p. 27-35, 2012. MORRIS, G.; PURI, B.K.; OLIVE, L.; CARVALHO, A.F.; BERK, M.; MAES, M. Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacological Research, v. 148, p. 1-14, 2019. MUKHOPADHYAY, S.; SAHOO, P.K.; GEORGE, A.; BAL, V.; RATH, S.; RAVINDRAN, B. Delayed clearance of filarial infection and enhanced Th1 immunity due to modulation of macrophage APC functions in xid mice. Journal of Immunology. v. 163, n. 2, p. 875-883, 1999. NÉMETH, T.; SPERANDIO, M.; MÓCSAI, A. Neutrophils as emerging therapeutic targets. Nature Reviews Drug Discovery. p.1-23, 2020. NOAL, V.; SANTOS, S.; FERREIRA, K.S.; ALMEIDA, S.R. Infection with Paracoccidioides brasiliensis induces B-1 cell migration and activation of regulatory T cells. Microbes and Infection, v. 18, n. 12, p. 798-803, 2016. OGAWA, M.; SATOH, M.; KATAOKA, M.; ANDO, S.; SAIJO, M. Nitric oxide enhanced the growth of an obligated intracellular bacterium Orientia tsutsugamushi in murine macrophages. Microbial Pathogenesis. v. 107, p.335-340, 2017. OLIVEIRA, H.C.; POPI, A.F.; BACHI, A.L.; NONOGAKI, S.; LOPES, J.D.; MARIANO, M. B-1 cells modulate the kinetics of wound-healing process in mice. Immunobiology. v. 215, n. 3, p. 215-222, 2010. POPI, A.F. B‐1 phagocytes: the myeloid face of B‐1 cells. Annals of the New York Academy of Sciences, v. 1362, n. 1, p. 86-97, 2015. 32 POPI, A.F.; GODOY, L.C.; XANDER, P.; LOPES, J.D.; MARIANO, M. B-1 cells facilitate Paracoccidioides brasiliensis infection in mice via IL-10 secretion. Microbes and Infection, v. 10, n. 7, p. 817-824, 2008. POPI, A.F.; LONGO-MAUGÉRI, I.M.; MARIANO, M. An overview of B-1 cells as antigen-presenting cells. Frontiers in Immunology, v. 7, p. 138-143, 2016. POPI, A.F.; LOPES, J.D.; MARIANO, M. Interleukin‐10 secreted by B‐1 cells modulates the phagocytic activity of murine macrophages in vitro. Immunology, v. 113, n. 3, p. 348-354, 2004. RAJAEE, A.; BARNETT, R.; CHEADLE, W.G. Pathogen- and danger-associated molecular patterns and the cytokine response in sepsis. Surgical Infections, v. 19, n. 2, p. 1-10, 2018. RAY, A.; DITTEL, B.N. Isolation of mouse peritoneal cavity cells. Journal of Visualized Experiments, n. 35, p. e1488, 2010. REKOW, M.M.; DARRAH, E.J.; MBOKO, W.P.; LANGE, P.T.; TARAKANOVA, V.L. Gammaherpesvirus targets peritoneal B-1 B cells for long-term latency. Virology, v. 492, 140-144, 2016. ROCHA, R.F.D.B.; LAROCQUE-DE-FREITAS, I.F.; ARCANJO, A.F.; LOGULLO, J.; NUNES, M.P.; FREIRE-DE-LIMA, C.G.; DECOTE-RICARDO, D. B-1 cells may drive macrophages susceptibility to Trypanosoma cruzi infection. Frontiers in Microbiology, v. 10, p. 1598, 2019. ROTHSTEIN, T.L.; GRIFFIN, D.O.; HOLODICK, N.E.; QUACH, T.D.; KAKU, H. Human B-1 cells take the stage. Annals of the New York Academy of Sciences, v. 1285, p. 97-114, 2013. RYAN, G.A.; WANG, C.J.; CHAMBERLAIN, J.L.; ATTRIDGE, K.; SCHMIDT, E.M.; KENEFECK, R.; CLOUGH, L.E.; DUNUSSI-JOANNOPOULOS, K.; TOELLNER, K.M.; WALKER, L.S.K. B1 cells promote pancreas infiltration by autoreactive T cells. Journal of Immunology, v. 185, n. 5, p. 2800-2807, 2010. SAID, A.; WEINDL, G. Regulation of dendritic cell cell function in inflammation. Journal of Immunology Research, v. 2015, p. 1-15, 2015. SAVAGE, H.P.; BAUMGARTH, N. Characteristics of natural antibody–secreting cells. Annals of the New York academy of sciences, v. 1362, n. 1, p. 132-142, 2015. SIMÃO-GURGE, R.M.; COSTA-CARVALHO, B.T.; NOBRE, F.A.; GONZALEZ, I.G.; MORAES-PINTO, M.I. Prospective evaluation of Streptococcus pneumoniae serum antibodies in patients with primary immunodeficiency on regular intravenous immunoglobulin treatment. Allergologia et Immunopathologia, v. 45, n. 1, p. 5562, 2017. SINGH, S.P.; DAMMEIJER F.; HENDRIKS, R.W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Molecular Cancer, v. 17, n. 1, p. 57, 2018. 33 STALL, A.M.; WELLS, S.M.; LAM, K.P. B-1 cells: unique origins and functions. Seminars in Immunology, v. 8, n. 1, p. 45-59, 1996. TANAKA, Y.; KUBO, S.; IWATA, S.; YOSHIKAWA, M.; NAKAYAMADA, S. B cell phenotypes, signaling and their roles in secretion of antibodies in systemic lupus erythematosus. Clinical Immunology, v. 186, p. 21-25, 2018. TANG, D.; KANG, R.; COYNE, C.B.; ZEH, H.J.; LOTZE, M.T. PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunological Reviews, v. 249, n. 1, p. 158-175, 2012. TOLAR, P. Cytoskeletal control of B cell responses to antigens. Nature Reviews Immunology. v. 17, n. 10, p. 621-634, 2017. TREANOR, B. B‐cell receptor: from resting state to activate. Immunology. v. 136, n. 1, p. 21-27, 2012. TUNG, J.W.; PARKS, D.R.; MOORE, W.A.; HERZENBERG, L.A.; HERZENBERG, L.A. Identification of B-cell subsets – An exposition of 11-color (Hi-D) FACS methods. In: GU, H.; RAJEWSKY, K. (eds). B cell protocols. Springer, 2004. v. 271, p. 37-58. VALE, A.M.; KEARNEY, J.F.; NOBREGA, A.; SCHROEDER, H.W. Development and Function of B Cell Subsets. In: ALT, F.W.; HONJO, T.; RADBRUCH, A.; RETH, M. (eds.). Molecular biology of B cells. 2. ed. Elsevier, 2015. cap. 7, p. 99-119. VARELA, M.L.; MOGILDEA, M.; MORENO, I.; LOPES, A. Acute inflammation and metabolism. Inflammation. v. 41, n. 4, p. 1115-1127, 2018. ZHANG, C.; SHU, W. ; ZHOU, G. ; LIN, L. ; CHU, F. ; WU, H. ; LIU, Z. Anti-TNF-α therapy suppresses proinflammatory activities of mucosal neutrophils in inflammatory bowel disease. Mediators of Inflammation. v. 2018, p.1-12, 2018https://tede.ufrrj.br/retrieve/72301/2020%20-%20Carolina%20de%20Albuquerque%20Correia.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/6358Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2023-02-24T11:40:43Z No. of bitstreams: 1 2020 - Carolina de Albuquerque Correia.pdf: 1237316 bytes, checksum: 76a0159a37b04dc949d8e525b50b563c (MD5)Made available in DSpace on 2023-02-24T11:40:43Z (GMT). No. of bitstreams: 1 2020 - Carolina de Albuquerque Correia.pdf: 1237316 bytes, checksum: 76a0159a37b04dc949d8e525b50b563c (MD5) Previous issue date: 2020-02-17info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2020 - Carolina de Albuquerque Correia.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11805/1/2020%20-%20Carolina%20de%20Albuquerque%20Correia.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2020 - Carolina de Albuquerque Correia.pdf.txtExtracted Texttext/plain94796https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11805/2/2020%20-%20Carolina%20de%20Albuquerque%20Correia.pdf.txt94824ffa21b3fc46b0a6337a7498394bMD52ORIGINAL2020 - Carolina de Albuquerque Correia.pdf2020 - Carolina de Albuquerque Correiaapplication/pdf1237316https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11805/3/2020%20-%20Carolina%20de%20Albuquerque%20Correia.pdf76a0159a37b04dc949d8e525b50b563cMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11805/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/118052023-12-21 22:57:07.68oai:rima.ufrrj.br:20.500.14407/11805Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:57:07Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Influência de linfócitos B-1 na dinâmica de leucócitos de animais deficientes da Tirosina Quinase de Bruton (XID)
dc.title.alternative.eng.fl_str_mv Influence of B-1 lymphocytes on the leucocyte dynamics of Bruton’s Tyrosine Kinase deficient animals (XID)
title Influência de linfócitos B-1 na dinâmica de leucócitos de animais deficientes da Tirosina Quinase de Bruton (XID)
spellingShingle Influência de linfócitos B-1 na dinâmica de leucócitos de animais deficientes da Tirosina Quinase de Bruton (XID)
Correia, Carolina de Albuquerque
Linfócitos B-1
Inflamação
Modulação
B-1 lymphocytes
Inflammation
Modulation
Medicina Veterinária
title_short Influência de linfócitos B-1 na dinâmica de leucócitos de animais deficientes da Tirosina Quinase de Bruton (XID)
title_full Influência de linfócitos B-1 na dinâmica de leucócitos de animais deficientes da Tirosina Quinase de Bruton (XID)
title_fullStr Influência de linfócitos B-1 na dinâmica de leucócitos de animais deficientes da Tirosina Quinase de Bruton (XID)
title_full_unstemmed Influência de linfócitos B-1 na dinâmica de leucócitos de animais deficientes da Tirosina Quinase de Bruton (XID)
title_sort Influência de linfócitos B-1 na dinâmica de leucócitos de animais deficientes da Tirosina Quinase de Bruton (XID)
author Correia, Carolina de Albuquerque
author_facet Correia, Carolina de Albuquerque
author_role author
dc.contributor.author.fl_str_mv Correia, Carolina de Albuquerque
dc.contributor.advisor1.fl_str_mv Lima, Debora Decote Ricardo de
dc.contributor.advisor1ID.fl_str_mv 875.362.007-06
https://orcid.org/0000-0001-8761-7641
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3572066508469025
dc.contributor.advisor-co1.fl_str_mv Lima, Célio Geraldo Freire de
dc.contributor.advisor-co1ID.fl_str_mv 002.031.157-59
https://orcid.org/0000-0002-4148-3657
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/9591632153788667
dc.contributor.referee1.fl_str_mv Lima, Debora Decote Ricardo de
dc.contributor.referee1ID.fl_str_mv 875.362.007-06
https://orcid.org/0000-0001-8761-7641
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3572066508469025
dc.contributor.referee2.fl_str_mv Nascimento, Danielle de Oliveira
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/7254526945220214
dc.contributor.referee3.fl_str_mv Fonseca, Leonardo Marques da
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/2723305557021149
dc.contributor.referee4.fl_str_mv Silva, Lucia Helena Pinto da
dc.contributor.referee4ID.fl_str_mv https://orcid.org/0000-0002-7085-8649
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/0013386072339397
dc.contributor.referee5.fl_str_mv Guedes, Herbert Leonel de Matos
dc.contributor.referee5ID.fl_str_mv https://orcid.org/0000-0002-3819-3069
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/7011121250058339
dc.contributor.authorID.fl_str_mv 121.231.357-71
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7916288755236610
contributor_str_mv Lima, Debora Decote Ricardo de
Lima, Célio Geraldo Freire de
Lima, Debora Decote Ricardo de
Nascimento, Danielle de Oliveira
Fonseca, Leonardo Marques da
Silva, Lucia Helena Pinto da
Guedes, Herbert Leonel de Matos
dc.subject.por.fl_str_mv Linfócitos B-1
Inflamação
Modulação
topic Linfócitos B-1
Inflamação
Modulação
B-1 lymphocytes
Inflammation
Modulation
Medicina Veterinária
dc.subject.eng.fl_str_mv B-1 lymphocytes
Inflammation
Modulation
dc.subject.cnpq.fl_str_mv Medicina Veterinária
description A inflamação é uma reação fisiológica do organismo a um agente agressor e pode ser desencadeada por uma infecção e/ou por uma injúria. A fase aguda desse processo é uma resposta rápida e ocorre nos primeiros minutos e horas após o reconhecimento do patógeno. Sua resolução geralmente resulta na eliminação dos agentes infecciosos e reparo da arquitetura e função normais dos tecidos. A fase crônica se instaura quando as tentativas de restabelecimento da homeostase não são bem-sucedidas. Muitas vezes, apenas a ação dos fagócitos é suficiente para conter a inflamação, entretanto, se o estímulo nocivo perdurar, outros agentes do sistema imunológico são acionados, configurando a inflamação dentro da resposta adaptativa. As células dendríticas fazem a ligação entre a resposta imune inata e a adaptativa, pois são especializadas em processar e expor fragmentos dos antígenos para os linfócitos T. Esses, por sua vez, auxiliam na ativação de linfócitos B, que são células capazes de produzir e secretar anticorpos e formar células de memória. Os linfócitos B-1 constituem uma subpopulação de linfócitos B e têm como características a produção de anticorpos naturais, apresentação de antígenos aos linfócitos T e a liberação de várias citocinas, dentre elas a citocina anti-inflamatória IL-10. Assim, eles têm o potencial de modular a resposta inflamatória. Neste trabalho, nós avaliamos a dinâmica populacional dos leucócitos no sangue e na cavidade peritoneal de camundongos BALB/c e XID durante a resposta inflamatória aguda desencadeada por LPS. Para isso, usamos camundongos XID, cujo peritônio é um ambiente com pouquíssimos linfócitos B-1. Nossos resultados revelaram que os animais XID, espontaneamente, tem um número elevado de neutrófilos no sangue periférico e essa população fica ainda maior após a estimulação com LPS. Concomitantemente, altos níveis de IL-6 foram detectados. Além disso, a cavidade peritoneal desses animais também tem quantidade maior de neutrófilos, em comparação com camundongos BALB/c. Esse dado não sofre alteração após estimulação em nossas condições experimentais. Nos ensaios com fagócitos, observamos que o número de macrófagos capazes de fagocitar é estatisticamente igual entre BALB/c e XID, mas o número de leveduras internalizadas é menor no grupo XID LPS+IFN-γ. Isso sugere uma maior atividade microbicida dos macrófagos desses camundongos. Esse resultado é corroborado pela dosagem de nitrito no sobrenadante das culturas, na qual os macrófagos XID estimulados produziram mais óxido nítrico que o grupo controle. Nossos resultados, em conjunto, sugerem uma habilidade em desenvolver resposta inflamatória mais intensa nos camundongos XID em comparação com camundongos BALB/c, provavelmente devido a baixa produção da citocina anti-inflamatória IL-10. Logo, nossa análise reporta pela primeira vez que camundongos XID possuem número aumentado na população de neutrófilos no sangue e cavidade peritoneal, quando comparado com BALB/c, indicando a importância dos linfócitos B-1 na modulação da resposta inflamatória e sugerindo que esses possam ser futuros alvos de investigações em estratégias de imunoterapia
publishDate 2020
dc.date.issued.fl_str_mv 2020-02-17
dc.date.accessioned.fl_str_mv 2023-12-22T01:57:07Z
dc.date.available.fl_str_mv 2023-12-22T01:57:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CORREIA, Carolina de Albuquerque. Influência de linfócitos B-1 na dinâmica de leucócitos de animais deficientes da Tirosina Quinase de Bruton (XID). 2020. 36 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/11805
identifier_str_mv CORREIA, Carolina de Albuquerque. Influência de linfócitos B-1 na dinâmica de leucócitos de animais deficientes da Tirosina Quinase de Bruton (XID). 2020. 36 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/11805
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ARNARDOTTIR, H.H.; FREYSDOTTIR, J.; HARDARDOTTIR, I. Dietary fish oil increases the proportion of a specific neutrophil subpopulation in blood and total neutrophils in peritoneum of mice following endotoxin-induced inflammation. The Journal of Nutritional Biochemistry, v. 24, n. 1, p. 248-255, 2013. ARCANJO, A.F.; LAROCQUE-DE-FREITAS, I.F.; ROCHA, J.D.B.; ZAMITH, D.; COSTA-DA-SILVA, A.C.; NUNES, M.P.; MESQUITA-SANTOS, F.P.; MORROT, A.; FILARDY, A.A.; MARIANO, M.; BANDEIRA-MELO, C.; DOSREIS, G.A.; DECOTE-RICARDO, D.; FREIRE-DE-LIMA, C.G. The PGE2/IL-10 axis determines susceptibility of B-1 cell-derived phagocytes (B-1CDP) to Leishmania major infection. PLoS One, v. 10, n. 5, 2015. ARCANJO, A.F. ; NICO, D. ; CASTRO, G.M.M.; FONTES, Y.S.; SALTARELLI, P.; DECOTE-RICARDO, D.; NUNES, M.P.; FERREIRA-PEREIRA, A.; PALATINIK-DE-SOUSA, C.B.; FREIRE-DE-LIMA, C.G.; MORROT, A. Dependency of B-1 cells in the maintenance of splenic interleukin-10 producing cells and impairment of macrophage resistance in visceral leishmaniasis. Frontiers in Microbiology, v. 8, n. 978, p. 1-7, 2017a. ARCANJO, A.F.; NUNES, M.P.; SILVA-JUNIOR, E.B.; LEANDRO, M.; ROCHA, J.D.B.; MORROT, A.; DECOTE-RICARDO, D.; FREIRE-DE-LIMA, C.G. B-1 cells modulate the murine macrophage response to Leishmania major infection. World Journal of Biological Chemistry, v. 8, n. 2, p. 151-162, 2017b. AZIZ, M.; HOLODICK, N.E.; ROTHSTEIN, T.L.; WANG, P. The role of B-1 cells in inflammation. Immunologic Research, v. 63, n. 1-3, p. 153-166, 2015. BARBEIRO, D.F.; BARBEIRO, H.V.; FAINTUCH, J.; ARIGA, S.K.K.; MARIANO, M.; POPI, A.F.; SOUZA, H.P.; VELASCO, I.T.; SORIANO, F.G. B-1 cells temper endotoxemic inflammatory responses. Immunobiology, v. 216, n. 3, p. 02-308, 2011. BAUMGARTH, N. Innate-like B cells and their rules of engagement. In: KATSIKIS, P.; SCHOENBERGER, S.; PULENDRAN, B. (eds.). Crossroads between innate and adaptive immunity IV. 1. ed. Nova Iorque: Springer, 2013. cap. 7, p. 57-66. BAUMGARTH, N. A Hard(y) look at B-1 cell development and function. Journal of Immunology, v. 199, n. 10, p. 3387-3394, 2017. BAUMGARTH, N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nature Reviews Immunology, v. 11, n. 1, p. 34-46, 2011. CHAMBERLAIN, J.L.; ATTRIDGE, K.; WANG, C.J.; RYAN, G.A.; WALKER, L.S.K. B cell depletion in autoimmune diabetes: insights from murine models. Expert Opinion on Therapeutic Targets, v. 15, n. 6, p. 703-714, 2011. CHOI, Y.S.; BAUMGARTH, N. Dual role for B-1a cells in immunity to influenza virus infection. The Journal of Experimental Medicine, v. 205, n. 13, p. 3053-3064, 2008. 29 COSTA, L.F.V.; ALVARES-SARAIVA, A.M.; ROCHA, P.R.D.A.; SPADACCI-MORENA, D.D.; PEREZ, E.C.; MARIANO, M.; LALLO, M.A. B-1 cell decreases susceptibility to encephalitozoonosis in mice. Immunobiology, v. 222, n. 2, p. 218-227, 2017. CRANE, D.D.; GRIFFIN, A.J.; WEHRLY, T.D.; BOSIO, C.M. B1a cells enhance susceptibility to infection with virulent Francisella tularensis via modulation of NK/NKT cell responses. Journal of Immunology, v. 190, p. 2756-2766, 2013. DENG, J.; WANG, X.; CHEN, Q.; SUN, X.; XIAO, F.; KO, K.H.; ZHANG, M.; LU, L. B1a cells play a pathogenic role in the development of autoimmune arthritis. Oncotarget, v. 7, n. 15, p. 19299-19311, 2016. FEEHAN, K.T.; GILROY, D.W. Is resolution the end of inflammation? Trends in Molecular Medicine, v. 25, n. 3, p. 198-214, 2019. GEHERIN, S.A. ; GÓMEZ, D.; GLABMAN, R.A.; RUTHEL, G.; HAMANN, A.; DEBES, G.F. IL-10+ Innate-like B cells are part of the skin immune system and require α4β1 integrin to migrate between the peritoneum and inflamed skin. The Journal of Immunology. v. 196, n. 6, p. 2514-2525, 2016. GIL, Á. Polyunsaturated fatty acids and inflammatory diseases. Biomedicine & Pharmacotherapy, v. 56, n. 8, p. 388-396, 2002. GONZAGA, R.; MATZINGER, P.; PEREZ-DIEZ, A. Resident peritoneal NK cells. Journal of Immunology, v. 187, n. 12, p. 6235-6242, 2011. GRIFFIN, D.O.; HOLODICK, N.E.; ROTHSTEIN, T.L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70−. Journal of Experimental Medicine, v. 208, n. 1, p. 67-80, 2011a. GRIFFIN, D.O.; ROTHSTEIN, T.L. A small CD11b+ human B1 cell subpopulation stimulates T cells and is expanded in lupus. Journal of Experimental Medicine, v. 208, n. 13, p. 2591-2598, 2011b. GRIFFIN, D.O.; ROTHSTEIN, T.L. Human “orchestrator” CD11b+ B1 cells spontaneously secrete interleukin-10 and regulate T-cell activity. Molecular Medicine, v. 18, n. 6, p. 1003-1008, 2012. HAAS, K.M.; POE, J.C.; STEEBER, D.A.; TEDDER, T.F. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity, v. 23, n. 1, p. 7–18, 2005. HARDY, R.R.; HAYAKAWA, K. Perspectives on fetal derived CD5+ B1 B cells. European Journal of Immunology, v. 45, n. 11, p. 2978-2984, 2015. HAUGHTON, G.; ARNOLD, L.W.; WHITMORE, A.C.; CLARKE, S.H. B-1 cells are made, not born. Immunology Today, v. 14, n. 2, p. 84-87, 1993. HAWIGER, J.; ZIENKIEWICZ, J. Decoding inflammation, its causes, genomic responses and emerging countermeasures. Scandinavian Journal of Immunology, v. 90, n. 6, 2019. 30 HAYAKAWA, K.; HARDY, R.R.; PARKS, D.R.; HERZENBERG, L.A. The "Ly-1 B" cell subpopulation in normal immunodefective, and autoimmune mice. Journal of Experimental Medicine, v. 157, n. 1, p. 202-218, 1983. HOFFMAN, W.; LAKKIS, F.G.; CHALASANI, G. B cells, antibodies, and more. Clinical Journal of the American Society of Nephrology, v. 11, n. 1, p. 137-154, 2015. IQBAL, A.J.; FISHER, E.A.; GREAVES, D.R. Inflammation – a critical appreciation of the role of myeloid cells. Microbiology Spectrum, v. 4, n. 5, 2016. KANTOR, A.B.; HERZENBERG, L.A. Origin of murine B cell lineages. Annual Review of Immunology, v. 11, n. 1, p. 501-538, 1993. KONDRATIEVA, T.K.; RUBAKOVA, E.I.; EVSTIFEEV, V.V.; MAJOROV, K.B.; APT, A.S. B cells delay neutrophil migration toward the site of stimulus: tardiness critical for effective bacillus Calmette-Guérin vaccination against tuberculosis infection in mice. Journal of Immunology. v. 184, n. 3, p. 1227-1234, 2010. KUBES, P. The enigmatic neutrophil: what we do not know. Cell And Tissue Research. v. 371, n. 3, p.399-406, 2018. LALOR, P.A.; HERZENBERG, L.A.; ADAMS, S.; STALL, A.M. Feedback regulation of murine Ly‐1 B cell development. European Journal of Immunology, v. 19, n. 3, p. 507-513, 1989. LAMBDEN, S. Bench to bedside review: therapeutic modulation of nitric oxide in sepsis—an update. Intensive Care Medicine Experimental. v. 7, n. 1, p.1-14, 2019. LEE, J.G.; JANG, J.Y.; FANG, T.; XUAN, X.Y.; YAN, J.J.; RYU, J.H.; JEON, H.J.; KOO, T.Y.; KIM, D.K.; OH, K.H.; KIM, T.J.; YANG, J. Identification of human B-1 helper T cells with a Th1-like memory phenotype and high integrin CD49d expression. Frontiers in Immunology, v. 9, n. 1617, 2018. LIEW, P.X.; KUBES, P. The neutrophil’s role during health and disease. Physiological Reviews. v. 99, n. 2, p.1223-1248, 2019. LOPES, J.D.; MARIANO, M. B-1 cell: the precursor of a novel mononuclear phagocyte with immuno-regulatory properties. Anais da Academia Brasileira de Ciências, v. 81, n. 3, p. 489-496, 2009. MAKAROV, S.S. NF-κB as a therapeutic target in chronic inflammation: recent advances. Molecular medicine today, v. 6, n. 11, p. 441-448, 2000. MANFREDI, A.A.; RAMIREZ, G.A.; QUERINI, P.R.; MAUGERI, N. The neutrophil’s choice: phagocytose vs make neutrophil extracellular traps. Frontiers in Immunology. v. 9, p.1-13, 2018. MEDZHITOV, R. Origin and physiological roles of inflammation. Nature, v. 545, n. 7203, p. 428-435, 2008. 31 MEURER, S.K.; NEß, M.; WEISKIRCHEN, S.; KIM, P.; TAG, C.G.; KAUFFMANN, M.; HUBER, M.; WEISKIRCHEN, R. Isolation of mature (peritoneum-derived) mast cells and immature (bone marrow-derived) mast cell precursors from mice. PLoS One, v. 11, n. 6, p. e0158104, 2016. MEYER‐BAHLBURG, A. B‐1 cells as a source of IgA. Annals of the New York Academy of Sciences, v. 1362, n. 1, p. 122-131, 2015. MINOPRIO, P.; EL CHEIKH, M.C.; MURPHY, E.; HONTEBEYRIE-JOSKOWICZ, M.; COFFMAN, R.; COUTINHO, A.; O'GARRA, A. Xid-associated resistance to experimental Chagas' disease is IFN-gamma dependent. Journal of Immunology, v. 151, n. 8, p. 4200-4208, 1993. MONTECINO-RODRIGUEZ, E.; DORSHKIND, K. B-1 B cell development in the fetus and adult. Immunity, v. 36, n. 1, p. 13-21, 2012. MONTECINO-RODRIGUEZ, E.; DORSHKIND, K. New perspectives in B-1 B cell development and function. Trends in Immunology, v. 27, n. 9, p. 428-433, 2006. MOON, H.; LEE, J.G.; SHIN, S.H.; KIM, T.J. LPS-induced migration of peritoneal B-1 cells is associated with upregulation of CXCR4 and increased migratory sensitivity to CXCL12. Journal of Korean Medical Science. v. 27, n. 1, p. 27-35, 2012. MORRIS, G.; PURI, B.K.; OLIVE, L.; CARVALHO, A.F.; BERK, M.; MAES, M. Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacological Research, v. 148, p. 1-14, 2019. MUKHOPADHYAY, S.; SAHOO, P.K.; GEORGE, A.; BAL, V.; RATH, S.; RAVINDRAN, B. Delayed clearance of filarial infection and enhanced Th1 immunity due to modulation of macrophage APC functions in xid mice. Journal of Immunology. v. 163, n. 2, p. 875-883, 1999. NÉMETH, T.; SPERANDIO, M.; MÓCSAI, A. Neutrophils as emerging therapeutic targets. Nature Reviews Drug Discovery. p.1-23, 2020. NOAL, V.; SANTOS, S.; FERREIRA, K.S.; ALMEIDA, S.R. Infection with Paracoccidioides brasiliensis induces B-1 cell migration and activation of regulatory T cells. Microbes and Infection, v. 18, n. 12, p. 798-803, 2016. OGAWA, M.; SATOH, M.; KATAOKA, M.; ANDO, S.; SAIJO, M. Nitric oxide enhanced the growth of an obligated intracellular bacterium Orientia tsutsugamushi in murine macrophages. Microbial Pathogenesis. v. 107, p.335-340, 2017. OLIVEIRA, H.C.; POPI, A.F.; BACHI, A.L.; NONOGAKI, S.; LOPES, J.D.; MARIANO, M. B-1 cells modulate the kinetics of wound-healing process in mice. Immunobiology. v. 215, n. 3, p. 215-222, 2010. POPI, A.F. B‐1 phagocytes: the myeloid face of B‐1 cells. Annals of the New York Academy of Sciences, v. 1362, n. 1, p. 86-97, 2015. 32 POPI, A.F.; GODOY, L.C.; XANDER, P.; LOPES, J.D.; MARIANO, M. B-1 cells facilitate Paracoccidioides brasiliensis infection in mice via IL-10 secretion. Microbes and Infection, v. 10, n. 7, p. 817-824, 2008. POPI, A.F.; LONGO-MAUGÉRI, I.M.; MARIANO, M. An overview of B-1 cells as antigen-presenting cells. Frontiers in Immunology, v. 7, p. 138-143, 2016. POPI, A.F.; LOPES, J.D.; MARIANO, M. Interleukin‐10 secreted by B‐1 cells modulates the phagocytic activity of murine macrophages in vitro. Immunology, v. 113, n. 3, p. 348-354, 2004. RAJAEE, A.; BARNETT, R.; CHEADLE, W.G. Pathogen- and danger-associated molecular patterns and the cytokine response in sepsis. Surgical Infections, v. 19, n. 2, p. 1-10, 2018. RAY, A.; DITTEL, B.N. Isolation of mouse peritoneal cavity cells. Journal of Visualized Experiments, n. 35, p. e1488, 2010. REKOW, M.M.; DARRAH, E.J.; MBOKO, W.P.; LANGE, P.T.; TARAKANOVA, V.L. Gammaherpesvirus targets peritoneal B-1 B cells for long-term latency. Virology, v. 492, 140-144, 2016. ROCHA, R.F.D.B.; LAROCQUE-DE-FREITAS, I.F.; ARCANJO, A.F.; LOGULLO, J.; NUNES, M.P.; FREIRE-DE-LIMA, C.G.; DECOTE-RICARDO, D. B-1 cells may drive macrophages susceptibility to Trypanosoma cruzi infection. Frontiers in Microbiology, v. 10, p. 1598, 2019. ROTHSTEIN, T.L.; GRIFFIN, D.O.; HOLODICK, N.E.; QUACH, T.D.; KAKU, H. Human B-1 cells take the stage. Annals of the New York Academy of Sciences, v. 1285, p. 97-114, 2013. RYAN, G.A.; WANG, C.J.; CHAMBERLAIN, J.L.; ATTRIDGE, K.; SCHMIDT, E.M.; KENEFECK, R.; CLOUGH, L.E.; DUNUSSI-JOANNOPOULOS, K.; TOELLNER, K.M.; WALKER, L.S.K. B1 cells promote pancreas infiltration by autoreactive T cells. Journal of Immunology, v. 185, n. 5, p. 2800-2807, 2010. SAID, A.; WEINDL, G. Regulation of dendritic cell cell function in inflammation. Journal of Immunology Research, v. 2015, p. 1-15, 2015. SAVAGE, H.P.; BAUMGARTH, N. Characteristics of natural antibody–secreting cells. Annals of the New York academy of sciences, v. 1362, n. 1, p. 132-142, 2015. SIMÃO-GURGE, R.M.; COSTA-CARVALHO, B.T.; NOBRE, F.A.; GONZALEZ, I.G.; MORAES-PINTO, M.I. Prospective evaluation of Streptococcus pneumoniae serum antibodies in patients with primary immunodeficiency on regular intravenous immunoglobulin treatment. Allergologia et Immunopathologia, v. 45, n. 1, p. 5562, 2017. SINGH, S.P.; DAMMEIJER F.; HENDRIKS, R.W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Molecular Cancer, v. 17, n. 1, p. 57, 2018. 33 STALL, A.M.; WELLS, S.M.; LAM, K.P. B-1 cells: unique origins and functions. Seminars in Immunology, v. 8, n. 1, p. 45-59, 1996. TANAKA, Y.; KUBO, S.; IWATA, S.; YOSHIKAWA, M.; NAKAYAMADA, S. B cell phenotypes, signaling and their roles in secretion of antibodies in systemic lupus erythematosus. Clinical Immunology, v. 186, p. 21-25, 2018. TANG, D.; KANG, R.; COYNE, C.B.; ZEH, H.J.; LOTZE, M.T. PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunological Reviews, v. 249, n. 1, p. 158-175, 2012. TOLAR, P. Cytoskeletal control of B cell responses to antigens. Nature Reviews Immunology. v. 17, n. 10, p. 621-634, 2017. TREANOR, B. B‐cell receptor: from resting state to activate. Immunology. v. 136, n. 1, p. 21-27, 2012. TUNG, J.W.; PARKS, D.R.; MOORE, W.A.; HERZENBERG, L.A.; HERZENBERG, L.A. Identification of B-cell subsets – An exposition of 11-color (Hi-D) FACS methods. In: GU, H.; RAJEWSKY, K. (eds). B cell protocols. Springer, 2004. v. 271, p. 37-58. VALE, A.M.; KEARNEY, J.F.; NOBREGA, A.; SCHROEDER, H.W. Development and Function of B Cell Subsets. In: ALT, F.W.; HONJO, T.; RADBRUCH, A.; RETH, M. (eds.). Molecular biology of B cells. 2. ed. Elsevier, 2015. cap. 7, p. 99-119. VARELA, M.L.; MOGILDEA, M.; MORENO, I.; LOPES, A. Acute inflammation and metabolism. Inflammation. v. 41, n. 4, p. 1115-1127, 2018. ZHANG, C.; SHU, W. ; ZHOU, G. ; LIN, L. ; CHU, F. ; WU, H. ; LIU, Z. Anti-TNF-α therapy suppresses proinflammatory activities of mucosal neutrophils in inflammatory bowel disease. Mediators of Inflammation. v. 2018, p.1-12, 2018
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Veterinárias
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Veterinária
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11805/1/2020%20-%20Carolina%20de%20Albuquerque%20Correia.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11805/2/2020%20-%20Carolina%20de%20Albuquerque%20Correia.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11805/3/2020%20-%20Carolina%20de%20Albuquerque%20Correia.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11805/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
94824ffa21b3fc46b0a6337a7498394b
76a0159a37b04dc949d8e525b50b563c
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108056187437056