Análise de fontes de incerteza na modelagem espacial do solo

Detalhes bibliográficos
Autor(a) principal: Rosa, Alessandro Samuel
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/9041
Resumo: A modelagem espacial do solo moderna usa modelos estatísticos para explorar a relação em-pírica entre as condições ambientais e as propriedades do solo. Esses modelos são uma sim-plificação da realidade, e seu resultado (mapa do solo) estará sempre errado. O que um mapa do solo transmite é o que esperamos que o solo seja, reconhecendo que somos incertos sobre ele. O objetivo dessa tese é avaliar importantes fontes de incerteza na modelagem espacial do solo, com ênfase nos dados do solo e covariáveis. Estudos de caso foram desenvolvidos usando dados de uma bacia hidrográfica do sul do Brasil. A distribuição espacial do solo na área de estudo é variável, sendo determinada pela geologia e geomorfologia (escalas espaciais maiores) e práticas agrícolas (escalas espaciais menores). Quatro propriedades do solo foram explora-das: teor de argila, teor de carbono orgânico, capacidade de troca catiônica efetiva e densidade. Cinco covariáveis, cada um com dois níveis de detalhe espacial, foram utilizadas: mapas areais de classes de solo, modelos digitais de elevação, mapas geológicos, mapas de uso da terra, e imagens de satélite. Esses dados constituem o conjunto de dados de Santa Maria. Dois paco-tes para R foram criados, o primeiro (pedometrics) contendo várias funções para a análise exploratória espacial de dados e calibração de modelos, o segundo (spann) projetado para a optimização de amostras espaciais usando recozimento simulado. Os estudos de caso ilustraram que as covariáveis existentes são apropriadas para calibrar modelos espaciais do solo, e que o uso de covariáveis mais detalhadas resulta em modesto aumento na acurácia de predição que pode não compensar os custos adicionais. Meios mais eficientes de aumentar a acurácia de pre-dição devem ser explorados, como obter mais observações do solo. Para esse fim, deve-se usar meios objetivos para a seleção dos locais de observação a fim de minimizar os efeitos das res-postas psicológicas dos modeladores do solo a fatores conceituais e operacionais sobre o plano de amostragem. Isso porque as dificuldades conceituais e operacionais encontradas no campo determinam mudanças na motivação dos modeladores do solo entre aprendizagem/verificação das relações solo-paisagem e maximização do número de observações e cobertura geográfica. Para estimar a tendência espacial, deve ser suficiente otimizar as amostras espaciais visando so-mente reproduzir a distribuição marginal das covariáveis. Para otimizar configurações amostrais para estimar a tendência espacial e o variograma, e interpolação espacial, pode-se formular um problema de otimização multi-objetivo sólido usando versões robustas de algoritmos de amos-tragem existentes. No geral, aprendemos que uma receita única, universal para a redução da incerteza na modelagem espacial do solo não pode ser formulada. Decidir sobre formas efi-cazes de redução da incerteza requer, em primeiro lugar, que exploremos todo o potencial dos dados existentes usando técnicas de modelagem espacial sólidas.
id UFRRJ-1_3a7fd0e014f639fe5c86917687f67c30
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/9041
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Rosa, Alessandro SamuelAnjos, Lúcia Helena Cunha dos660.519.407-15Vasques, Gustavo de Mattos084.272.437-07Heuvelink, Gerardus Bernardus MariaNP7755C77 (Passaporte)Ceddia, Marcos BacisTeixeira, Wenceslau GeraldesOliveira, Ronaldo Pereira deAssad, Maria Leonor Ribeiro Casimiro Lopes007.024.020-52http://lattes.cnpq.br/16097515197174612023-12-21T18:33:49Z2023-12-21T18:33:49Z2016-02-24ROSA, Alessandro Samuel. Análise de fontes de incerteza na modelagem espacial do solo. 2016. 278 f. Tese (Doutorado em Agronomia - Ciência do Solo). Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.https://rima.ufrrj.br/jspui/handle/20.500.14407/9041A modelagem espacial do solo moderna usa modelos estatísticos para explorar a relação em-pírica entre as condições ambientais e as propriedades do solo. Esses modelos são uma sim-plificação da realidade, e seu resultado (mapa do solo) estará sempre errado. O que um mapa do solo transmite é o que esperamos que o solo seja, reconhecendo que somos incertos sobre ele. O objetivo dessa tese é avaliar importantes fontes de incerteza na modelagem espacial do solo, com ênfase nos dados do solo e covariáveis. Estudos de caso foram desenvolvidos usando dados de uma bacia hidrográfica do sul do Brasil. A distribuição espacial do solo na área de estudo é variável, sendo determinada pela geologia e geomorfologia (escalas espaciais maiores) e práticas agrícolas (escalas espaciais menores). Quatro propriedades do solo foram explora-das: teor de argila, teor de carbono orgânico, capacidade de troca catiônica efetiva e densidade. Cinco covariáveis, cada um com dois níveis de detalhe espacial, foram utilizadas: mapas areais de classes de solo, modelos digitais de elevação, mapas geológicos, mapas de uso da terra, e imagens de satélite. Esses dados constituem o conjunto de dados de Santa Maria. Dois paco-tes para R foram criados, o primeiro (pedometrics) contendo várias funções para a análise exploratória espacial de dados e calibração de modelos, o segundo (spann) projetado para a optimização de amostras espaciais usando recozimento simulado. Os estudos de caso ilustraram que as covariáveis existentes são apropriadas para calibrar modelos espaciais do solo, e que o uso de covariáveis mais detalhadas resulta em modesto aumento na acurácia de predição que pode não compensar os custos adicionais. Meios mais eficientes de aumentar a acurácia de pre-dição devem ser explorados, como obter mais observações do solo. Para esse fim, deve-se usar meios objetivos para a seleção dos locais de observação a fim de minimizar os efeitos das res-postas psicológicas dos modeladores do solo a fatores conceituais e operacionais sobre o plano de amostragem. Isso porque as dificuldades conceituais e operacionais encontradas no campo determinam mudanças na motivação dos modeladores do solo entre aprendizagem/verificação das relações solo-paisagem e maximização do número de observações e cobertura geográfica. Para estimar a tendência espacial, deve ser suficiente otimizar as amostras espaciais visando so-mente reproduzir a distribuição marginal das covariáveis. Para otimizar configurações amostrais para estimar a tendência espacial e o variograma, e interpolação espacial, pode-se formular um problema de otimização multi-objetivo sólido usando versões robustas de algoritmos de amos-tragem existentes. No geral, aprendemos que uma receita única, universal para a redução da incerteza na modelagem espacial do solo não pode ser formulada. Decidir sobre formas efi-cazes de redução da incerteza requer, em primeiro lugar, que exploremos todo o potencial dos dados existentes usando técnicas de modelagem espacial sólidas.CNPqModern soil spatial modelling is based on statistical models to explore the empirical relation-ship among environmental conditions and soil properties. These models are a simplification of reality, and their outcome (soil map) will always be in error. What a soil map conveys is what we expect the soil to be, acknowledging that we are uncertain about it. The objective of this thesis is to evaluate important sources of uncertainty in spatial soil modelling, with emphasis on soil and covariate data. Case studies were developed using data from a catchment located in Southern Brazil. The soil spatial distribution in the study area is highly variable, being deter-mined by the geology and geomorphology (coarse spatial scales), and by agricultural practices (fine spatial scales). Four topsoil properties were explored: clay content, organic carbon con-tent, effective cation exchange capacity and bulk density. Five covariates, each with two levels of spatial detail, were used: area-class soil maps, digital elevation models, geologic maps, land use maps, and satellite images. These soil and covariate data constitute the Santa Maria dataset. Two packages for R were created in support to the case studies, the first (pedometrics) con-taining various functions for spatial exploratory data analysis and model calibration, the second (spsann) designed for the optimization of spatial samples using simulated annealing. The case studies illustrated that existing covariates are suitable for calibrating soil spatial models, and that using more detailed covariates results in only a modest increase in the prediction ac-curacy that may not outweigh the extra costs. More efficient means of increasing prediction accuracy should be explored, such as obtaining more soil observations. For this end, one should use objective means for selecting observation locations to minimize the effects of psycholog-ical responses of soil modellers to conceptual and operational factors on the sampling design. This because conceptual and operational difficulties encountered in the field determine how the motivation of soil modellers shifts between learning/verifying soil-landscape relationships and maximizing the number of observations and geographic coverage. For the sole purpose of spa-tial trend estimation, it should suffice to optimize spatial samples aiming only at reproducing the marginal distribution of the covariates. For the joint purpose of optimizing sample configu-rations for spatial trend and variogram estimation, and spatial interpolation, one can formulate a sound multi-objective optimization problem using robust versions of existing sampling algo-rithms. Overall, we have learned that a single, universal recipe for reducing our uncertainty in soil spatial modelling cannot be formulated. Deciding upon efficient ways of reducing our uncertainty requires, first, that we explore the full potential of existing soil and covariate data using sound spatial modelling techniques.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Agronomia - Ciência do SoloUFRRJBrasilInstituto de AgronomiaPedometricsDigital Soil MappingSoil and Covariate DataPedometriaMapeamento Digital do SoloDados de Solo e CovariáveisAgronomiaAnálise de fontes de incerteza na modelagem espacial do soloAnalysis of sources of uncertainty in soil spatial modelling.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisAARTS, E. H. L.; KORST, J. H. M. Boltzmann machines for travelling salesman problems. European Journal of Operational Research, Elsevier BV, v. 39, n. 1, p. 79–95, Mar 1989. ISSN 0377-2217. ABRÃO, P. U. R.; GIANLUPE, D.; AZOLIN, M. A. D. Levantamento semi-detalhado dos solos da Estação Experimental de Silvicultura de Santa Maria. Porto Alegre, 1988. AERTS, J. C. J. H.; HEUVELINK, G. B. M. Using simulated annealing for resource allocation. International Journal of Geographical Information Science, v. 16, n. 6, p. 571–587, 2002. ISSN 13658816. AGRESTI, A. Categorical data analysis. 2. ed. New York: Wiley-Interscience, 2002. 710 p. ISBN 0471360937. Disponível em: <http://www.stat.ufl.edu/~aa/cda2/cda.html>. ANDERSEN, C. M.; BRO, R. Variable selection in regression – a tutorial. Journal of Chemometrics, v. 24, n. 11–12, p. 728–737, 2010. ANTUNES, M. A. H.; SIQUEIRA, J. C. S. Características das imagens RapidEye para mapeamento e monitoramento agrícola e ambiental. In: EPIPHANIO, J. C. N.; GALVÃO, L. S. (Ed.). Anais XVI Simpósio Brasileiro de Sensoriamento Remoto. São José dos Campos: Instituto Nacional de Pesquisas Espaciais, 2013. p. 547–554. Disponível em: <http://www.dsr.inpe.br/sbsr2013/files/p1253.pdf>. ARORA, J. Introduction to optimum design. 3. ed. Waltham: Academic Press, 2011. 896 p. ISBN 978-0-12-381375-6. AZOLIN, M. A. D. Podologia das áreas marginais dos rios Ibicuí e Vacacaí. Porto Alegre, 1977. 71 p. AZOLIN, M. A. D.; MUTTI, L. S. M. Solos da bacia hidrográfica do Vacacaí-Mirim. Porto Alegre: DNOS-UFSM, 1988. 20 p. Disponível em: <http://1drv.ms/UAFIOK>. BADDELEY, A. Analysing spatial point patterns in R. Canberra, 2010. 232 p. Disponível em: <http://www.coactivate.org/projects/plein-r/project-home/Baddeley_SPP-workshop_CSIRO_ 2008.pdf>. BADDELEY, A. J.; MOLLER, J.; WAAGEPETERSEN, R. Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerland, Wiley- Blackwell, v. 54, n. 3, p. 329–350, Nov 2000. ISSN 1467-9574. BARRERA-BASSOLS, N.; ZINCK, J. A. Ethnopedology: a worldwide view on the soil knowledge of local people. Geoderma, v. 111, p. 171–195, 2003. Disponível em: <http://linkinghub.elsevier.com/retrieve/pii/S001670610200263X>. BASHER, L. R. Is pedology dead and buried? Australian Journal of Soil Research, v. 35, p. 979–994, 1997. Disponível em: <http://www.publish.csiro.au/paper/S96110>. BATLLE-BAYER, L.; BATJES, N. H.; BINDRABAN, P. S. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture, Ecosystems & Environment, Elsevier BV, v. 137, n. 1-2, p. 47–58, apr 2010. BAZAGLIA FILHO, O.; RIZZO, R.; LEPSCH, I. F.; PRADO, H. do; GOMES, F. H.; MAZZA, J. A.; DEMATTÊ, J. A. M. Comparison between detailed digital and conventional soil maps of an area with complex geology. Revista Brasileira de Ciência do Solo, FapUNIFESP (SciELO), v. 37, n. 5, p. 1136–1148, 2013. BEHRENS, T.; ZHU, A. X.; SCHMIDT, K.; SCHOLTEN, T. Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma, v. 155, n. 3–4, p. 175–185, 2010. ISSN 0016-7061. BIRKELAND,W. Soils and geomorphology. 3. ed. New York: Oxford University Press., 1999. 430 p. BIVAND, R. S.; PEBESMA, E. J.; GÓMEZ-RUBIO, V. Applied spatial data analysis with R. 1. ed. New York: Springer, 2008. 374 p. BIVAND, R. S.; PEBESMA, E. J.; GÓMEZ-RUBIO, V. Applied spatial data analysis with R. 2. ed. New York: Springer, 2013. 405 p. BLANCO-CANQUI, H.; LAL, R. Principles of soil conservation and management. Dordrecht: Springer, 2008. 617 p. ISBN 9048185297. BOCKHEIM, J. G.; GENNADIYEV, A. N. The role of soil-forming processes in the definition of taxa in soil taxonomy and the world soil reference base. Geoderma, v. 95, n. 1, p. 53–72, 2000. BOCKHEIM, J. G.; GENNADIYEV, A. N. Soil-factorial models and earth-system science: a review. Geoderma, Elsevier BV, v. 159, n. 3–4, p. 243–251, Nov 2010. ISSN 0016-7061. BONEZZI, A.; BRENDL, C. M.; ANGELIS, M. D. Stuck in the middle: the psychophysics of goal pursuit. Psychological Science, v. 22, n. 5, p. 607–612, 2011. BONNES, M.; BONAIUTO, M. Environmental psychology: from spatial-physical environment to sustainable development. In: . Handbook of environmental psychology. New York: John Wiley & Sons, 2002. p. 28–54. BORTOLUZZI, C. A. Contribuição à geologia da região de Santa Maria, Rio Grande do Sul, Brasil. Pesquisas em Geociências, v. 4, n. 1, p. 7–86, 1974. Disponível em: <http://seer.ufrgs.br/PesquisasemGeociencias/article/view/21834>. BOX, G. E. P. Science and statistics. Journal of the American Statistical Association, v. 71, n. 356, p. 791–799, 1976. Disponível em: <http://www.jstor.org/stable/2286841>. BOX, G. E. P.; WILSON, K. B. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B (Methodological), Wiley for the Royal Statistical Society, v. 13, n. 1, p. 1–45, 1951. ISSN 00359246. Disponível em: <http://www.jstor.org/stable/2983966>. BRASIL. Levantamento de reconhecimento dos solos do estado do Rio Grande do Sul. Recife: Ministério da Agricultura. Departamento Nacional de Pesquisa Agropecuária. Divisão de Pesquisa Pedológica, 1973. 431 p. Escala 1:750 000. Disponível em: <http://library.wur.nl/isric/fulltext/isricu_i00003061_001.pdf>. BRASIL. Mapa geológico da folha Santa Maria. Santa Maria, 1980. (1:50 000). BRASIL. Decreto nº 89.817, de 20 de junho de 1984. Estabelece as Instruções Reguladoras das Normas Técnicas da Cartografia Nacional. Brasília: Diário Oficial da República Federativa do Brasil], 1984. 8884–8886 p. Disponível em: <http: //www.concar.ibge.gov.br/detalheDocumentos.aspx?cod=8>. BRASIL. Geo catálogo do Ministério do Meio Ambiente – manual de uso. 1.0. ed. Brasília, 2012. 35 p. Disponível em: <http://geocatalogo.mma.gov.br/>. BREGT, A. K.; BOUMA, J.; JELLINEK, M. Comparison of thematic maps derived from a soil map and from kriging of point data. Geoderma, Elsevier BV, v. 39, n. 4, p. 281–291, may 1987. Disponível em: <http://dx.doi.org/10.1016/0016-7061(87)90048-6>. BREIMAN, L. Random forests. Machine Learning, Springer Science + Business Media, v. 45, n. 1, p. 5–32, 2001. ISSN 0885-6125. BRESLER, E.; GREEN, R. E. Soil parameters and sampling scheme for characterizing soil hydraulic properties of a watershed. Honolulu, 1982. 42 p. Technical Report 148. Disponível em: <http://hdl.handle.net/10125/1983>. BREVIK, E. C.; HARTEMINK, A. E. Early soil knowledge and the birth and development of soil science. Catena, Elsevier BV, v. 83, n. 1, p. 23–33, oct 2010. Disponível em: <http://dx.doi.org/10.1016/j.catena.2010.06.011>. BRUS, D. J. Balanced sampling: a versatile sampling approach for statistical soil surveys. Geoderma, v. 253–254, p. 111–121, 2015. BRUS, D. J.; DE GRUIJTER, J. J. Estimation of non-ergodic variograms and their sampling variance by design-based sampling strategies. Mathematical Geology, Springer Science + Business Media, v. 26, n. 4, p. 437–454, May 1994. ISSN 1573-8868. BRUS, D. J.; DE GRUIJTER, J. J.; VAN GROENIGEN, J. W. Designing spatial coverage samples using the k-means clustering algorithm. In: LAGACHERIE, A. M. P.; VOLTZ, M. (Ed.). Digital soil mapping - an introductory perspective. Amsterdam: Elsevier, 2006, (Developments in Soil Science, v. 31). cap. 14, p. 183–192. BRUS, D. J.; HEUVELINK, G. B. M. Optimization of sample patterns for universal kriging of environmental variables. Geoderma, v. 138, p. 86–95, 2007. BRUS, D. J.; KEMPEN, B.; HEUVELINK, G. B. M. Sampling for validation of digital soil maps. European Journal of Soil Science, v. 62, n. 3, p. 394–407, 2011. BURROUGH, P. A. Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levels of soil variation. Journal of Soil Science, Wiley-Blackwell, v. 34, n. 3, p. 577–597, sep 1983. CAMARGO, M. N.; JACOMINE, P. K. T.; OLMOS, J.; CARVALHO, A. P. Proposição preliminar de conceituação e distinção de Podzólico Vermelho-Escuro. In: Conceituação sumária de algumas classes de solos recém-reconhecidas nos levantamentos e estudos de correlação do SNLCS. Rio de Janeiro: Serviço Nacional de Levantamento e Conservação do Solo, 1982. p. 7–12. Circular técnica 1. CAMBULE, A. H.; ROSSITER, D. G.; STOORVOGEL, J. J. A methodology for digital soil mapping in poorly-accessible areas. Geoderma, v. 192, n. 0, p. 341–353, 2013. CARRÉ, F.; MCBRATNEY, A. B.; MINASNY, B. Estimation and potential improvement of the quality of legacy soil samples for digital soil mapping. Geoderma, Elsevier BV, v. 141, n. 1-2, p. 1–14, Sep 2007. ISSN 0016-7061. CARRILLO, G. vec2dtransf: 2D cartesian coordinate transformation. [S.l.], 2012. 16 p. R package version 1.0. Disponível em: <http://CRAN.R-project.org/package=vec2dtransf>. CARVALHO, A. P. Conceituação de terra Bruna Estruturada. In: Conceituação sumária de algumas classes de solos recém-reconhecidas nos levantamentos e estudos de correlação do SNLCS. Rio de Janeiro: Serviço Nacional de Levantamento e Conservação do Solo, 1982. p. 21–24. (Circular técnica 1). CARVALHO, F. M.; MARCO, P. D.; FERREIRA, L. G. The Cerrado into-pieces: habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biological Conservation, Elsevier BV, v. 142, n. 7, p. 1392–1403, jul 2009. CARVALHO JR,W.; CHAGAS, C. S.; MUSELLI, A.; PINHEIRO, H. S. K.; PEREIRA, N. R.; BHERING, S. B. Conditioned Latin hypercube method for soil sampling in the presence of environmental covariates for digital soil mapping. Revista Brasileira de Ciência do Solo, v. 38, n. 2, p. 386–396, 2014. ISSN 0100-0683. CAVAZZI, S.; CORSTANJE, R.; MAYR, T.; HANNAM, J.; FEALY, R. Are fine resolution digital elevation models always the best choice in digital soil mapping? Geoderma, v. 195-196, n. 0, p. 111–121, 2013. ISSN 0016-7061. Cˇ ERNÝ, V. Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications, Springer Science + Business Media, v. 45, n. 1, p. 41–51, Jan 1985. ISSN 1573-2878. CHATFIELD, C. Model uncertainty, data mining and statistical inference. Journal of the Royal Statistical Society. Series A (Statistics in Society), v. 158, n. 3, p. 419–466, 1995. Disponível em: <http://www.jstor.org/stable/2983440>. CHRISTENSEN, O. F.; DIGGLE, P. J.; RIBEIRO JR, P. J. Analysing positive-valued spatial data: the transformed Gaussian model. In: MONESTIEZ, P.; ALLARD, D.; FROIDEVAUX, R. (Ed.). Proceedings of the Third European Conference on Geostatistics for Environmental Applications. Avignon: geoENVia Association, 2001. (Quantitative Geology and Geostatistics, v. 11), p. 287–298. CHURCHMAN, G. J. The philosophical status of soil science. Geoderma, Elsevier BV, v. 157, n. 3–4, p. 214–221, jul 2010. Disponível em: <http://dx.doi.org/10.1016/j.geoderma.2010.04. 018>. CLAESSEN, M. E. C.; BARRETO, W. O.; PAULA, J. L.; DUARTE, M. N. Manual de métodos de análise de solo. 2. ed. Rio de Janeiro: Embrapa, 1997. 212 p. CLIFFORD, D.; PAYNE, J. E.; PRINGLE, M.; SEARLE, R.; BUTLER, N. Pragmatic soil survey design using flexible Latin hypercube sampling. Computers & Geosciences, Elsevier BV, v. 67, p. 62–68, Jun 2014. ISSN 0098-3004. COETERIER, J. Cues for the perception of the size of space in landscapes. Journal of Environmental Management, v. 42, n. 4, p. 333–347, 1994. ISSN 0301-4797. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0301479784710760>. COMISSÃO PASTORAL DA TERRA. Carta aberta à Sociedade Brasileira e à Presidência da República e ao Congresso Nacional sobre a destruição do Cerrado pelo MATOPIBA. 2015. Eletronic. Carta final do I Encontro Regional dos Povos e Comunidades do Cerrado. Disponível em: <http://goo.gl/OgxdvS>. COOKE, R. M. Experts in uncertainty – opinion and subjective probability in science. Oxford: Oxford University Press, 1991. 321 p. CORREIA, J. R. Pedologia e conhecimento local: proposta metodológica de interlocução entre saberes construídos por pedólogos e agricultores em área de Cerrado em Rio Pardo de Minas, MG. 234 p. Tese (Doutorado) — Curso de Pós-graduação em Agronomia – Ciência do Solo, Universidade Federal Rural do Rio de Janeiro, 2005. Disponível em: <http://www.cpac.embrapa.br/quadro/87>. CPRM. Programa levantamentos geológicos básicos do Brasil - Agudo, Folha Sh.22-V-C-V, Estado do Rio Grande do Sul. Brasília: CPRM (Serviço Geológico do Brasil), 2007. 97 p. (1:100 000). CRAMÉR, H. Mathematical methods of statistics. Princeton: Princeton University Press, 1946. 575 p. ISBN 0-691-08004-6. CRESSIE, N. The origins of kriging. Mathematical Geology, Springer Science + Business Media, v. 22, n. 3, p. 239–252, apr 1990. CRESSIE, N. A. C. Statistics for spatial data. New York: John Wiley & Sons, 1993. 900 p. Disponível em: <http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471002550.html>. DALMOLIN, R. S. D. Faltam pedólogos no brasil. Boletim Informativo da Sociedade Brasileira de Ciência do Solo, v. 24, p. 13–15, 1999. DALMOLIN, R. S. D.; GONÇALVES, C. N.; DICK, D. P.; KNICKER, H.; KLAMT, E.; KÖGEL-KNABNER, I. Organic matter characteristics and distribution in Ferralsol profiles of a climosequence in southern Brazil. European Journal of Soil Science, v. 57, p. 644–654, 2006. DE GRUIJTER, J. J.; BRUS, D.; BIERKENS, M.; KNOTTERS, M. Sampling for natural resource monitoring. Berlin: Springer, 2006. 332 p. Disponível em: <http: //www.springer.com/environment/environmental+toxicology/book/978-3-540-22486-0>. DE GRUIJTER, J. J.; TER BRAAK, C. J. F. Model-free estimation from spatial samples: a reappraisal of classical sampling theory. Mathematical Geology, v. 22, p. 407–415, 1990. DEUTSCH, C. V. Annealing techniques applied to reservoir modeling and the integration of geological and engineering (well test) data. 306 p. Tese (Doutorado) — Department of Applied Earth Sciences, Stanford University, 1992. DIAS, J. R. Aplication of the AGNPS2001 utilizing observed data in the Vacacaí-Mirim River watershed. 118 p. Dissertação (Mestrado) — Programa de Pós-Graduação em Engenharia Civi, Universidade Federal de Santa Maria, Santa Maria, 2003. Disponível em: <http://w3.ufsm.br/ppgec/wp-content/uploads/Janaina.pdf>. DIGGLE, P.; LOPHAVEN, S. Bayesian geostatistical design. Scandinavian Journal of Statistics, Wiley-Blackwell, v. 33, n. 1, p. 53–64, Mar 2006. ISSN 1467-9469. DIGGLE, P. J. A kernel method for smoothing point process data. Applied Statistics (Journal of the Royal Statistical Society, Series C), v. 34, p. 138–147, 1985. DIGGLE, P. J. Statistical analysis of spatial point patterns. 2. ed. New York: Oxford University Press, 2003. DIGGLE, P. J.; RIBEIRO JR, P. J. Bayesian inference in Gaussian model-based geostatistics. Geographical and Environmental Modelling, Informa UK Limited, v. 6, n. 2, p. 129–146, Nov 2002. ISSN 1469-8323. DIGGLE, P. J.; RIBEIRO JR, P. J. Model-based geostatistics. 1. ed. New York: Springer, 2007. 228 p. Disponível em: <http://www.springer.com/earth+sciences+and+geography/book/ 978-0-387-32907-9>. DILL, P. R. J.; PAIVA, E. M. C. D.; PAIVA, J. B. D.; ROCHA, J. S. M. Assoreamento do reservatório do Vacacaí-Mirim e sua relação com a deterioração da bacia hidrográfica contribuinte. Revista Brasileira de Recursos Hídricos, v. 9, p. 7–15, 2004. Disponível em: <http://jararaca.ufsm.br/websites/eloiza/download/Dill/RBRH-Dill.pdf>. DOMBURG, P.; DE GRUIJTER, J. J.; VAN BEEK, P. Designing efficient soil survey schemes with a knowledge-based system using dynamic programming. Geoderma, v. 75, n. 3-4, p. 183–201, 1997. DRAˇ GUT¸ , L.; SCHAUPPENLEHNER, T.; MUHAR, A.; STROBL, J.; BLASCHKE, T. Optimization of scale and parametrization for terrain segmentation: an application to soil-landscape modeling. Computers & Geosciences, Elsevier BV, v. 35, n. 9, p. 1875–1883, Sep 2009. ISSN 0098-3004. DRAPER, N. R.; GUTTMAN, I.; KANEMASU, H. The distribution of certain regression statistics. Biometrika, v. 58, n. 2, p. 295–298, 1971. Disponível em: <http: //www.jstor.org/stable/2334517>. DRAPER, N. R.; SMITH, H. Applied regression analyis. 3. ed.Wiley, 1998. 736 p. (Probability and Statistics). ISBN 978-0-471-17082-2. Disponível em: <http://www.wiley.com/WileyCDA/ WileyTitle/productCd-0471170828.html>. DSG. Camobi – SO. Folha SH.22-V-C-IV/2-SO. Brasília: Ministério do Exército, Departamento de Engenharia e Comunicações, Diretoria do Serviço Geográfico do Exército, 1980. (1:25 000). DSG. Santa Maria – NE. Folha SH.22-V-C-IV-1-NE. Brasília: Ministério do Exército, Departamento de Engenharia e Comunicações, Diretoria do Serviço Geográfico do Exército, 1992. (1:25 000). DSG. Santa Maria – SE. Folha SH.22-V-C-IV/1-SE. Brasília: Ministério do Exército, Departamento de Engenharia e Comunicações, Diretoria do Serviço Geográfico do Exército, 1992. (1:25 000). DUH, J.-D.; BROWN, D. G. Knowledge-informed pareto simulated annealing for multiobjective spatial allocation. Computers, Environment and Urban Systems, v. 31, n. 3, p. 253–281, 2007. ISSN 0198-9715. DULLIUS, M. Vegetação e solos de uma floresta estacional do Rio Grande do Sul. 127 p. Dissertação (Mestrado) — Programa de Pós-Grauação em Ciência do Solo, Universidade Federal de Santa Maria, Santa Maria, 2012. Disponível em: <http://w3.ufsm.br/ppgcs/>. DUNGAN, J. L.; PERRY, J. N.; DALE, M. R. T.; LEGENDRE, P.; CITRON-POUSTY, S.; FORTIN, M. J.; JAKOMULSKA, A.; MIRITI, M.; ROSENBERG, M. S. A balanced view of scale in spatial statistical analysis. Ecography, Wiley-Blackwell, v. 25, n. 5, p. 626–640, Oct 2002. ISSN 1600-0587. EDIRISOORIYA, G. Stepwise regression is a problem, not a solution. In: Annual Meeting of the Mid-South Educational Research Association. Biloxi: Mid-South Educational Research Association, 1995. p. 16. Disponível em: <http://www.eric.ed.gov/>. ELDEIRY, A. A.; GARCIA, L. A. Detecting soil salinity in alfalfa fields using spatial modeling and remote sensing. Soil Science Society of America Journal, Soil Science Society of America, v. 72, n. 1, p. 201–211, 2008. ISSN 1435-0661. EPSTEIN, R.; KANWISHER, N. A cortical representation of the local visual environment. Nature, Macmillan Magazines Ltd., v. 392, n. 6676, p. 598–601, abr. 1998. ISSN 0028-0836. Disponível em: <http://dx.doi.org/10.1038/33402>. ESPINDOLA, C. R. Retrospectiva crítica sobre a pedologia – um repasse biliográfico. 1. ed. Campinas: Editora da Unicamp, 2008. 397 p. EVERITT, B. S. The Cambridge dictionary of statistics. 3. ed. Cambridge: Cambridge University Press, 2006. 432 p. FAO. The FAO voluntary guidelines for the right to food: lasting solutions against hunger. Roma, 2005. 4 p. Disponível em: <http://www.fao.org/righttofood/KC/downloads/vl/docs/>. FAO. Guidelines for soil description. 4. ed. Rome: FAO, 2006. 97 p. Disponível em: <ftp://ftp.fao.org/agl/agll/docs/guidel_soil_descr.pdf>. FAO. Pathways to success. Success stories in agricultural production and food security. Rome, 2009. 34 p. Disponível em: <http://www.fao.org/fileadmin/user_upload/newsroom/docs/ pathways.pdf>. FAO. State of food insecurity in the World: 2015. Rome, 2015. 56 p. Disponível em: <http://reliefweb.int/sites/reliefweb.int/files/resources/a-i4646e.pdf>. FARRAR, D. E.; GLAUBER, R. R. Multicollinearity in regression analysis: the problem revisited. The Review of Econonomics and Statistics, v. 49, p. 92–107, 1967. Disponível em: <http://hdl.handle.net/1721.1/48530>. FERNANDES, B. M. Development models for the Brazilian countryside: paradigmatic and territorial disputes. Latin American Perspectives, SAGE Publications, v. 43, n. 2, p. 48–59, jan 2016. FINKE, P. A. On digital soil assessment with models and the pedometrics agenda. Geoderma, v. 171-172, p. 3–15, 2012. FISHER, P. F.; TATE, N. J. Causes and consequences of error in digital elevation models. Progress in Physical Geography, v. 30, n. 4, p. 467–489, 2006. FLORINSKY, I. V. Accuracy of local topographic variables derived from digital elevation models. International Journal of Geographical Information Science, v. 12, p. 47–61, 1998. FLORINSKY, I. V. The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication). Eurasian Soil Science, MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC., v. 45, p. 445–451, 2012. ISSN 1064-2293. FOX, J.; WEISBERG, S. An R companion to applied regression. 2. ed. Thousand Oaks: Sage, 2011. Disponível em: <http://socserv.socsci.mcmaster.ca/jfox/Books/Companion>. GASCH, C. K.; HENGL, T.; GRÄLER, B.; MEYER, H.; MAGNEY, T. S.; BROWN, D. J. Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D + T: the Cook Agronomy Farm data set. Spatial Statistics, Elsevier BV, v. 14, p. 70–90, nov 2015. GASPARETTO, N. G. L.; MACIEL FILHO, C. L.; MEDEIROS, E. R.; MENEGOTTO, E.; SARTORI, P. L. P.; VEIGA, P. Mapa geológico da Folha de Santa Maria. Santa Maria, 1988. 1 p. (1:50 000). GDAL DEVELOPMENT TEAM. GDAL – Geospatial Data Abstraction Library. [S.l.], 2013. (GDAL 1.10.0, released 2013/04/24). Disponível em: <http://www.gdal.org>. GENTON, M. G. Highly robust variogram estimation. Mathematical Geology, Springer Science + Business Media, v. 30, n. 2, p. 213–221, 1998. GESSLER, P. E.; MOORE, I. D.; MCKENZIE, N. J.; RYAN, P. J. Soil-landscape modelling and spatial prediction of soil attributes. International Journal of Geographical Information Systems, v. 9, n. 4, p. 421–432, 1995. GOBIN, A.; CAMPLING, P.; FEYEN, J. Soil-landscape modelling to quantify spatial variability of soil texture. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, v. 26, n. 1, p. 41 – 45, 2001. GOLDANI, J. Z. Ocupação antrópica e sócio-ambiental na área de captação do reservatório do DNOS, Santa Maria-RS. 104 p. Dissertação (Mestrado) — Graduate School in Geomatics, Universidade Federal de Santa Maria, Santa Maria, 2006. Disponível em: <http://cascavel.ufsm.br/tede/tde_busca/arquivo.php?codArquivo=120>. GOOVAERTS, P. Geostatistics for natural resources evaluation. Oxford: Oxford University Press, 1997. 483 p. ISBN 0-19-511538-4. GOOVAERTS, P. Estimation or simulation of soil properties? An optimization problem with conflicting criteria. Geoderma, v. 97, p. 165–186, 2000. GOOVAERTS, P. Geostatistical modelling of uncertainty in soil science. Geoderma, v. 103, n. 1?2, p. 3–26, 2001. GRUNWALD, S. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, v. 152, n. 3-4, p. 195–207, 2009. GRUNWALD, S. Current state of digital soil mapping and what is next. In: BOETTINGER, J.; HOWELL, D.; MOORE, A.; HARTEMINK, A.; KIENAST-BROWN, S. (Ed.). Digital Soil Mapping. Springer Netherlands, 2010, (Progress in Soil Science, v. 2). p. 3–12. ISBN 978-90-481-8862-8. Disponível em: <http://dx.doi.org/10.1007/978-90-481-8863-5_1>. GRUNWALD, S.; THOMPSON, J. A.; BOETTINGER, J. L. Digital soil mapping and modeling at continental scales: finding solutions for global issues. Soil Science Society of America Journal, Soil Science Society of America, v. 75, n. 4, p. 1201–1213, 2011. GUYON, I.; ELISSEEFF, A. An introduction to variable and feature selection. Journal of Machine Learning Research, v. 3, p. 1157–1182, 2003. Disponível em: <http: //jmlr.csail.mit.edu/papers/volume3/guyon03a/guyon03a.pdf>. HACK, C.; LONGHI, S. J.; BOLIGON, A. A.; MURARI, A. B.; PAULESKI, D. T. Análise fitossociológica de um fragmento de floresta estacional decidual no município de Jaguari, RS. Ciência Rural, v. 35, p. 1083–1091, 2005. HALDAR, S. K.; TIŠLJAR, J. Igneous rocks. In: . Introduction to Mineralogy and Petrology. 1. ed. Amsterdam: Elsevier, 2014. cap. 4, p. 93–120. ISBN 9780124167100. HARRELL, F. E. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. New York: Springer, 2001. 571 p. (Springer Series in Statistics). ISBN 0387952322. Disponível em: <http://www.springer.com/mathematics/ probability/book/978-0-387-95232-1>. HARTEMINK, A. E. The depiction of soil profiles since the late 1700s. Catena, Elsevier BV, v. 79, n. 2, p. 113–127, nov 2009. Disponível em: <http://dx.doi.org/10.1016/j.catena.2009.06. 002>. HARTEMINK, A. E.; BOCKHEIM, J. G. Soil genesis and classification. Catena, Elsevier BV, v. 104, p. 251–256, may 2013. Disponível em: <http://dx.doi.org/10.1016/j.catena.2012.12. 001>. HARTEMINK, A. E.; MCBRATNEY, A. A soil science renaissance. Geoderma, v. 148, n. 2, p. 123–129, 2008. HELDWEIN, A.; BURIOL, G.; STRECK, N. O clima de Santa Maria. Ciência e Ambiente, v. 38, p. 43–58, 2009. HENGL, T. Pedometric mapping – bridging the gaps between conventional and pedometric approaches. 252 p. Tese (Doutorado) — Wageningen University, Wageningen, 2003. Disponível em: <http://library.wur.nl/WebQuery/edepot/121443>. HENGL, T.; EVANS, I. S. Mathematical and digital models of the land surface. In: HENGL, T.; REUTER, H. I. (Ed.). Geomorphometry – concepts, software, applications. Amsterdam: Elsevier, 2009, (Developments in Soil Science, v. 33). cap. 2, p. 31–63. HENGL, T.; HEUVELINK, G. B.; STEIN, A. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, v. 120, p. 75–93, 2004. HENGL, T.; HEUVELINK, G. B. M.; KEMPEN, B.; LEENAARS, J. G. B.; WALSH, M. G.; SHEPHERD, K. D.; SILA, A.; MACMILLAN, R. A.; JESUS, J. Mendes de; TAMENE, L.; AL. et. Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PLOS ONE, Public Library of Science (PLoS), v. 10, n. 6, p. e0125814, Jun 2015. ISSN 1932-6203. Disponível em: <http://dx.doi.org/10.1371/journal.pone.0125814>. HENGL, T.; HEUVELINK, G. B. M.; ROSSITER, D. G. About regression-kriging: from equations to case studies. Computers & Geosciences, v. 33, n. 10, p. 1301–1315, 2007. ISSN 0098-3004. HENGL, T.; HUSNJAK, S. Evaluating adequacy and usability of soil maps in Croatia. Soil Science Society of America Journal, Soil Science Society of America, v. 70, n. 3, p. 920–929, 2006. ISSN 1435-0661. HENGL, T.; JESUS, J. M. de; MACMILLAN, R. A.; BATJES, N. H.; HEUVELINK, G. B. M.; RIBEIRO, E.; SAMUEL-ROSA, A.; KEMPEN, B.; LEENAARS, J. G. B.; WALSH, M. G.; AL. et. SoilGrids1km – global soil information based on automated mapping. PLoS ONE, Public Library of Science (PLoS), v. 9, n. 8, p. e105992, Aug 2014. ISSN 1932-6203. HENGL, T.; NIKOLIC, M.; MACMILLAN, R. A. Mapping efficiency and information content. International Journal of Applied Earth Observation and Geoinformation, v. 22, p. 127–138, 2013. HENGL, T.; ROSSITER, D. G.; STEIN, A. Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Australian Journal of Soil Research, v. 41, n. 8, p. 1403–1422, 2003. HEUNG, B.; HO, H. C.; ZHANG, J.; KNUDBY, A.; BULMER, C. E.; SCHMIDT, M. G. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma, Elsevier BV, v. 265, p. 62–77, mar 2016. HEUVELINK, G. B. M. Identification of field attribute error under different models of spatial variation. International journal of geographical information systems, Informa UK Limited, v. 10, n. 8, p. 921–935, Dec 1996. ISSN 0269-3798. HEUVELINK, G. B. M. Error propagation in environmental modelling with GIS. 1. ed. Boca Raton: Taylor and Francis, 1998. 127 p. HEUVELINK, G. B. M. Propagation of error in spatial modelling with GIS. In: . New developments in geographical information systems: principles, techniques, management and applications. 2. ed. Wiley, 2005. cap. 14, p. 207–217. ISBN 978-0-471-73545-8. Disponível em: <http://www.geos.ed.ac.uk/~gisteac/gis_book_abridged/>. HEUVELINK, G. B. M.; BURROUGH, P. A.; STEIN, A. Propagation of errors in spatial modelling with GIS. International journal of geographical information systems, v. 3, n. 4, p. 303–322, 1989. HEUVELINK, G. B. M.; BURROUGH, P. A.; STEIN, A. Propagation of errors in spatial modelling with GIS. In:______ . Classics from IJGIS: twenty years of the International Journal of Geographical Information Science and Systems. [S.l.]: CRC Press, 2006. v. 3, n. 4, p. 67–89. HEUVELINK, G. B. M.; PEBESMA, E. J. Spatial aggregation and soil process modelling. Geoderma, v. 89, n. 1?2, p. 47–65, 1999. ISSN 0016-7061. HEUVELINK, G. B. M.; WEBSTER, R. Modelling soil variation: past, present, and future. Geoderma, v. 100, n. 3-4, p. 269–301, 2001. ISSN 0016-7061. HIRT, C.; FILMER, M.; FEATHERSTONE, W. Comparison and validation of recent freely-available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Australian Journal of Earth Sciences, v. 57, n. 3, p. 337–347, 2010. HOLTZ, M. Do mar ao deserto: a evolução do Rio Grande do Sul no tempo geológico. 2. ed. Porto Alegre: Editora da UFRGS, 2003. 144 p. HUDSON, B. D. The soil survey as paradigm-based science. Soil Science Society of America Journal, v. 56, p. 836–841, 1992. HULL, C. L. The goal-gradient hypothesis and maze learning. Psychological Review, v. 39, n. 1, p. 25–43, Jan 1932. HUPY, C. M.; SCHAETZL, R. J.; MESSINA, J. P.; HUPY, J. P.; DELAMATER, P.; ENANDER, H.; HUGHEY, B. D.; BOEHM, R.; MITROKA, M. J.; FASHOWAY, M. T. Modeling the complexity of different, recently deglaciated soil landscapes as a function of map scale. Geoderma, Elsevier BV, v. 123, n. 1-2, p. 115–130, Nov 2004. ISSN 0016-7061. HUTCHINSON, M. F. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, v. 106, n. 3-4, p. 211–232, 1989. ISSN 0022-1694. HYNDMAN, R. J.; FAN, Y. Sample quantiles in statistical packages. The American Statistician, Taylor & Francis, Ltd. on behalf of the American Statistical Association, v. 50, n. 4, p. 361–365, 1996. ISSN 00031305. Disponível em: <http://www.jstor.org/stable/2684934>. IBGE. Modelo de Ondulação Geoidal – MAPGEO2010. 2010. Disponível em: <http: //www.ibge.gov.br/home/geociencias/geodesia/modelo_geoidal.shtm>. ISO. ISO 7144:1986 Documentation – Presentation of theses and similar documents. [S.l.], 1986. 10 p. Disponível em: <http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_ detail.htm?csnumber=13736>. IUSS WORKING GROUP WRB. World reference base for soil resources 2006 – a framework for international classification, correlation and communication, first update 2007. Rome: Food and Agriculture Organization of the United Nations, 2007. 116 p. World Soil Resources Reports No. 103. Disponível em: <http://www.fao.org/fileadmin/templates/nr/images/ resources/pdf_documents/wrb2007_red.pdf>. JACKSON, D. A. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, v. 74, n. 8, p. 2204–2214, 1993. Disponível em: <http://www.jstor.org/stable/1939574>. JANSSEN, P.; HEUBERGER, P. Calibration of process-oriented models. Ecological Modelling, Elsevier BV, v. 83, n. 1-2, p. 55–66, Dec 1995. ISSN 0304-3800. JARVIS, A.; REUTER, H. I.; NELSON, A.; GUEVARA, E. Hole-filled SRTM for the globe version 4. [S.l.], 2008. Disponível em: <http://www.cgiar-csi.org/data/ srtm-90m-digital-elevation-database-v4-1>. JENNY, H. Factors of soil formation – a system of quantitative pedology. Toronto: Dover Publications, 1941. 281 p. ISBN 0-486-68128-9. Disponível em: <http://202.200.144.17/sykc/ hjx/content/ckzl/6/2.pdf>. JENNY, H. Derivation of state factor equations of soils and ecosystems. Soil Science Society of America Journal, Soil Science Society of America, v. 25, n. 5, p. 385–388, Sept 1961. ISSN 0361-5995. JOLLIFFE, I. T. Principal component analysis. 2. ed. New York: Springer, 2002. 519 p. KEMPEN, B. Updating soil information with digital soil mapping. 218 p. Tese (Doutorado)— Wageningen University, 2011. Disponível em: <http://edepot.wur.nl/187198>. KEMPEN, B.; BRUS, D. J.; HEUVELINK, G. B. M.; STOORVOGEL, J. J. Updating the 1:50,000 Dutch soil map using legacy soil data: a multinomial logistic regression approach. Geoderma, v. 151, p. 311–326, 2009. KEMPEN, B.; BRUS, D. J.; STOORVOGEL, J. J.; HEUVELINK, G. B.; VRIES, F. de. Efficiency comparison of conventional and digital soil mapping for updating soil maps. Soil Science Society of America Journal, v. 76, n. 6, p. 2097–2115, 2012. KEMPEN, B.; HEUVELINK, G. B. M.; BRUS, D. J.; STOORVOGEL, J. J. Pedometric mapping of soil organic matter using a soil map with quantified uncertainty. European Journal of Soil Science, Wiley Online Library, v. 61, n. 3, p. 333–347, 2010. KER, J.; NOVAIS, R. Fundamentos para desenvolvimento da pedologia e da fertilidade do solo. In: XXIX Congresso Brasileiro de Ciência do Solo, 2003, Ribeirão Preto, 2003. [s.n.], 2003. p. 27. Disponível em: <http://jararaca.ufsm.br/websites/dalmolin/download/textospl/ fundame.pdf>. KER, J. C. Latossolos do Brasil: uma revisão. Geônomos, v. 5, p. 17–40, 1998. Disponível em: <http://goo.gl/vCMSl>. KER, J. C. O futuro da pedologia no Brasil. Boletim Informativo da Sociedade Brasileira de Ciência do Solo, v. 24, p. 18–21, 1999. KIM, J.; GRUNWALD, S.; RIVERO, R. G. Soil phosphorus and nitrogen predictions across spatial escalating scales in an aquatic ecosystem using remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical & Electronics Engineers (IEEE), v. 52, n. 10, p. 6724–6737, 2014. ISSN 1558-0644. KIRKPATRICK, S.; GELATT, C. D.; VECCHI, M. P. Optimization by simulated annealing. Science, American Association for the Advancement of Science (AAAS), v. 220, n. 4598, p. 671–680, May 1983. ISSN 1095-9203. KÖNIG, F. G.; BRUN, E. J.; SCHUMACHER, M. V.; LONGHI, S. J. Devolução de nutrientes via serapilheira em um fragmento de floresta estacional decidual no município de Santa Maria, RS. Brasil Florestal, v. 21, p. 45–52, 2002. Disponível em: <http://www.ibama.gov.br/ojs/index.php/braflor/article/viewArticle/110>. KRASILNIKOV, P. V.; MARTÍ, J.-J. I.; ARNOLD, R.; SHOBA, S. A handbook of soil terminology, correlation and classification. 1. ed. London: Earthscan, 2009. 449 p. KRIGE, D. G. A statistical approach to some mine valuation and allied problems on the Witwatersrand. 119–139 p. Dissertação (Mestrado) — University of the Witwatersrand, Johannesburg, 1951. Disponível em: <http://wiredspace.wits.ac.za/jspui/bitstream/10539/ 17975/1/Krige,%20D.%20G.%201951-001.pdf>. KUENSCH, H. R.; PAPRITZ, A.; SCHWIERZ, C.; STAHEL, W. A. Robust estimation of the external drift and the variogram of spatial data. In: Proceedings of the ISI 58th World Statistics Congress of the International Statistical Institute. [s.n.], 2011. p. 1–8. Disponível em: <http://e-collection.library.ethz.ch/eserv/eth:7080/eth-7080-01.pdf>. LAN, L.; LIAN, Z. Application of statistical power analysis - how to determine the right sample size in human health, comfort and productivity research. Building and Environment, v. 45, n. 5, p. 1202–1213, 2010. LARK, R. M. A comparison of some robust estimators of the variogram for use in soil survey. European Journal of Soil Science, Wiley-Blackwell, v. 51, n. 1, p. 137–157, mar 2000. LARK, R. M. Estimating variograms of soil properties by the method-of-moments and maximum likelihood. European Journal of Soil Science, v. 51, p. 717–728, 2000. LARK, R. M. Optimized spatial sampling of soil for estimation of the variogram by maximum likelihood. Geoderma, v. 105, p. 49–80, 2002. LARK, R. M. Towards soil geostatistics. Spatial Statistics, Elsevier BV, v. 1, p. 92–99, May 2012. ISSN 2211-6753. LARK, R. M.; BISHOP, T. F. A. Cokriging particle size fractions of the soil. European Journal of Soil Science, v. 58, p. 763–774, 2007. LARK, R. M.; BISHOP, T. F. A.; WEBSTER, R. Using expert knowledge with control of false discovery rate to select regressors for prediction of soil properties. Geoderma, v. 138, n. 1-2, p. 65–78, 2007. LARK, R. M.; CULLIS, B. R. Model-based analysis using REML for inference from systematically sampled data on soil. European Journal of Soil Science, v. 55, n. 4, p. 799–813, 2004. ISSN 1365-2389. LARK, R. M.; CULLIS, B. R.; WELHAM, S. J. On spatial prediction of soil properties in the presence of a spatial trend: the empirical best linear unbiased predictor (E-BLUP) with REML. European Journal of Soil Science, Wiley-Blackwell, v. 57, n. 6, p. 787–799, Dec 2006. ISSN 1365-2389. LARK, R. M.; PAPRITZ, A. Fitting a linear model of coregionalization for soil properties using simulated annealing. Geoderma, Elsevier BV, v. 115, n. 3-4, p. 245–260, Aug 2003. ISSN 0016-7061. LASLETT, G. M.; MCBRATNEY, A. B.; PAHL, P. J.; HUTCHINSON, M. F. Comparison of several spatial prediction methods for soil pH. Journal of Soil Science, Wiley-Blackwell, v. 38, n. 2, p. 325–341, Jun 1987. ISSN 0022-4588. LEGROS, J.-P. Mapping of the soil. 1. ed. Enfield: Science Publishers, 2006. 411 p. Disponível em: <http://www.amazon.com/Mapping-Soil-Jean-Paul-Legros/dp/157808363X>. LEMOINE, F. G.; KENYON, S. C.; FACTOR, J. K.; TRIMMER, R.; PAVLIS, N. K.; CHINN, D. S.; COX, C. M.; KLOSKO, S. M.; LUTHCKE, S. B.; TORRENCE, M. H.; WANG, Y. M.; WILLIAMSON, R. G.; PAVLIS, E. C.; RAPP, R. H.; OLSON, T. R. The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96. Greenbelt, 1998. Disponível em: <http://cddis.nasa.gov/926/egm96/egm96.html>. LEMOS, R. C.; SANTOS, R. D. Manual de descrição e coleta de solos no campo. 2. ed. [S.l.]: Sociedade Brasileira de Ciência do Solo, 1982. 46 p. LESCH, S. M.; STRAUSS, D. J.; RHOADES, J. D. Spatial prediction of soil salinity using electromagnetic induction techniques: 2. An efficient spatial sampling algorithm suitable for multiple linear regression model identification and estimation. Water Resources Research, Wiley-Blackwell, v. 31, n. 2, p. 387–398, Feb 1995. ISSN 0043-1397. LIAW, A.; WIENER, M. Classification and regression by randomForest. R News, v. 2/3, p. 18–22, 2002. ISSN 1609-3631. Disponível em: <http://cogns.northwestern.edu/cbmg/ LiawAndWiener2002.pdf>. LÓPEZ-GRANADOS, F.; JURADO-EXPÓSITO, M.; PEñA-BARRAGáN, J.; GARCÍATORRES, L. Using geostatistical and remote sensing approaches for mapping soil properties. European Journal of Agronomy, v. 23, p. 279–289, 2005. MACARINI, J. P. A política econômica do governo Médici: 1970-1973. Nova Economia, FapUNIFESP (SciELO), v. 15, n. 3, p. 53–92, 2005. Disponível em: <http://dx.doi.org/10. 1590/S0103-63512005000300003>. MACHADO, J. L. F. Hidroestratigrafia química preliminar dos aquíferos na Região Central do Rio Grande do Sul. In: X Congresso Brasileiro de Águas Subterrâneas. São Paulo: [s.n.], 1998. Disponível em: <http://www.perfuradores.com.br>. MACIEL FILHO, C. L. Mapa geotécnico de Santa Maria. Santa Maria, 1990. 21 p. MACIEL FILHO, C. L.; GASPARETTO, N. V. L.; VEIGA, P.; SARTORI, P. L. P.; ALII et. Mapa de formações superficiais e solos das folhas de Santa Maria e Camobi na escala 1:50 000. Santa Maria, 1987. 1 p. MACIEL FILHO, C. L.; GASPARETTO, N. V. L.; VEIGA, P.; SARTORI, P. L. P.; ALII et. Mapa geológico das folhas de Santa Maria e Camobi, na escala de 1:50 000. Santa Maria, 1987. 1 p. MALUF, J. A new climatic classification for the state of Rio Grande do Sul, Brazil. Revista Brasileira de Agrometeorologia, v. 8, p. 141–150, 2000. Disponível em: <http://www.ufsm.br/rba/p14181.html>. MARCHANT, B. P.; LARK, R. M. Adaptive sampling and reconnaissance surveys for geostatistical mapping of the soil. European Journal of Soil Science, v. 57, n. 6, p. 831–845, Dec 2006. ISSN 1365-2389. MARINS, A. P. Hidrologic simulation of the Vacacaí-Mirim reservoir, Santa Maria-RS, using the IPHS1 system. 161 p. Dissertação (Mestrado) — Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Santa Maria, Santa Maria, 2004. MARLER, R. T.; ARORA, J. S. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, Springer Science + Business Media, v. 26, n. 6, p. 369–395, Apr 2004. ISSN 1615-1488. MARLER, R. T.; ARORA, J. S. Function-transformation methods for multi-objective optimization. Engineering Optimization, Informa UK Limited, v. 37, n. 6, p. 551–570, Sep 2005. ISSN 1029-0273. MARLER, R. T.; ARORA, J. S. The weighted sum method for multi-objective optimization: new insights. Structural and Multidisciplinary Optimization, Springer Science + Business Media, v. 41, n. 6, p. 853–862, Dec 2009. ISSN 1615-1488. MARQUES, L. S.; ERNESTO, M. O magmatismo toleítico da bacia do Paraná. In: . Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, 2005. p. 245–263. MARTINELLI, L. A.; NAYLOR, R.; VITOUSEK, P. M.; MOUTINHO, P. Agriculture in Brazil: impacts, costs, and opportunities for a sustainable future. Current Opinion in Environmental Sustainability, Elsevier BV, v. 2, n. 5-6, p. 431–438, dec 2010. MASSY, W. F. Principal components regression in exploratory statistical research. Journal of the American Statistical Association, American Statistical Association, v. 60, n. 309, p. 234–256, 1965. ISSN 01621459. Disponível em: <http://www.jstor.org/stable/2283149>. MATÉRN, B. Spatial variation: stochastic models and their application to some problems in forest surveys and other sampling investigations. 144 p. Tese (Doutorado) — Statens Skogsforskningsinstitut, Stockholm, 1960. Disponível em: <http://pub.epsilon.slu.se/10033/1/ medd_statens_skogsforskningsinst_049_05.pdf>. MATHER, P. M. Computer processing of remotely-sensed images - an introduction. 3. ed. Chichester: John Wiley and Sons, Ltd, 2004. 324 p. MATHERON, G. Les variables régionalisées et leur estimation. 305 p. Tese (Doutorado) — Faculte des Sciences, Universite de Paris, Paris, 1965. Disponível em: <http: //cg.ensmp.fr/bibliotheque/public/MATHERON_Ouvrage_00083.pdf>. MATHERON, G.; KLEINGELD, W. J. The evolution of geostatistics. In: Proceedings of the Twentieth International Symposium on the Application of Computers and Mathematics in the Mineral Industries. Volume 3: Geostatistics. Johannesburg: SAIMM, 1987. p. 9–12. MAYNARD, J.; JOHNSON, M. Scale-dependency of LiDAR derived terrain attributes in quantitative soil-landscape modeling: effects of grid resolution vs. neighborhood extent. Geoderma, Elsevier BV, v. 230-231, p. 29–40, Oct 2014. ISSN 0016-7061. MAZOYER, M.; ROUDART, L. História das agriculturas do mundo: do Neolítico à crise contemporânea. São Paulo / Brasília: Editora UNESP / NEAD, 2008. 568 p. MCBRATNEY, A.; MENDONÇA-SANTOS, M.; MINASNY, B. On digital soil mapping. Geoderma, v. 117, p. 3–52, 2003. MCBRATNEY, A. B.; ODEH, I. O.; BISHOP, T. F.; DUNBAR, M. S.; SHATAR, T. M. An overview of pedometric techniques for use in soil survey. Geoderma, v. 97, p. 293–327, 2000. MCKAY, M. D.; BECKMAN, R. J.; CONOVER, W. J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, American Statistical Association and American Society for Quality, v. 21, n. 2, p. 239–245, 1979. ISSN 00401706. MCKENZIE, N. J.; GALLANT, J. C. Digital soil mapping with improved environmental predictors and models of pedogenesis. In: LAGACHERIE, A. M. P.; VOLTZ, M. (Ed.). Digital soil mapping - an introductory perspective. Elsevier, 2006, (Developments in Soil Science, v. 31). cap. 24, p. 327 – 349. Disponível em: <http://www.sciencedirect.com/science/article/ B7W58-4PT86XY-16/2/6e9c4fd649231554e34c769d9c1caa10>. MCKENZIE, N. J.; RYAN, P. J. Spatial prediction of soil properties using environmental correlation. Geoderma, v. 89, p. 67–94, 1999. MEBIUS, L. A rapid method for the determination of organic carbon in soil. Analytica Chimica Acta, v. 22, n. 0, p. 120 – 124, 1960. ISSN 0003-2670. MEHL, H. U.; ELTZ, F. L. F.; REICHERT, J. M.; DIDONE, I. A. Caracterização de padrões de chuvas ocorrentes em Santa Maria (RS). Revista Brasileira de Ciência do Solo, v. 25, n. 2, p. 475–483, 2001. Disponível em: <http://sbcs.solos.ufv.br/solos/revistas/v25n2a23.pdf>. MELLES, S. J.; HEUVELINK, G. B. M.; TWENHöFEL, C. J. W.; VAN DIJK, A.; HIEMSTRA, P. H.; BAUME, O.; STöHLKER, U. Optimizing the spatial pattern of networks for monitoring radioactive releases. Computers & Geosciences, v. 37, n. 3, p. 280–288, 2011. ISSN 0098-3004. MENDONÇA-SANTOS, M. d. L.; SANTOS, H. G. Mapeamento digital de classes e atributos de solos - métodos, paradigmas e novas técnicas. Rio de Janeiro, 2003. 17 p. (Documento 55). Disponível em: <http://www.cnps.embrapa.br/publicacoes/pdfs/doc55_mapeamentodigital. pdf>. MENEZES, F. P. Humic substances in soils from different geomorphologic feature in the edge of Rio Grande do Sul Plateau. 112 p. Dissertação (Mestrado) — Programa de Pós-Graduação em Ciência do Solo, Universidade Federal de Santa Maria, Santa Maria, 2008. Disponível em: <http://w3.ufsm.br/ppgcs/>. METROPOLIS, N.; ROSENBLUTH, A. W.; ROSENBLUTH, M. N.; TELLER, A. H.; TELLER, E. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, AIP Publishing, v. 21, n. 6, p. 1087–1092, 1953. MEYER, M. A.; BOOKER, J. M. Eliciting and analyzing expert judgment: a practical guide. London: ASA-SIAM Series on Statistics and Applied Probability, 2001. 459 p. MIGUEL, P. Pedological characterization, land use and modeling of the soil loss in hillslope areas the Plateau Border of RS. 112 p. Dissertação (Mestrado)—Programa de Pós-Graduação em Ciência do Solo, Universidade Federal de Santa Maria, Santa Maria, 2010. Disponível em: <http://w3.ufsm.br/ppgcs>. MIGUEL, P. Pedogeochemical and mineralogical variables in the identification of sources of sediments in a basin of hillside. 98 p. Tese (Doutorado) — Programa de Pós-Graduação em Ciência do Solo, Universidade Federal de Santa Maria, Santa Maria, 2013. Disponível em: <http://w3.ufsm.br/ppgcs>. MIGUEL, P.; DALMOLIN, R. S. D.; PEDRON, F. A.; SAMUEL-ROSA, A.; MEDEIROS, P. S. C.; MOURA-BUENO, J. M.; BALBINOT, A. Soil and land use dynamics in Plateau Border areas of Rio Grande do Sul. Revista Brasileira de Agrociência, v. 17, n. 4, p. 347–455, 2011. Disponível em: <http://www.ufpel.edu.br/faem/agrociencia/v17n4_arquivos/artigo05.htm>. MIGUEL, P.; DALMOLIN, R. S. D.; PEDRON, F. d. A.; MOURA-BUENO, J. M.; TIECHER, T. Identificação de fontes de produção de sedimentos em uma bacia hidrográfica de encosta. Revista Brasileira de Ciência do Solo, FapUNIFESP (SciELO), v. 38, n. 2, p. 585–598, apr 2014. Disponível em: <http://dx.doi.org/10.1590/S0100-06832014000200023>. MIKUTTA, R.; KLEBER, M.; KAISER, K.; JAHN, R. Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Science Society of America Journal, v. 69, p. 120–135, 2005. Disponível em: <http://cat.inist.fr/?aModele=afficheN&cpsidt=16422287>. MILANI, E. J. Comentários sobre a origem e a evolução tectônica da bacia do Paraná. In:______. Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, 2005. p. 264–279. MILLER, B.; SCHAETZL, R. The historical role of base maps in soil geography. Geoderma, Elsevier BV, v. 230–231, p. 329–339, May 2014. ISSN 0016-7061. MILLER, B. A.; KOSZINSKI, S.; WEHRHAN, M.; SOMMER, M. Impact of multi-scale predictor selection for modeling soil properties. Geoderma, Elsevier BV, v. 239-240, p. 97–106, Feb 2015. ISSN 0016-7061. MINASNY, B.; MCBRATNEY, A. B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, Elsevier BV, v. 32, n. 9, p. 1378–1388, Nov 2006. ISSN 0098-3004. MINASNY, B.; MCBRATNEY, A. B. Conditioned Latin Hypercube Sampling for calibrating soil sensor data to soil properties. In:______. Proximal Soil Sensing. Amsterdam: Springer, 2010. (Progress in Soil Science), cap. 9, p. 111–119. ISBN http://id.crossref.org/isbn/978-90- 481-8859-8. MINASNY, B.; MCBRATNEY, A. B.; WALVOORT, D. J. The variance quadtree algorithm: use for spatial sampling design. Computers & Geosciences, v. 33, p. 383–392, 2007. MOORE, I. D.; GESSLER, P. E.; NIELSEN, G. A.; PETERSON, G. A. Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, v. 57, p. 443–452, 1993. MOSER, J. M. Solos. In:______. Geografia do Brasil: Região Sul. Rio de Janeiro: IBGE, 1990. p. 85–111. MOURA-BUENO, J. M. Soil erosion in the Plateau Border areas of the Rio Grande do Sul state. Santa Maria: [s.n.], 2012. 37 p. Undergraduate Thesis. Disponível em: <http://1drv.ms/1jECraN>. MOURA-BUENO, J. M.; SAMUEL-ROSA, A.; MIGUEL, P.; DALMOLIN, R. S. D.; FROSI, M. H.; DOTTO, A. C. Soil erosion in hillslope areas of sourthern brazil. In: 19th ISTRO Conference and IV SUCS Meeting. Montevideu: [s.n.], 2012. MOYEED, R. A.; PAPRITZ, A. An empirical comparison of kriging methods for nonlinear spatial point prediction. Mathematical Geology, Springer Science + Business Media, v. 34, n. 4, p. 365–386, 2002. ISSN 0882-8121. MULDER, V. L.; DE BRUIN, S.; SCHAEPMAN, M. E. Representing major soil variability at regional scale by constrained Latin hypercube sampling of remote sensing data. International Journal of Applied Earth Observation and Geoinformation, Elsevier BV, v. 21, p. 301–310, Apr 2013. ISSN 0303-2434. MULDER, V. L.; LACOSTE, M.; FORGES, A. C. R. de; MARTIN, M. P.; ARROUAYS, D. National versus global modelling the 3D distribution of soil organic carbon in mainland France. Geoderma, v. 263, p. 16–34, 2016. ISSN 0016-7061. MÜLLER, W. G. Collecting spatial data - optimum design of experiments for random fields. Berlin: Springer, 2007. 242 p. ISBN http://id.crossref.org/isbn/978-3-540-31174-4. MÜLLER, W. G.; ZIMMERMAN, D. L. Optimal designs for variogram estimation. Environmetrics, v. 10, n. 1, p. 23–37, Jan 1999. ISSN 1099-095X. MUTTIAH, R. S.; ENGEL, B. A.; JONES, D. D.Waste disposal site selection using GIS-based simulated annealing. Computers & Geosciences, Elsevier BV, v. 22, n. 9, p. 1013–1017, Nov 1996. ISSN 0098-3004. NASCIMENTO, M. D.; PENNA E SOUZA, B. S. Mapeamento geomorfológico da área abrangida pela carta topográfica de Santa Maria – RS como subsídio ao planejamento ambiental. Revista Brasileira de Geomorfologia, v. 11, n. 2, p. 83–90, 2010. Disponível em: <http: //www.lsie.unb.br/rbg/index.php?journal=rbg&page=article&op=view&path%5B%5D=155>. NELSON, M. A.; BISHOP, T. F. A.; TRIANTAFILIS, J.; ODEH, I. O. A. An error budget for different sources of error in digital soil mapping. European Journal of Soil Science, Wiley-Blackwell, v. 62, n. 3, p. 417–430, Jun 2011. ISSN 1351-0754. NUSSBAUM, M.; PAPRITZ, A.; BALTENSWEILER, A.; WALTHERT, L. Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging. Geoscientific Model Development, Copernicus GmbH, v. 7, n. 4, p. 1197–1210, 2014. ISSN 1991-962X. ODEH, I. O. A.; MCBRATNEY, A. B.; CHITTLEBOROUGH, D. J. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma, v. 63, n. 3?4, p. 197–214, 1994. ODEH, I. O. A.; MCBRATNEY, A. B.; CHITTLEBOROUGH, D. J. Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regressionkriging. Geoderma, v. 67, p. 215–226, 1995. O’HAGAN, A.; BUCK, C.; DANESHKHAH, A.; EISER, J.; GARTHWAITE, P.; JENKINSON, D.; OAKLEY, J.; RAKOW, T. Uncertain judgements: eliciting experts’ probabilities. Chichester: John Wiley and Sons, 2006. 321 p. OLIPHANT, A. J.; SPRONKEN-SMITH, R. A.; STURMAN, A. P.; OWENS, I. F. Spatial variability of surface radiation fluxes in mountainous terrain. Journal of Applied Meteorology, v. 42, p. 113–128, 2003. OLMOS, J.; CAMARGO, M. N. Concentração preliminar de Podzólico Bruno-Acinzentado tentativamente identificados no pais. In: Conceituação sumária de algumas classes de solos recém-reconhecidas nos levantamentos e estudos de correlação do SNLCS. Rio de Janeiro: Serviço Nacional de Levantamento e Conservação do Solo, 1982. p. 25–31. Circular técnica 1. OMUTO, C.; NACHTERGAELE, F.; ROJAS, R. V. State of the art report on global and regional soil information: Where are we? Where to go? Rome: Food and Agriculture Organization of the United Nations, 2013. 69 p. ISBN 9251074496. Disponível em: <http://www.fao.org/3/a-i3161e.pdf>. ORSI, F.; GENELETTI, D.; NEWTON, A. C. Towards a common set of criteria and indicators to identify forest restoration priorities: an expert panel-based approach. Ecological Indicators, v. 11, n. 2, p. 337 – 347, 2011. ISSN 1470-160X. Disponível em: <http://www.sciencedirect. com/science/article/B6W87-50G5H5F-2/2/1f174e1406d7629bbf6ceeb38c7384e6>. PAIN, C. F.; OILIER, C. Inversion of relief - a component of landscape evolution. Geomorphology, v. 12, n. 2, p. 151 – 165, 1995. ISSN 0169-555X. Disponível em: <http://www.sciencedirect.com/science/article/pii/0169555X94000845>. PAISANI, J.; GEREMIA, F. Evolution of hillslopes in the Basaltic Plateau based on the analysis of colluvium deposits - Middle Valley of Marrecas River - SW Paraná. Geociências, v. 29, n. 3, p. 321–334, 2010. PAIVA, E. M. C. D.; PAIVA, J. B. D.; MOREIRA, A. P.; MAFFINI, G. F.; MELLER, A.; DILL, P. R. J. Evolução de processo erosivo acelerado em trecho do arroio Vacacaí- Mirim. Revista Brasileira de Recursos Hídricos, v. 6, p. 129–135, 2001. Disponível em: <http://www.abrh.org.br/>. PCI GEOMATICS. Geomatica® OrthoEngine® 10.1 user guide. Richmond Hill, 2007. 174 p. (Version 10.1). Disponível em: <http://www.gis.unbc.ca/help/software/pci/orthoeng.pdf>. PEBESMA, E. gstat user’s manual. Utrecht, 2014. 108 p. Disponível em: <http: //gstat.org/gstat.pdf>. PEBESMA, E. J. Multivariable geostatistics in S: the gstat package. Computers & Geosciences, v. 30, n. 7, p. 683–691, 2004. ISSN 0098-3004. PEDRON, F. A. Classification of land use potencial in the urban perimeter of Santa Maria - RS. 65s p. Dissertação (Mestrado) — Programa de Pós-Graduação em Ciência do Solo, Universidade Federal de Santa Maria, Santa Maria, 2005. Disponível em: <http://w3.ufsm.br/ppgcs/>. PEDRON, F. A. Mineralogia, morfologia e classificação de saprolitos e Neossolos derivados de rochas vulcânicas no Rio Grande do Sul. 160 p. Tese (Doutorado) — Programa de Pós-Graduação em Ciência do Solo, Universidade Federal de Santa Maria, Santa Maria, 2007. Disponível em: <http://w3.ufsm.br/ppgcs/>. PEDRON, F. A.; DALMOLIN, R. S. D.; AZEVEDO, A. C.; BOTELHO, M. R.; SAMUELROSA, A. Spatial dynamic analysis of the land occupation and their conflicts of use in the urban perimiter of Santa Maria - RS (1975 – 2002). Ciência Rural, FapUNIFESP (SciELO), v. 36, n. 6, p. 1756–1764, Dec 2006. ISSN 0103-8478. PEDRON, F. A.; SAMUEL-ROSA, A.; DALMOLIN, R. S. D. Variation in pedological characteristics and the taxonomic classification of Argissolos (Ultisols and Alfisols) derived from sedimentary rocks. Revista Brasileira de Ciência do Solo, v. 36, p. 1–9, 2012. PERES-NETO, P. R.; JACKSON, D. A.; SOMERS, K. M. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Computational Statistics and Data Analysis, v. 49, n. 4, p. 974–997, 2005. PIERINI, C.; MIZUSAKI, A. M. P.; SCHERER, C. M.; ALVES, D. B. Integrated stratigraphic and geochemical study of the Santa Maria and Caturrita formations (Triassic of the Paraná Basin), Southern Brazil. Journal of South American Earth Sciences, v. 15, p. 669–681, 2002. Disponível em: <http://linkinghub.elsevier.com/retrieve/pii/S0895981102001141>. PINHEIRO, R. J.; SOARES, J. M. Condicionantes geológicos-geotécnicos de movimentos de massa na encosta da Serra Geral - RS. Teoria e Prática na Engenharia Civil, v. 4, n. 4, p. 59–68, 2004. Disponível em: <http://www.editoradunas.com.br/revistatpec/Sumario_Numero4.htm>. PINTO, J. S. Estudo da condutividade hidráulica de solos para disposição de resíduos sólidos na região de Santa Maria. 154 p. Dissertação (Mestrado) — Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Santa Maria, Santa Maria, 2005. POELKING, E. L. Land suitability, evolution and land use conflicts in Itaara County, RS. 67 p. Dissertação (Mestrado) — Programa de Pós-Graduação em Ciência do Solo, Universidade Federal de Santa Maria, Santa Maria, 2007. Disponível em: <http://w3.ufsm.br/ppgcs/>. POGGIO, L.; GIMONA, A. National scale 3D modelling of soil organic carbon stocks with uncertainty propagation — an example from Scotland. Geoderma, Elsevier BV, v. 232–234, p. 284–299, Nov 2014. ISSN 0016-7061. POGGIO, L.; GIMONA, A.; BREWER, M. J. Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates. Geoderma, Elsevier BV, v. 209-210, p. 1–14, nov 2013. Disponível em: <http://dx.doi.org/10.1016/j.geoderma.2013. 05.029>. PRUSCHA, H. Statistical analysis of climate series. Dordrecht: Springer Science + Business Media, 2013. 175 p. Disponível em: <http://dx.doi.org/10.1007/978-3-642-32084-2>. QUANTUM GIS DEVELOPMENT TEAM. Quantum GIS Geographic Information System. [S.l.], 2013. Version 2.0.1-Dufour. Disponível em: <http://qgis.osgeo.org>. RAMOS, D. P. Desafios da pedologia brasileira frente ao novo milênio. In: Palestra proferida no XXIX Congresso Brasileiro de Ciência do Solo. Ribeirão Preto, SP, Julho 2003. [s.n.], 2003. Disponível em: <http://jararaca.ufsm.br/websites/dalmolin/download/textospl/desafio.pdf>. RAPIDEYE. Satellite imagery product specifications. 5. ed. Brandenburg an der Havel, 2013. 46 p. Disponível em: <http://www.rapideye.com/upload/RE_Product_Specifications_ENG. pdf>. RATNER, B. Variable selection methods in regression: ignorable problem, outing notable solution. Journal of Targeting, Measurement and Analysis for Marketing, Nature Publishing Group, v. 18, n. 1, p. 65–75, mar 2010. REFSGAARD, J. C.; SLUIJS, J. P. van der; BROWN, J.; KEUR, P. van der. A framework for dealing with uncertainty due to model structure error. Advances in Water Resources, v. 29, n. 11, p. 1586–1597, 2006. ISSN 0309-1708. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0309170805002903>. REUTER, H. I.; NELSON, A.; JARVIS, A. An evaluation of void-filling interpolation methods for SRTM data. International Journal of Geographical Information Science, v. 21, n. 9, p. 983–1008, 2007. RIBEIRO, E.; BATJES, N. H.; LEENAARS, A. v. J. G. B.; JESUS, J. M. Towards the standardization and harmonization of world soil data. Wageningen, 2015. ISRIC Report 2015/03. Disponível em: <http://www.isric.org/sites/default/files/isric_report_2015_03.pdf>. RIBEIRO JR, P. J.; DIGGLE, P. J. geoR: a package for geostatistical analysis. R-NEWS, v. 1, n. 2, p. 15–18, June 2001. Disponível em: <http://geodacenter.asu.edu/system/files/rnews1.2. 15-18_0.pdf>. RIPLEY, B. D.; RASSON, J. P. Finding the edge of a Poisson forest. Journal of Applied Probability, Cambridge University Press (CUP), v. 14, n. 3, p. 483, sep 1977. RODRÍGUEZ, E.; MORRIS, C. S.; BELZ, J. E. A global assessment of the SRTM performance. Photogrammetric Engineering and Remote Sensing, v. 72, p. 249–260, 2006. ROSSEL, R. A. V.; WEBSTER, R.; KIDD, D. Mapping gamma radiation and its uncertainty from weathering products in a Tasmanian landscape with a proximal sensor and random forest kriging. Earth Surface Processes and Landforms, Wiley-Blackwell, v. 39, n. 6, p. 735–748, Oct 2013. ISSN 0197-9337. ROSSITER, D. G. Methodology for soil resource inventories. 2. ed. Enschede: Faculty of Geo-Information Science and Earth Observation, University of Twente, 2000. 132 p. Lecture Notes. Disponível em: <http://www.itc.nl/~rossiter/teach/ssm/SSM_LectureNotes2.pdf>. ROUDIER, P.; BEAUDETTE, D. E.; HEWITT, A. E. A conditioned Latin hypercube sampling algorithm incorporating operational constraints. In: MINASNY, B.; MALONE, B. P.; MCBRATNEY, A. B. (Ed.). Digital soil assessments and beyond: proceedings of the 5th global workshop on digital soil mapping. Sydney: CRC Press, 2012. p. 227–231. ROWLINGSON, B.; DIGGLE, P. Splancs: Spatial point pattern analysis code in S-plus. Computers & Geosciences, Elsevier BV, v. 19, n. 5, p. 627–655, may 1993. Disponível em: <http://dx.doi.org/10.1016/0098-3004(93)90099-Q>. ROYLE, J. A.; NYCHKA, D. An algorithm for the construction of spatial coverage designs with implementation in SPLUS. Computers & Geosciences, Elsevier BV, v. 24, n. 5, p. 479–488, Jun 1998. ISSN 0098-3004. RUSSO, D. Design of an optimal sampling network for estimating the variogram. Soil Science Society of America Journal, Soil Science Society of America, v. 48, n. 4, p. 708–716, 1984. ISSN 0361-5995. SAMUEL-ROSA, A. Uso da terra no Rebordo do Planalto do Rio Grande do Sul. Santa Maria: [s.n.], 2009. 23 p. SAMUEL-ROSA, A. Spatial prediction functions of soil properties. 201 p. Dissertação (Mestrado) — Post-Graduate Course in Soil Science, Universidade Federal de Santa Maria, Santa Maria, 2012. Disponível em: <http://w3.ufsm.br/ppgcs/>. SAMUEL-ROSA, A.; ANJOS, L. H. C.; VASQUES, G. M. An approach to help formalizing the purposive sampling strategy of classical soil surveys. In: Proceedings of the 20th World Congress of Soil Science. Jeju: [s.n.], 2014. Disponível em: <https: //www.researchgate.net/publication/264080772_An_approach_to_help_formalizing_the_ purposive_sampling_strategy_of_classical_soil_surveys>. SAMUEL-ROSA, A.; ANJOS, L. H. C.; VASQUES, G. M.; ANTUNES, M. A. H.; DALMOLIN, R. S. D. Identifying and correcting oblique striping in the Topodata digital elevation model. In: EPAGRI. XXXIV Brazilian Congress of Soil Science. Florianópolis: EPAGRI, 2013. Disponível em: <http://goo.gl/3zQmfq>. SAMUEL-ROSA, A.; ANJOS, L. H. C.; VASQUES, G. M.; HEUVELINK, G. B. M. Evaluation of freely available ancillary data used for detailed soil mapping in Brazil. In: Geophysical Research Abstracts – EGU General Assembly 2014. Copernicus, 2014. v. 16, p. EGU2014–769–1. Disponível em: <http://meetingorganizer.copernicus.org/EGU2014/ EGU2014-769-1.pdf>. SAMUEL-ROSA, A.; ANJOS, L. H. C.; VASQUES, G. M.; HEUVELINK, G. B. M. pedometrics - pedometric tools and techniques. [S.l.], 2014. R package version 0.1-7. Disponível em: <https://r-forge.r-project.org/R/?group_id=1887>. SAMUEL-ROSA, A.; BRUS, D. J.; VASQUES, G. M.; ANJOS, L. H. C. Optimization of sample configurations for spatial trend estimation. In: Pedometrics 2015. Córdoba: Universidad de Córdoba, 2015. SAMUEL-ROSA, A.; BRUS, D. J.; VASQUES, G. M.; ANJOS, L. H. C. Optimization of sample configurations for spatial trend estimation for soil mapping. In preparation. 2016. SAMUEL-ROSA, A.; DALMOLIN, R. S. D.; MIGUEL, P. Building predictive models of soil particle-size distribution. Revista Brasileira de Ciência do Solo, v. 37, n. 2, p. 422–430, 2013. ISSN 0100-0683. SAMUEL-ROSA, A.; HEUVELINK, G.; VASQUES, G.; ANJOS, L. spsann – optimization of sample patterns using spatial simulated annealing. In: Geophysical Research Abstracts – EGU General Assembly 2015. Copernicus, 2015. v. 17, p. EGU2015–7780. Disponível em: <http://meetingorganizer.copernicus.org/EGU2015/EGU2015-7780.pdf>. SAMUEL-ROSA, A.; HEUVELINK, G. B. M.; VASQUES, G. M.; ANJOS, L. H. C. Spatial point pattern analysis of soil survey sampling locations. In: Proceedings of the 10th European Conference on Geostatistics for Environmental Applications. Paris: [s.n.], 2014. Disponível em: <http://goo.gl/o9Hmky>. SAMUEL-ROSA, A.; HEUVELINK, G. B. M.; VASQUES, G. M.; ANJOS, L. H. C. Do more detailed environmental covariates deliver more accurate soil maps? Geoderma, v. 243–244, p. 214–227, April 2015. SAMUEL-ROSA, A.; HEUVELINK, G. B. M.; VASQUES, G. M.; ANJOS, L. H. C. Optimization of sample configurations for variogram estimation. In: Pedometrics 2015. Córdoba: Universidad de Córdoba, 2015. SAMUEL-ROSA, A.; MIGUEL, P.; DALMOLIN, R. S. D.; PEDRON, F. A. Land use in the Plateau Border of the state of Rio Grande do Sul. Ciência & Natura, v. 33, p. 161–173, 2011. Disponível em: <http://cascavel.ufsm.br/revista_ccne/ojs/index.php/cienciaenatura/article/ viewFile/542/404>. SANCHEZ, P. A.; AHAMED, S.; CARRÉ, F.; HARTEMINK, A. E.; HEMPEL, J.; HUISING, J.; LAGACHERIE, P.; MCBRATNEY, A. B.; MCKENZIE, N. J.; MENDONÇA-SANTOS, M. L.; MINASNY, B.; MONTANARELLA, L.; OKOTH, P.; PALM, C. A.; SACHS, J. D.; SHEPHERD, K. D.; VAGEN, T.-G.; VANLAUWE, B.; WALSH, M. G.; WINOWIECKI, L. A.; ZHANG, G. lin. Digital soil map of the world. Science, v. 325, p. 680–681, 2009. SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; OLIVEIRA, J. B.; COELHO, M. R.; LUMBRERAS, J. F.; CUNHA, T. J. F. Sistema Brasileiro de Classificação de Solos. 2. ed. Rio de Janeiro: Embrapa Solos, 2006. 306 p. Disponível em: <http://200.20.158.8/blogs/sibcs/>. SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R.; ALMEIDA, J. A.; CUNHA, T. J. F.; OLIVEIRA, J. B. Sistema Brasileiro de Classificação de Solos. 3. ed. Brasília: Embrapa, 2013. 353 p. Disponível em: <http://200.20.158.8/blogs/sibcs/>. SANTOS, R. D.; LEMOS, R. C.; SANTOS, H. G.; KER, J. C.; ANJOS, L. H. C. Manual of soil description and sampling in the field. 5. ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2005. 92 p. SANTOS, R. D.; LEMOS, R. C.; SANTOS, H. G.; KER, J. C.; ANJOS, L. H. C.; SHIMIZU, S. H. Manual of soil description and sampling in the field. 6. ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2013. 100 p. SARTORI, P. L. P. Geology and geomorfology of Santa Maria. Ciência e Ambiente, v. 38, p. 19– 42, 2009. Disponível em: <http://w3.ufsm.br/cienciaeambiente/resenha.php?IDResenha=397>. SCHELLING, J. Soil genesis, soil classification and soil survey. Geoderma, Elsevier BV, v. 4, n. 3, p. 165–193, sep 1970. Disponível em: <http://dx.doi.org/10.1016/0016-7061(70) 90002-9>. SCHENEIDER, P. R.; GALVÃO, F.; LONGHI, S. J. Influência do pisoteio de bovinos em áreas florestais. Revista Floresta, v. 9, p. 19–23, 1978. SCHNEIDER, M.; PERES, C. A. Environmental costs of government-sponsored agrarian settlements in Brazilian Amazônia. PLOS ONE, Public Library of Science (PLoS), v. 10, n. 8, p. e0134016, aug 2015. Disponível em: <http://dx.doi.org/10.1371/journal.pone.0134016>. SCHOWENGERDT, R. A. Remote sensing: models and methods for image processing. 3. ed. San Diego: Academic Press, 2007. 515 p. SCHRAMA, M.; VEEN, G. F. C.; BAKKER, E. S. L.; RUIFROK, J. L.; BAKKER, J. P.; OLFF, H. An integrated perspective to explain nitrogen mineralization in grazed ecosystems. Perspectives in Plant Ecology, Evolution and Systematics, Elsevier BV, v. 15, n. 1, p. 32–44, Feb 2013. ISSN 1433-8319. SCULL, P.; FRANKLIN, J.; CHADWICK, O.; MCARTHUR, D. Predictive soil mapping: a review. Progress in Physical Geography, v. 27, n. 2, p. 171–197, 2003. SECOM. Comissão debate compra de terra por estrangeiro. 2015. 7 p. Eletronic. Disponível em: <http://www.camara.leg.br/internet/Jornal/JC20151215.pdf>. SEMA/UFSM. Relatório final do inventário florestal contínuo do Rio Grande do Sul. Porto Alegre, 2001. 706 p. Disponível em: <http://w3.ufsm.br/ifcrs/frame.htm>. SHI, X.; GIROD, L.; LONG, R.; DEKETT, R.; PHILIPPE, J.; BURKE, T. A comparison of LiDAR-based DEMs and USGS-sourced DEMs in terrain analysis for knowledge-based digital soil mapping. Geoderma, v. 170, n. 0, p. 217–226, 2012. ISSN 0016-7061. SILVA, L. K. R. A migração dos trabalhadores gaúchos para a Amazônia Legal (1970-1985). II - A política de ocupação das fronteiras amazônicas. Klepsidra – Revista Virtual de História, v. 24, 2005. ISSN 1677-8944. Disponível em: <http://www.klepsidra.net/klepsidra24/agro-rs2.htm>. SIMBAHAN, G. C.; DOBERMANN, A. Sampling optimization based on secondary information and its utilization in soil carbon mapping. Geoderma, v. 133, p. 345–362, 2006. SMITH, G. D. The Guy Smith interviews: rationale concepts in Soil Taxonomy. 1. ed. New York: Soil Management Support Services. Soil Conservation Service. US Department of Agriculture, 1986. 260 p. SMSS technical monograph no. 11. ISBN 0-932865-05-4. SOIL CONSERVATION SERVICE. Soil survey investigations report. Washington: United States Soil Conservation Service, 1972. 63 p. Disponível em: <http://catalog.hathitrust.org/ Record/001720356>. STAMPS, A. E. I.; KRISHNAN, V. Perceived enclosure of space, angle above observer, and distance to boundary. Perceptual and Motor Skills, v. 99, p. 1187–1192, 2004. STEIN, A.; HOOGERWERF, M.; BOUMA, J. Use of soil-map delineations to improve (co-)kriging of point data on moisture deficits. Geoderma, Elsevier BV, v. 43, n. 2-3, p. 163–177, dec 1988. Disponível em: <http://dx.doi.org/10.1016/0016-7061(88)90041-9>. STEIN, M. L. Interpolation of spatial data: some theory for kriging. New York: Springer, 1999. 247 p. ISBN 978-1-4612-1494-6. Disponível em: <http://www.springer.com/mathematics/ probability/book/978-0-387-98629-6>. STRECK, E. V.; KÄMPF, N.; DALMOLIN, R. S.; KLAMT, E.; NASCIMENTO, P. C.; SCHNEIDER P. GIASSON, E.; PINTO, L. F. Solos do Rio Grande do Sul. 2. ed. Porto Alegre: EMATER/RS, 2008. 222 p. STÜRMER, S. L. K. Water infiltration in Neossolos Regolíticos (Regossols) in the Plateau Edge of Rio Grande do Sul State. 104 p. Dissertação (Mestrado)—Programa de Pós-Graduação em Ciência do Solo, Universidade Federal de Santa Maria, Santa Maria, 2008. Disponível em: <http://w3.ufsm.br/ppgcs/>. SUMFLETH, K.; DUTTMANN, R. Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators. Ecological Indicators, v. 8, p. 485–501, 2008. SUN, W.; MINASNY, B.; MCBRATNEY, A. Analysis and prediction of soil properties using local regression-kriging. Geoderma, v. 171-172, n. 0, p. 16–23, February 2012. Entering the Digital Era: Special Issue of Pedometrics 2009, Beijing. SUTILI, F. J.; DURLO, M. A.; BRESSAN, D. A. Hidrografia de Santa Maria. Ciência e Ambiente, v. 38, p. 79–92, 2009. SUZUKI, L. E. A. S.; REINERT, D. J.; KAISER, D. R.; KUNZ, M.; PELLEGRINI, A.; REICHERT, J. M.; ALBUQUERQUE, J. A. Areia total de solos sob diferentes tempos de agitação horizontal, tempo de contato do dispersante químico e dispersão mecânica. In: Reunião Brasileira de Manejo e Conservação do Solo e da Água. Santa Maria: Sociedade Brasileira de Ciência do Solo, 2004. p. 4. Disponível em: <http://www.fisicadosolo.ccr.ufsm. quoos.com.br/index.php?option=com_content&view=article&id=60&Itemid=89>. SUZUKI, L. E. A. S.; REINERT, D. J.; KAISER, D. R.; KUNZ, M.; PELLEGRINI, A.; REICHERT, J. M.; ALBUQUERQUE, J. A. Teor de argila de solos sob diferentes tempos de agitação horizontal, tempo de contato do dispersante químico e dispersão mecânica. In: Reunião Brasileira de Manejo e Conservação do Solo e da Água. Santa Maria: Sociedade Brasileira de Ciência do Solo, 2004. p. 4. Disponível em: <http://www.fisicadosolo.ccr.ufsm. quoos.com.br/index.php?option=com_content&view=article&id=60&Itemid=89>. TAYLOR, J. R. An introduction to error analysis. 2. ed. Sausalito: University Science Books, 1997. 327 p. TEDESCO, M. J.; GIANELLO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEISS, S. J. Analysis of soil, plants and other materials. 2. ed. [S.l.], 1995. 147 p. TEN CATEN, A.; DALMOLIN, R. S. D.; PEDRON, F. A.; MENDONÇA-SANTOS, M. L. Principal components as predictor variables in digital mapping of soil classes. Ciência Rural, v. 41, p. 1170–1176, 2011. TEN CATEN, A.; DALMOLIN, R. S. D.; PEDRON, F. A.; MENDONÇA-SANTOS, M. L. Spatial resolution of a digital elevation model defined by the wavelet function. Pesquisa Agropecuária Brasileira, v. 47, n. 3, p. 449–457, 2012. TEN CATEN, A.; MINELLA, J. P. G.; MADRUGA, P. R. A. Disintensification of land use and its relation with soil erosion. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 16, n. 9, p. 1006–1014, 2012. THOMPSON, J. A.; BELL, J. C.; BUTLER, C. A. Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling. Geoderma, v. 100, n. 1-2, p. 67–89, 2001. TOURÉ-TILLERY, M.; FISHBACH, A. The course of motivation. Journal of Consumer Psychology, v. 21, n. 4, p. 414–423, 2011. ISSN 1057-7408. Special Issue on the Application of Behavioral Decision Theory. Disponível em: <http://www.sciencedirect.com/science/article/ pii/S1057740811000507>. TOURÉ-TILLERY, M.; FISHBACH, A. The end justifies the means, but only in the middle. Journal of Experimental Psychology: General, v. 141, n. 3, p. 570–583, 2011. TOUTIN, T. Evaluation of radargrammetric DEM from RADARSAT images in high relief areas. IEEE Transactions on Geoscience and Remote Sensing, v. 38, n. 2, p. 782–789, 2000. TOUTIN, T. Geometric processing of remote sensing images: models, algorithms and methods. International Journal of Remote Sensing, v. 25, n. 10, p. 1893–1924, 2004. Disponível em: <http://www.tandfonline.com/doi/abs/10.1080/0143116031000101611>. TRUONG, P. N.; HEUVELINK, G. B. M.; GOSLING, J. P. Web-based tool for expert elicitation of the variogram. Computers & Geosciences, v. 51, p. 390–399, Feb 2013. ISSN 0098-3004. UFRRJ. Manual de instruções para organização e apresentação de dissertações e teses na UFRRJ. 3. ed. Seropédica, 2006. 25 p. Disponível em: <http://www.ufrrj.br/portal/modulo/ dppg/Formularios_normas/manual_teses.pdf>. VALERIANO, M. M.; ROSSETTI, D. F. Topodata: Brazilian full coverage refinement of srtm data. Applied Geography, v. 32, n. 2, p. 300–309, 2012. VAN GROENIGEN, J.; SIDERIUS, W.; STEIN, A. Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma, v. 87, p. 239–259, 1999. VAN GROENIGEN, J.; STEIN, A.; ZUURBIER, R. Optimization of environmental sampling using interactive gis. Soil Technology, v. 10, p. 83–97, 1997. VAN GROENIGEN, J.-W. Constrained optimisation of spatial sampling: a geostatistical approach. 148 p. Tese (Doutorado) — Wageningen University, Wageningen, 1999. Disponível em: <http://edepot.wur.nl/192440>. VAN GROENIGEN, J. W.; STEIN, A. Constrained optimization of spatial sampling using continuous simulated annealing. Journal of Environmental Quality, v. 27, n. 5, p. 1078–1086, 1998. VENABLES, W. N.; RIPLEY, B. D. Modern applied statistics with S. 4. ed. New York: Springer, 2002. 504 p. ISBN 0-387-95457-0. Disponível em: <http://www.stats.ox.ac.uk/pub/ MASS4>. VERMOTE, E.; TANRE, D.; DEUZE, J. L.; HERMAN, M.; MORCETTE, J. J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview. IEEE Transactions on Geoscience and Remote Sensing, v. 35, n. 3, p. 675–686, 1997. VOLTZ, M.; WEBSTER, R. A comparison of kriging, cubic splines and classification for predicting soil properties from sample information. Journal of Soil Science, Wiley-Blackwell, v. 41, n. 3, p. 473–490, Sep 1990. ISSN 0022-4588. WALVOORT, D. J. J.; BRUS, D. J.; DE GRUIJTER, J. J. An R package for spatial coverage sampling and random sampling from compact geographical strata by k-means. Computers & Geosciences, v. 36, n. 10, p. 1261–1267, 2010. ISSN 0098-3004. WARRICK, A. W.; MYERS, D. E. Optimization of sampling locations for variogram calculations. Water Resources Research, v. 23, n. 3, p. 496–500, Mar 1987. ISSN 0043-1397. WEBSTER, R. Is soil variation random? Geoderma, Elsevier BV, v. 97, n. 3-4, p. 149–163, Sep 2000. ISSN 0016-7061. WEBSTER, R. Let’s re-write the scientific paper. European Journal of Soil Science, v. 54, p. 215–218, 2003. WEBSTER, R.; LARK, R. M. Field sampling for environmental science and management. London: Routledge, 2013. 200 p. WEBSTER, R.; OLIVER, M. A. Statistical methods in soil and land resource survey. Oxford: Oxford University Press, 1990. 316 p. WEBSTER, R.; OLIVER, M. A. Sample adequately to estimate variograms of soil properties. Journal of Soil Science, Blackwell Publishing Ltd, v. 43, n. 1, p. 177–192, 1992. ISSN 1365-2389. WEBSTER, R.; OLIVER, M. A. Geostatistics for environmental scientists. 2. ed. Chichester: John Wiley & Sons, 2007. 315 p. WECHSLER, S. P. Perceptions of digital elevation model uncertainty by DEM users. URISA Journal, v. 15, n. 2, p. 57–64, 2003. Disponível em: <http://urisa.org/Journal/protect/ Vol15No2/Wechsler.pdf>. WEICHELT, H.; ROSSO, P.; MARX, A.; REIGBER, S.; DOUGLASS, K.; HEYNEN, M. The RapidEye Red Edge Band. [S.l.], 2013. 8 p. Disponível em: <http://blackbridge.com/rapideye/ upload/Red_Edge_White_Paper.pdf>. WERLANG, M. K.; GROSS, J. A.; PORTO, P.; RODRIGUES, P. G. Trabalho de campo em geomorfologia: visualização de formas de relevo, solos e dinâmica erosiva na topossequência desde a Depressão Periférica sul-rio-grandense até o Rebordo do Planalto (planaltos e chapadas da Bacia Sedimentar do Paraná) em Santa Maria-RS/Silveira Martins-RS. Geografia Ensino e Pesquisa, v. 14, n. 3, p. 18–26, 2010. Disponível em: <http://cascavel.ufsm.br/revistageografia/index.php/revistageografia/issue/view/63>. WOOD, J. The geomorphological characterisation of digital elevation models. 185 p. Tese (Doutorado) — University of Leicester, Leicester, 1996. Disponível em: <http: //www.soi.city.ac.uk/~jwo/phd/>. YEOMANS, J. C.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, v. 19, n. 13, p. 1467–1476, 1988. YFANTIS, E. A.; FLATMAN, G. T.; BEHAR, J. V. Efficiency of kriging estimation for square, triangular, and hexagonal grids. Mathematical Geology, Springer Science + Business Media, v. 19, n. 3, p. 183–205, apr 1987. Disponível em: <http://dx.doi.org/10.1007/BF00897746>. ZALAMENA, J. Impacto do uso da terra nos atributos químicos e físicos de solos do Rebordo do Planalto - RS. 78 p. Dissertação (Mestrado) — Programa de Pós-Graduação em Ciência do Solo, Universidade Federal de Santa Maria, Santa Maria, 2008. Disponível em: <http://w3.ufsm.br/ppgcs/>. ZEILEIS, A.; GROTHENDIECK, G. zoo: S3 infrastructure for regular and irregular time series. Journal of Statistical Software, v. 14, n. 6, p. 1–27, 2005. Disponível em: <http://www.jstatsoft.org/v14/i06/>. ZHU, A. X.; BURT, J. E.; SMITH, M.; WANG, R.; GAO, J. The impact of neighbourhood size on terrain derivatives and digital soil mapping. In: ZHOU, Q.; LEES, B.; TANG, G. (Ed.). Advances in digital terrain analysis. Berlin: Springer, 2008, (Lecture notes in geoinformation and cartography). p. 333–348. ISBN 978-3-540-77799-1. ZHU, Z.; STEIN, M. L. Spatial sampling design for prediction with estimated parameters. Journal of Agricultural, Biological, and Environmental Statistics, Springer Science + Business Media, v. 11, n. 1, p. 24–44, Mar 2006. ISSN 1537-2693. ZIMMERMAN, D. L. Optimal network design for spatial prediction, covariance parameter estimation, and empirical prediction. Environmetrics, Wiley-Blackwell, v. 17, n. 6, p. 635–652, 2006. ISSN 1099-095X.https://tede.ufrrj.br/retrieve/5005/2016%20-%20Alessandro%20Samuel-Rosa.pdf.jpghttps://tede.ufrrj.br/retrieve/19632/2016%20-%20Alessandro%20Samuel-Rosa.pdf.jpghttps://tede.ufrrj.br/retrieve/25983/2016%20-%20Alessandro%20Samuel-Rosa.pdf.jpghttps://tede.ufrrj.br/retrieve/32424/2016%20-%20Alessandro%20Samuel-Rosa.pdf.jpghttps://tede.ufrrj.br/retrieve/38822/2016%20-%20Alessandro%20Samuel-Rosa.pdf.jpghttps://tede.ufrrj.br/retrieve/45140/2016%20-%20Alessandro%20Samuel-Rosa.pdf.jpghttps://tede.ufrrj.br/retrieve/51534/2016%20-%20Alessandro%20Samuel-Rosa.pdf.jpghttps://tede.ufrrj.br/retrieve/58030/2016%20-%20Alessandro%20Samuel-Rosa.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/1333Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2016-10-21T17:28:48Z No. of bitstreams: 1 2016 - Alessandro Samuel-Rosa.pdf: 15092171 bytes, checksum: bbe06c922805d4196e0a50c4f2aee7a5 (MD5)Made available in DSpace on 2016-10-21T17:28:48Z (GMT). No. of bitstreams: 1 2016 - Alessandro Samuel-Rosa.pdf: 15092171 bytes, checksum: bbe06c922805d4196e0a50c4f2aee7a5 (MD5) Previous issue date: 2016-02-24info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTEXT2016 - Alessandro Samuel-Rosa.pdf.txtExtracted Texttext/plain739521https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9041/1/2016%20-%20Alessandro%20Samuel-Rosa.pdf.txt72cb22242fad84df973682863859d155MD51ORIGINAL2016 - Alessandro Samuel-Rosa.pdfDocumento principalapplication/pdf15081251https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9041/2/2016%20-%20Alessandro%20Samuel-Rosa.pdf223e14b0c241d13ddc7a8756132b079fMD52THUMBNAIL2016 - Alessandro Samuel-Rosa.pdf.jpgGenerated Thumbnailimage/jpeg3729https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9041/3/2016%20-%20Alessandro%20Samuel-Rosa.pdf.jpga0a3616c8eebff1967865a1b10d57d01MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9041/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/90412023-12-21 15:33:49.879oai:rima.ufrrj.br:20.500.14407/9041Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:33:49Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Análise de fontes de incerteza na modelagem espacial do solo
dc.title.alternative.eng.fl_str_mv Analysis of sources of uncertainty in soil spatial modelling.
title Análise de fontes de incerteza na modelagem espacial do solo
spellingShingle Análise de fontes de incerteza na modelagem espacial do solo
Rosa, Alessandro Samuel
Pedometrics
Digital Soil Mapping
Soil and Covariate Data
Pedometria
Mapeamento Digital do Solo
Dados de Solo e Covariáveis
Agronomia
title_short Análise de fontes de incerteza na modelagem espacial do solo
title_full Análise de fontes de incerteza na modelagem espacial do solo
title_fullStr Análise de fontes de incerteza na modelagem espacial do solo
title_full_unstemmed Análise de fontes de incerteza na modelagem espacial do solo
title_sort Análise de fontes de incerteza na modelagem espacial do solo
author Rosa, Alessandro Samuel
author_facet Rosa, Alessandro Samuel
author_role author
dc.contributor.author.fl_str_mv Rosa, Alessandro Samuel
dc.contributor.advisor1.fl_str_mv Anjos, Lúcia Helena Cunha dos
dc.contributor.advisor1ID.fl_str_mv 660.519.407-15
dc.contributor.advisor-co1.fl_str_mv Vasques, Gustavo de Mattos
dc.contributor.advisor-co1ID.fl_str_mv 084.272.437-07
dc.contributor.advisor-co2.fl_str_mv Heuvelink, Gerardus Bernardus Maria
dc.contributor.advisor-co2ID.fl_str_mv NP7755C77 (Passaporte)
dc.contributor.referee1.fl_str_mv Ceddia, Marcos Bacis
dc.contributor.referee2.fl_str_mv Teixeira, Wenceslau Geraldes
dc.contributor.referee3.fl_str_mv Oliveira, Ronaldo Pereira de
dc.contributor.referee4.fl_str_mv Assad, Maria Leonor Ribeiro Casimiro Lopes
dc.contributor.authorID.fl_str_mv 007.024.020-52
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1609751519717461
contributor_str_mv Anjos, Lúcia Helena Cunha dos
Vasques, Gustavo de Mattos
Heuvelink, Gerardus Bernardus Maria
Ceddia, Marcos Bacis
Teixeira, Wenceslau Geraldes
Oliveira, Ronaldo Pereira de
Assad, Maria Leonor Ribeiro Casimiro Lopes
dc.subject.eng.fl_str_mv Pedometrics
Digital Soil Mapping
Soil and Covariate Data
topic Pedometrics
Digital Soil Mapping
Soil and Covariate Data
Pedometria
Mapeamento Digital do Solo
Dados de Solo e Covariáveis
Agronomia
dc.subject.por.fl_str_mv Pedometria
Mapeamento Digital do Solo
Dados de Solo e Covariáveis
dc.subject.cnpq.fl_str_mv Agronomia
description A modelagem espacial do solo moderna usa modelos estatísticos para explorar a relação em-pírica entre as condições ambientais e as propriedades do solo. Esses modelos são uma sim-plificação da realidade, e seu resultado (mapa do solo) estará sempre errado. O que um mapa do solo transmite é o que esperamos que o solo seja, reconhecendo que somos incertos sobre ele. O objetivo dessa tese é avaliar importantes fontes de incerteza na modelagem espacial do solo, com ênfase nos dados do solo e covariáveis. Estudos de caso foram desenvolvidos usando dados de uma bacia hidrográfica do sul do Brasil. A distribuição espacial do solo na área de estudo é variável, sendo determinada pela geologia e geomorfologia (escalas espaciais maiores) e práticas agrícolas (escalas espaciais menores). Quatro propriedades do solo foram explora-das: teor de argila, teor de carbono orgânico, capacidade de troca catiônica efetiva e densidade. Cinco covariáveis, cada um com dois níveis de detalhe espacial, foram utilizadas: mapas areais de classes de solo, modelos digitais de elevação, mapas geológicos, mapas de uso da terra, e imagens de satélite. Esses dados constituem o conjunto de dados de Santa Maria. Dois paco-tes para R foram criados, o primeiro (pedometrics) contendo várias funções para a análise exploratória espacial de dados e calibração de modelos, o segundo (spann) projetado para a optimização de amostras espaciais usando recozimento simulado. Os estudos de caso ilustraram que as covariáveis existentes são apropriadas para calibrar modelos espaciais do solo, e que o uso de covariáveis mais detalhadas resulta em modesto aumento na acurácia de predição que pode não compensar os custos adicionais. Meios mais eficientes de aumentar a acurácia de pre-dição devem ser explorados, como obter mais observações do solo. Para esse fim, deve-se usar meios objetivos para a seleção dos locais de observação a fim de minimizar os efeitos das res-postas psicológicas dos modeladores do solo a fatores conceituais e operacionais sobre o plano de amostragem. Isso porque as dificuldades conceituais e operacionais encontradas no campo determinam mudanças na motivação dos modeladores do solo entre aprendizagem/verificação das relações solo-paisagem e maximização do número de observações e cobertura geográfica. Para estimar a tendência espacial, deve ser suficiente otimizar as amostras espaciais visando so-mente reproduzir a distribuição marginal das covariáveis. Para otimizar configurações amostrais para estimar a tendência espacial e o variograma, e interpolação espacial, pode-se formular um problema de otimização multi-objetivo sólido usando versões robustas de algoritmos de amos-tragem existentes. No geral, aprendemos que uma receita única, universal para a redução da incerteza na modelagem espacial do solo não pode ser formulada. Decidir sobre formas efi-cazes de redução da incerteza requer, em primeiro lugar, que exploremos todo o potencial dos dados existentes usando técnicas de modelagem espacial sólidas.
publishDate 2016
dc.date.issued.fl_str_mv 2016-02-24
dc.date.accessioned.fl_str_mv 2023-12-21T18:33:49Z
dc.date.available.fl_str_mv 2023-12-21T18:33:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ROSA, Alessandro Samuel. Análise de fontes de incerteza na modelagem espacial do solo. 2016. 278 f. Tese (Doutorado em Agronomia - Ciência do Solo). Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/9041
identifier_str_mv ROSA, Alessandro Samuel. Análise de fontes de incerteza na modelagem espacial do solo. 2016. 278 f. Tese (Doutorado em Agronomia - Ciência do Solo). Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/9041
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv AARTS, E. H. L.; KORST, J. H. M. Boltzmann machines for travelling salesman problems. European Journal of Operational Research, Elsevier BV, v. 39, n. 1, p. 79–95, Mar 1989. ISSN 0377-2217. ABRÃO, P. U. R.; GIANLUPE, D.; AZOLIN, M. A. D. Levantamento semi-detalhado dos solos da Estação Experimental de Silvicultura de Santa Maria. Porto Alegre, 1988. AERTS, J. C. J. H.; HEUVELINK, G. B. M. Using simulated annealing for resource allocation. International Journal of Geographical Information Science, v. 16, n. 6, p. 571–587, 2002. ISSN 13658816. AGRESTI, A. Categorical data analysis. 2. ed. New York: Wiley-Interscience, 2002. 710 p. ISBN 0471360937. Disponível em: <http://www.stat.ufl.edu/~aa/cda2/cda.html>. ANDERSEN, C. M.; BRO, R. Variable selection in regression – a tutorial. Journal of Chemometrics, v. 24, n. 11–12, p. 728–737, 2010. ANTUNES, M. A. H.; SIQUEIRA, J. C. S. Características das imagens RapidEye para mapeamento e monitoramento agrícola e ambiental. In: EPIPHANIO, J. C. N.; GALVÃO, L. S. (Ed.). Anais XVI Simpósio Brasileiro de Sensoriamento Remoto. São José dos Campos: Instituto Nacional de Pesquisas Espaciais, 2013. p. 547–554. Disponível em: <http://www.dsr.inpe.br/sbsr2013/files/p1253.pdf>. ARORA, J. Introduction to optimum design. 3. ed. Waltham: Academic Press, 2011. 896 p. ISBN 978-0-12-381375-6. AZOLIN, M. A. D. Podologia das áreas marginais dos rios Ibicuí e Vacacaí. Porto Alegre, 1977. 71 p. AZOLIN, M. A. D.; MUTTI, L. S. M. Solos da bacia hidrográfica do Vacacaí-Mirim. Porto Alegre: DNOS-UFSM, 1988. 20 p. Disponível em: <http://1drv.ms/UAFIOK>. BADDELEY, A. Analysing spatial point patterns in R. Canberra, 2010. 232 p. Disponível em: <http://www.coactivate.org/projects/plein-r/project-home/Baddeley_SPP-workshop_CSIRO_ 2008.pdf>. BADDELEY, A. J.; MOLLER, J.; WAAGEPETERSEN, R. Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerland, Wiley- Blackwell, v. 54, n. 3, p. 329–350, Nov 2000. ISSN 1467-9574. BARRERA-BASSOLS, N.; ZINCK, J. A. Ethnopedology: a worldwide view on the soil knowledge of local people. Geoderma, v. 111, p. 171–195, 2003. Disponível em: <http://linkinghub.elsevier.com/retrieve/pii/S001670610200263X>. BASHER, L. R. Is pedology dead and buried? Australian Journal of Soil Research, v. 35, p. 979–994, 1997. Disponível em: <http://www.publish.csiro.au/paper/S96110>. BATLLE-BAYER, L.; BATJES, N. H.; BINDRABAN, P. S. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture, Ecosystems & Environment, Elsevier BV, v. 137, n. 1-2, p. 47–58, apr 2010. BAZAGLIA FILHO, O.; RIZZO, R.; LEPSCH, I. F.; PRADO, H. do; GOMES, F. H.; MAZZA, J. A.; DEMATTÊ, J. A. M. Comparison between detailed digital and conventional soil maps of an area with complex geology. Revista Brasileira de Ciência do Solo, FapUNIFESP (SciELO), v. 37, n. 5, p. 1136–1148, 2013. BEHRENS, T.; ZHU, A. X.; SCHMIDT, K.; SCHOLTEN, T. Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma, v. 155, n. 3–4, p. 175–185, 2010. ISSN 0016-7061. BIRKELAND,W. Soils and geomorphology. 3. ed. New York: Oxford University Press., 1999. 430 p. BIVAND, R. S.; PEBESMA, E. J.; GÓMEZ-RUBIO, V. Applied spatial data analysis with R. 1. ed. New York: Springer, 2008. 374 p. BIVAND, R. S.; PEBESMA, E. J.; GÓMEZ-RUBIO, V. Applied spatial data analysis with R. 2. ed. New York: Springer, 2013. 405 p. BLANCO-CANQUI, H.; LAL, R. Principles of soil conservation and management. Dordrecht: Springer, 2008. 617 p. ISBN 9048185297. BOCKHEIM, J. G.; GENNADIYEV, A. N. The role of soil-forming processes in the definition of taxa in soil taxonomy and the world soil reference base. Geoderma, v. 95, n. 1, p. 53–72, 2000. BOCKHEIM, J. G.; GENNADIYEV, A. N. Soil-factorial models and earth-system science: a review. Geoderma, Elsevier BV, v. 159, n. 3–4, p. 243–251, Nov 2010. ISSN 0016-7061. BONEZZI, A.; BRENDL, C. M.; ANGELIS, M. D. Stuck in the middle: the psychophysics of goal pursuit. Psychological Science, v. 22, n. 5, p. 607–612, 2011. BONNES, M.; BONAIUTO, M. Environmental psychology: from spatial-physical environment to sustainable development. In: . Handbook of environmental psychology. New York: John Wiley & Sons, 2002. p. 28–54. BORTOLUZZI, C. A. Contribuição à geologia da região de Santa Maria, Rio Grande do Sul, Brasil. Pesquisas em Geociências, v. 4, n. 1, p. 7–86, 1974. Disponível em: <http://seer.ufrgs.br/PesquisasemGeociencias/article/view/21834>. BOX, G. E. P. Science and statistics. Journal of the American Statistical Association, v. 71, n. 356, p. 791–799, 1976. Disponível em: <http://www.jstor.org/stable/2286841>. BOX, G. E. P.; WILSON, K. B. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B (Methodological), Wiley for the Royal Statistical Society, v. 13, n. 1, p. 1–45, 1951. ISSN 00359246. Disponível em: <http://www.jstor.org/stable/2983966>. BRASIL. Levantamento de reconhecimento dos solos do estado do Rio Grande do Sul. Recife: Ministério da Agricultura. Departamento Nacional de Pesquisa Agropecuária. Divisão de Pesquisa Pedológica, 1973. 431 p. Escala 1:750 000. Disponível em: <http://library.wur.nl/isric/fulltext/isricu_i00003061_001.pdf>. BRASIL. Mapa geológico da folha Santa Maria. Santa Maria, 1980. (1:50 000). BRASIL. Decreto nº 89.817, de 20 de junho de 1984. Estabelece as Instruções Reguladoras das Normas Técnicas da Cartografia Nacional. Brasília: Diário Oficial da República Federativa do Brasil], 1984. 8884–8886 p. Disponível em: <http: //www.concar.ibge.gov.br/detalheDocumentos.aspx?cod=8>. BRASIL. Geo catálogo do Ministério do Meio Ambiente – manual de uso. 1.0. ed. Brasília, 2012. 35 p. Disponível em: <http://geocatalogo.mma.gov.br/>. BREGT, A. K.; BOUMA, J.; JELLINEK, M. Comparison of thematic maps derived from a soil map and from kriging of point data. Geoderma, Elsevier BV, v. 39, n. 4, p. 281–291, may 1987. Disponível em: <http://dx.doi.org/10.1016/0016-7061(87)90048-6>. BREIMAN, L. Random forests. Machine Learning, Springer Science + Business Media, v. 45, n. 1, p. 5–32, 2001. ISSN 0885-6125. BRESLER, E.; GREEN, R. E. Soil parameters and sampling scheme for characterizing soil hydraulic properties of a watershed. Honolulu, 1982. 42 p. Technical Report 148. Disponível em: <http://hdl.handle.net/10125/1983>. BREVIK, E. C.; HARTEMINK, A. E. Early soil knowledge and the birth and development of soil science. Catena, Elsevier BV, v. 83, n. 1, p. 23–33, oct 2010. Disponível em: <http://dx.doi.org/10.1016/j.catena.2010.06.011>. BRUS, D. J. Balanced sampling: a versatile sampling approach for statistical soil surveys. Geoderma, v. 253–254, p. 111–121, 2015. BRUS, D. J.; DE GRUIJTER, J. J. Estimation of non-ergodic variograms and their sampling variance by design-based sampling strategies. Mathematical Geology, Springer Science + Business Media, v. 26, n. 4, p. 437–454, May 1994. ISSN 1573-8868. BRUS, D. J.; DE GRUIJTER, J. J.; VAN GROENIGEN, J. W. Designing spatial coverage samples using the k-means clustering algorithm. In: LAGACHERIE, A. M. P.; VOLTZ, M. (Ed.). Digital soil mapping - an introductory perspective. Amsterdam: Elsevier, 2006, (Developments in Soil Science, v. 31). cap. 14, p. 183–192. BRUS, D. J.; HEUVELINK, G. B. M. Optimization of sample patterns for universal kriging of environmental variables. Geoderma, v. 138, p. 86–95, 2007. BRUS, D. J.; KEMPEN, B.; HEUVELINK, G. B. M. Sampling for validation of digital soil maps. European Journal of Soil Science, v. 62, n. 3, p. 394–407, 2011. BURROUGH, P. A. Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levels of soil variation. Journal of Soil Science, Wiley-Blackwell, v. 34, n. 3, p. 577–597, sep 1983. CAMARGO, M. N.; JACOMINE, P. K. T.; OLMOS, J.; CARVALHO, A. P. Proposição preliminar de conceituação e distinção de Podzólico Vermelho-Escuro. In: Conceituação sumária de algumas classes de solos recém-reconhecidas nos levantamentos e estudos de correlação do SNLCS. Rio de Janeiro: Serviço Nacional de Levantamento e Conservação do Solo, 1982. p. 7–12. Circular técnica 1. CAMBULE, A. H.; ROSSITER, D. G.; STOORVOGEL, J. J. A methodology for digital soil mapping in poorly-accessible areas. Geoderma, v. 192, n. 0, p. 341–353, 2013. CARRÉ, F.; MCBRATNEY, A. B.; MINASNY, B. Estimation and potential improvement of the quality of legacy soil samples for digital soil mapping. Geoderma, Elsevier BV, v. 141, n. 1-2, p. 1–14, Sep 2007. ISSN 0016-7061. CARRILLO, G. vec2dtransf: 2D cartesian coordinate transformation. [S.l.], 2012. 16 p. R package version 1.0. Disponível em: <http://CRAN.R-project.org/package=vec2dtransf>. CARVALHO, A. P. Conceituação de terra Bruna Estruturada. In: Conceituação sumária de algumas classes de solos recém-reconhecidas nos levantamentos e estudos de correlação do SNLCS. Rio de Janeiro: Serviço Nacional de Levantamento e Conservação do Solo, 1982. p. 21–24. (Circular técnica 1). CARVALHO, F. M.; MARCO, P. D.; FERREIRA, L. G. The Cerrado into-pieces: habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biological Conservation, Elsevier BV, v. 142, n. 7, p. 1392–1403, jul 2009. CARVALHO JR,W.; CHAGAS, C. S.; MUSELLI, A.; PINHEIRO, H. S. K.; PEREIRA, N. R.; BHERING, S. B. Conditioned Latin hypercube method for soil sampling in the presence of environmental covariates for digital soil mapping. Revista Brasileira de Ciência do Solo, v. 38, n. 2, p. 386–396, 2014. ISSN 0100-0683. CAVAZZI, S.; CORSTANJE, R.; MAYR, T.; HANNAM, J.; FEALY, R. Are fine resolution digital elevation models always the best choice in digital soil mapping? Geoderma, v. 195-196, n. 0, p. 111–121, 2013. ISSN 0016-7061. Cˇ ERNÝ, V. Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications, Springer Science + Business Media, v. 45, n. 1, p. 41–51, Jan 1985. ISSN 1573-2878. CHATFIELD, C. Model uncertainty, data mining and statistical inference. Journal of the Royal Statistical Society. Series A (Statistics in Society), v. 158, n. 3, p. 419–466, 1995. Disponível em: <http://www.jstor.org/stable/2983440>. CHRISTENSEN, O. F.; DIGGLE, P. J.; RIBEIRO JR, P. J. Analysing positive-valued spatial data: the transformed Gaussian model. In: MONESTIEZ, P.; ALLARD, D.; FROIDEVAUX, R. (Ed.). Proceedings of the Third European Conference on Geostatistics for Environmental Applications. Avignon: geoENVia Association, 2001. (Quantitative Geology and Geostatistics, v. 11), p. 287–298. CHURCHMAN, G. J. The philosophical status of soil science. Geoderma, Elsevier BV, v. 157, n. 3–4, p. 214–221, jul 2010. Disponível em: <http://dx.doi.org/10.1016/j.geoderma.2010.04. 018>. CLAESSEN, M. E. C.; BARRETO, W. O.; PAULA, J. L.; DUARTE, M. N. Manual de métodos de análise de solo. 2. ed. Rio de Janeiro: Embrapa, 1997. 212 p. CLIFFORD, D.; PAYNE, J. E.; PRINGLE, M.; SEARLE, R.; BUTLER, N. Pragmatic soil survey design using flexible Latin hypercube sampling. Computers & Geosciences, Elsevier BV, v. 67, p. 62–68, Jun 2014. ISSN 0098-3004. COETERIER, J. Cues for the perception of the size of space in landscapes. Journal of Environmental Management, v. 42, n. 4, p. 333–347, 1994. ISSN 0301-4797. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0301479784710760>. COMISSÃO PASTORAL DA TERRA. Carta aberta à Sociedade Brasileira e à Presidência da República e ao Congresso Nacional sobre a destruição do Cerrado pelo MATOPIBA. 2015. Eletronic. Carta final do I Encontro Regional dos Povos e Comunidades do Cerrado. Disponível em: <http://goo.gl/OgxdvS>. COOKE, R. M. Experts in uncertainty – opinion and subjective probability in science. Oxford: Oxford University Press, 1991. 321 p. CORREIA, J. R. Pedologia e conhecimento local: proposta metodológica de interlocução entre saberes construídos por pedólogos e agricultores em área de Cerrado em Rio Pardo de Minas, MG. 234 p. Tese (Doutorado) — Curso de Pós-graduação em Agronomia – Ciência do Solo, Universidade Federal Rural do Rio de Janeiro, 2005. Disponível em: <http://www.cpac.embrapa.br/quadro/87>. CPRM. Programa levantamentos geológicos básicos do Brasil - Agudo, Folha Sh.22-V-C-V, Estado do Rio Grande do Sul. Brasília: CPRM (Serviço Geológico do Brasil), 2007. 97 p. (1:100 000). CRAMÉR, H. Mathematical methods of statistics. Princeton: Princeton University Press, 1946. 575 p. ISBN 0-691-08004-6. CRESSIE, N. The origins of kriging. Mathematical Geology, Springer Science + Business Media, v. 22, n. 3, p. 239–252, apr 1990. CRESSIE, N. A. C. Statistics for spatial data. New York: John Wiley & Sons, 1993. 900 p. Disponível em: <http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471002550.html>. DALMOLIN, R. S. D. Faltam pedólogos no brasil. Boletim Informativo da Sociedade Brasileira de Ciência do Solo, v. 24, p. 13–15, 1999. DALMOLIN, R. S. D.; GONÇALVES, C. N.; DICK, D. P.; KNICKER, H.; KLAMT, E.; KÖGEL-KNABNER, I. Organic matter characteristics and distribution in Ferralsol profiles of a climosequence in southern Brazil. European Journal of Soil Science, v. 57, p. 644–654, 2006. DE GRUIJTER, J. J.; BRUS, D.; BIERKENS, M.; KNOTTERS, M. Sampling for natural resource monitoring. Berlin: Springer, 2006. 332 p. Disponível em: <http: //www.springer.com/environment/environmental+toxicology/book/978-3-540-22486-0>. DE GRUIJTER, J. J.; TER BRAAK, C. J. F. Model-free estimation from spatial samples: a reappraisal of classical sampling theory. Mathematical Geology, v. 22, p. 407–415, 1990. DEUTSCH, C. V. Annealing techniques applied to reservoir modeling and the integration of geological and engineering (well test) data. 306 p. Tese (Doutorado) — Department of Applied Earth Sciences, Stanford University, 1992. DIAS, J. R. Aplication of the AGNPS2001 utilizing observed data in the Vacacaí-Mirim River watershed. 118 p. Dissertação (Mestrado) — Programa de Pós-Graduação em Engenharia Civi, Universidade Federal de Santa Maria, Santa Maria, 2003. Disponível em: <http://w3.ufsm.br/ppgec/wp-content/uploads/Janaina.pdf>. DIGGLE, P.; LOPHAVEN, S. Bayesian geostatistical design. Scandinavian Journal of Statistics, Wiley-Blackwell, v. 33, n. 1, p. 53–64, Mar 2006. ISSN 1467-9469. DIGGLE, P. J. A kernel method for smoothing point process data. Applied Statistics (Journal of the Royal Statistical Society, Series C), v. 34, p. 138–147, 1985. DIGGLE, P. J. Statistical analysis of spatial point patterns. 2. ed. New York: Oxford University Press, 2003. DIGGLE, P. J.; RIBEIRO JR, P. J. Bayesian inference in Gaussian model-based geostatistics. Geographical and Environmental Modelling, Informa UK Limited, v. 6, n. 2, p. 129–146, Nov 2002. ISSN 1469-8323. DIGGLE, P. J.; RIBEIRO JR, P. J. Model-based geostatistics. 1. ed. New York: Springer, 2007. 228 p. Disponível em: <http://www.springer.com/earth+sciences+and+geography/book/ 978-0-387-32907-9>. DILL, P. R. J.; PAIVA, E. M. C. D.; PAIVA, J. B. D.; ROCHA, J. S. M. Assoreamento do reservatório do Vacacaí-Mirim e sua relação com a deterioração da bacia hidrográfica contribuinte. Revista Brasileira de Recursos Hídricos, v. 9, p. 7–15, 2004. Disponível em: <http://jararaca.ufsm.br/websites/eloiza/download/Dill/RBRH-Dill.pdf>. DOMBURG, P.; DE GRUIJTER, J. J.; VAN BEEK, P. Designing efficient soil survey schemes with a knowledge-based system using dynamic programming. Geoderma, v. 75, n. 3-4, p. 183–201, 1997. DRAˇ GUT¸ , L.; SCHAUPPENLEHNER, T.; MUHAR, A.; STROBL, J.; BLASCHKE, T. Optimization of scale and parametrization for terrain segmentation: an application to soil-landscape modeling. Computers & Geosciences, Elsevier BV, v. 35, n. 9, p. 1875–1883, Sep 2009. ISSN 0098-3004. DRAPER, N. R.; GUTTMAN, I.; KANEMASU, H. The distribution of certain regression statistics. Biometrika, v. 58, n. 2, p. 295–298, 1971. Disponível em: <http: //www.jstor.org/stable/2334517>. DRAPER, N. R.; SMITH, H. Applied regression analyis. 3. ed.Wiley, 1998. 736 p. (Probability and Statistics). ISBN 978-0-471-17082-2. Disponível em: <http://www.wiley.com/WileyCDA/ WileyTitle/productCd-0471170828.html>. DSG. Camobi – SO. Folha SH.22-V-C-IV/2-SO. Brasília: Ministério do Exército, Departamento de Engenharia e Comunicações, Diretoria do Serviço Geográfico do Exército, 1980. (1:25 000). DSG. Santa Maria – NE. Folha SH.22-V-C-IV-1-NE. Brasília: Ministério do Exército, Departamento de Engenharia e Comunicações, Diretoria do Serviço Geográfico do Exército, 1992. (1:25 000). DSG. Santa Maria – SE. Folha SH.22-V-C-IV/1-SE. Brasília: Ministério do Exército, Departamento de Engenharia e Comunicações, Diretoria do Serviço Geográfico do Exército, 1992. (1:25 000). DUH, J.-D.; BROWN, D. G. Knowledge-informed pareto simulated annealing for multiobjective spatial allocation. Computers, Environment and Urban Systems, v. 31, n. 3, p. 253–281, 2007. ISSN 0198-9715. DULLIUS, M. Vegetação e solos de uma floresta estacional do Rio Grande do Sul. 127 p. Dissertação (Mestrado) — Programa de Pós-Grauação em Ciência do Solo, Universidade Federal de Santa Maria, Santa Maria, 2012. Disponível em: <http://w3.ufsm.br/ppgcs/>. DUNGAN, J. L.; PERRY, J. N.; DALE, M. R. T.; LEGENDRE, P.; CITRON-POUSTY, S.; FORTIN, M. J.; JAKOMULSKA, A.; MIRITI, M.; ROSENBERG, M. S. A balanced view of scale in spatial statistical analysis. Ecography, Wiley-Blackwell, v. 25, n. 5, p. 626–640, Oct 2002. ISSN 1600-0587. EDIRISOORIYA, G. Stepwise regression is a problem, not a solution. In: Annual Meeting of the Mid-South Educational Research Association. Biloxi: Mid-South Educational Research Association, 1995. p. 16. Disponível em: <http://www.eric.ed.gov/>. ELDEIRY, A. A.; GARCIA, L. A. Detecting soil salinity in alfalfa fields using spatial modeling and remote sensing. Soil Science Society of America Journal, Soil Science Society of America, v. 72, n. 1, p. 201–211, 2008. ISSN 1435-0661. EPSTEIN, R.; KANWISHER, N. A cortical representation of the local visual environment. Nature, Macmillan Magazines Ltd., v. 392, n. 6676, p. 598–601, abr. 1998. ISSN 0028-0836. Disponível em: <http://dx.doi.org/10.1038/33402>. ESPINDOLA, C. R. Retrospectiva crítica sobre a pedologia – um repasse biliográfico. 1. ed. Campinas: Editora da Unicamp, 2008. 397 p. EVERITT, B. S. The Cambridge dictionary of statistics. 3. ed. Cambridge: Cambridge University Press, 2006. 432 p. FAO. The FAO voluntary guidelines for the right to food: lasting solutions against hunger. Roma, 2005. 4 p. Disponível em: <http://www.fao.org/righttofood/KC/downloads/vl/docs/>. FAO. Guidelines for soil description. 4. ed. Rome: FAO, 2006. 97 p. Disponível em: <ftp://ftp.fao.org/agl/agll/docs/guidel_soil_descr.pdf>. FAO. Pathways to success. Success stories in agricultural production and food security. Rome, 2009. 34 p. Disponível em: <http://www.fao.org/fileadmin/user_upload/newsroom/docs/ pathways.pdf>. FAO. State of food insecurity in the World: 2015. Rome, 2015. 56 p. Disponível em: <http://reliefweb.int/sites/reliefweb.int/files/resources/a-i4646e.pdf>. FARRAR, D. E.; GLAUBER, R. R. Multicollinearity in regression analysis: the problem revisited. The Review of Econonomics and Statistics, v. 49, p. 92–107, 1967. Disponível em: <http://hdl.handle.net/1721.1/48530>. FERNANDES, B. M. Development models for the Brazilian countryside: paradigmatic and territorial disputes. Latin American Perspectives, SAGE Publications, v. 43, n. 2, p. 48–59, jan 2016. FINKE, P. A. On digital soil assessment with models and the pedometrics agenda. Geoderma, v. 171-172, p. 3–15, 2012. FISHER, P. F.; TATE, N. J. Causes and consequences of error in digital elevation models. Progress in Physical Geography, v. 30, n. 4, p. 467–489, 2006. FLORINSKY, I. V. Accuracy of local topographic variables derived from digital elevation models. International Journal of Geographical Information Science, v. 12, p. 47–61, 1998. FLORINSKY, I. V. The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication). Eurasian Soil Science, MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC., v. 45, p. 445–451, 2012. ISSN 1064-2293. FOX, J.; WEISBERG, S. An R companion to applied regression. 2. ed. Thousand Oaks: Sage, 2011. Disponível em: <http://socserv.socsci.mcmaster.ca/jfox/Books/Companion>. GASCH, C. K.; HENGL, T.; GRÄLER, B.; MEYER, H.; MAGNEY, T. S.; BROWN, D. J. Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D + T: the Cook Agronomy Farm data set. Spatial Statistics, Elsevier BV, v. 14, p. 70–90, nov 2015. GASPARETTO, N. G. L.; MACIEL FILHO, C. L.; MEDEIROS, E. R.; MENEGOTTO, E.; SARTORI, P. L. P.; VEIGA, P. Mapa geológico da Folha de Santa Maria. Santa Maria, 1988. 1 p. (1:50 000). GDAL DEVELOPMENT TEAM. GDAL – Geospatial Data Abstraction Library. [S.l.], 2013. (GDAL 1.10.0, released 2013/04/24). Disponível em: <http://www.gdal.org>. GENTON, M. G. Highly robust variogram estimation. Mathematical Geology, Springer Science + Business Media, v. 30, n. 2, p. 213–221, 1998. GESSLER, P. E.; MOORE, I. D.; MCKENZIE, N. J.; RYAN, P. J. Soil-landscape modelling and spatial prediction of soil attributes. International Journal of Geographical Information Systems, v. 9, n. 4, p. 421–432, 1995. GOBIN, A.; CAMPLING, P.; FEYEN, J. Soil-landscape modelling to quantify spatial variability of soil texture. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, v. 26, n. 1, p. 41 – 45, 2001. GOLDANI, J. Z. Ocupação antrópica e sócio-ambiental na área de captação do reservatório do DNOS, Santa Maria-RS. 104 p. Dissertação (Mestrado) — Graduate School in Geomatics, Universidade Federal de Santa Maria, Santa Maria, 2006. Disponível em: <http://cascavel.ufsm.br/tede/tde_busca/arquivo.php?codArquivo=120>. GOOVAERTS, P. Geostatistics for natural resources evaluation. Oxford: Oxford University Press, 1997. 483 p. ISBN 0-19-511538-4. GOOVAERTS, P. Estimation or simulation of soil properties? An optimization problem with conflicting criteria. Geoderma, v. 97, p. 165–186, 2000. GOOVAERTS, P. Geostatistical modelling of uncertainty in soil science. Geoderma, v. 103, n. 1?2, p. 3–26, 2001. GRUNWALD, S. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, v. 152, n. 3-4, p. 195–207, 2009. GRUNWALD, S. Current state of digital soil mapping and what is next. In: BOETTINGER, J.; HOWELL, D.; MOORE, A.; HARTEMINK, A.; KIENAST-BROWN, S. (Ed.). Digital Soil Mapping. Springer Netherlands, 2010, (Progress in Soil Science, v. 2). p. 3–12. ISBN 978-90-481-8862-8. Disponível em: <http://dx.doi.org/10.1007/978-90-481-8863-5_1>. GRUNWALD, S.; THOMPSON, J. A.; BOETTINGER, J. L. Digital soil mapping and modeling at continental scales: finding solutions for global issues. Soil Science Society of America Journal, Soil Science Society of America, v. 75, n. 4, p. 1201–1213, 2011. GUYON, I.; ELISSEEFF, A. An introduction to variable and feature selection. Journal of Machine Learning Research, v. 3, p. 1157–1182, 2003. Disponível em: <http: //jmlr.csail.mit.edu/papers/volume3/guyon03a/guyon03a.pdf>. HACK, C.; LONGHI, S. J.; BOLIGON, A. A.; MURARI, A. B.; PAULESKI, D. T. Análise fitossociológica de um fragmento de floresta estacional decidual no município de Jaguari, RS. Ciência Rural, v. 35, p. 1083–1091, 2005. HALDAR, S. K.; TIŠLJAR, J. Igneous rocks. In: . Introduction to Mineralogy and Petrology. 1. ed. Amsterdam: Elsevier, 2014. cap. 4, p. 93–120. ISBN 9780124167100. HARRELL, F. E. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. New York: Springer, 2001. 571 p. (Springer Series in Statistics). ISBN 0387952322. Disponível em: <http://www.springer.com/mathematics/ probability/book/978-0-387-95232-1>. HARTEMINK, A. E. The depiction of soil profiles since the late 1700s. Catena, Elsevier BV, v. 79, n. 2, p. 113–127, nov 2009. Disponível em: <http://dx.doi.org/10.1016/j.catena.2009.06. 002>. HARTEMINK, A. E.; BOCKHEIM, J. G. Soil genesis and classification. Catena, Elsevier BV, v. 104, p. 251–256, may 2013. Disponível em: <http://dx.doi.org/10.1016/j.catena.2012.12. 001>. HARTEMINK, A. E.; MCBRATNEY, A. A soil science renaissance. Geoderma, v. 148, n. 2, p. 123–129, 2008. HELDWEIN, A.; BURIOL, G.; STRECK, N. O clima de Santa Maria. Ciência e Ambiente, v. 38, p. 43–58, 2009. HENGL, T. Pedometric mapping – bridging the gaps between conventional and pedometric approaches. 252 p. Tese (Doutorado) — Wageningen University, Wageningen, 2003. Disponível em: <http://library.wur.nl/WebQuery/edepot/121443>. HENGL, T.; EVANS, I. S. Mathematical and digital models of the land surface. In: HENGL, T.; REUTER, H. I. (Ed.). Geomorphometry – concepts, software, applications. Amsterdam: Elsevier, 2009, (Developments in Soil Science, v. 33). cap. 2, p. 31–63. HENGL, T.; HEUVELINK, G. B.; STEIN, A. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, v. 120, p. 75–93, 2004. HENGL, T.; HEUVELINK, G. B. M.; KEMPEN, B.; LEENAARS, J. G. B.; WALSH, M. G.; SHEPHERD, K. D.; SILA, A.; MACMILLAN, R. A.; JESUS, J. Mendes de; TAMENE, L.; AL. et. Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PLOS ONE, Public Library of Science (PLoS), v. 10, n. 6, p. e0125814, Jun 2015. ISSN 1932-6203. Disponível em: <http://dx.doi.org/10.1371/journal.pone.0125814>. HENGL, T.; HEUVELINK, G. B. M.; ROSSITER, D. G. About regression-kriging: from equations to case studies. Computers & Geosciences, v. 33, n. 10, p. 1301–1315, 2007. ISSN 0098-3004. HENGL, T.; HUSNJAK, S. Evaluating adequacy and usability of soil maps in Croatia. Soil Science Society of America Journal, Soil Science Society of America, v. 70, n. 3, p. 920–929, 2006. ISSN 1435-0661. HENGL, T.; JESUS, J. M. de; MACMILLAN, R. A.; BATJES, N. H.; HEUVELINK, G. B. M.; RIBEIRO, E.; SAMUEL-ROSA, A.; KEMPEN, B.; LEENAARS, J. G. B.; WALSH, M. G.; AL. et. SoilGrids1km – global soil information based on automated mapping. PLoS ONE, Public Library of Science (PLoS), v. 9, n. 8, p. e105992, Aug 2014. ISSN 1932-6203. HENGL, T.; NIKOLIC, M.; MACMILLAN, R. A. Mapping efficiency and information content. International Journal of Applied Earth Observation and Geoinformation, v. 22, p. 127–138, 2013. HENGL, T.; ROSSITER, D. G.; STEIN, A. Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Australian Journal of Soil Research, v. 41, n. 8, p. 1403–1422, 2003. HEUNG, B.; HO, H. C.; ZHANG, J.; KNUDBY, A.; BULMER, C. E.; SCHMIDT, M. G. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma, Elsevier BV, v. 265, p. 62–77, mar 2016. HEUVELINK, G. B. M. Identification of field attribute error under different models of spatial variation. International journal of geographical information systems, Informa UK Limited, v. 10, n. 8, p. 921–935, Dec 1996. ISSN 0269-3798. HEUVELINK, G. B. M. Error propagation in environmental modelling with GIS. 1. ed. Boca Raton: Taylor and Francis, 1998. 127 p. HEUVELINK, G. B. M. Propagation of error in spatial modelling with GIS. In: . New developments in geographical information systems: principles, techniques, management and applications. 2. ed. Wiley, 2005. cap. 14, p. 207–217. ISBN 978-0-471-73545-8. Disponível em: <http://www.geos.ed.ac.uk/~gisteac/gis_book_abridged/>. HEUVELINK, G. B. M.; BURROUGH, P. A.; STEIN, A. Propagation of errors in spatial modelling with GIS. International journal of geographical information systems, v. 3, n. 4, p. 303–322, 1989. HEUVELINK, G. B. M.; BURROUGH, P. A.; STEIN, A. Propagation of errors in spatial modelling with GIS. In:______ . Classics from IJGIS: twenty years of the International Journal of Geographical Information Science and Systems. [S.l.]: CRC Press, 2006. v. 3, n. 4, p. 67–89. HEUVELINK, G. B. M.; PEBESMA, E. J. Spatial aggregation and soil process modelling. Geoderma, v. 89, n. 1?2, p. 47–65, 1999. ISSN 0016-7061. HEUVELINK, G. B. M.; WEBSTER, R. Modelling soil variation: past, present, and future. Geoderma, v. 100, n. 3-4, p. 269–301, 2001. ISSN 0016-7061. HIRT, C.; FILMER, M.; FEATHERSTONE, W. Comparison and validation of recent freely-available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Australian Journal of Earth Sciences, v. 57, n. 3, p. 337–347, 2010. HOLTZ, M. Do mar ao deserto: a evolução do Rio Grande do Sul no tempo geológico. 2. ed. Porto Alegre: Editora da UFRGS, 2003. 144 p. HUDSON, B. D. The soil survey as paradigm-based science. Soil Science Society of America Journal, v. 56, p. 836–841, 1992. HULL, C. L. The goal-gradient hypothesis and maze learning. Psychological Review, v. 39, n. 1, p. 25–43, Jan 1932. HUPY, C. M.; SCHAETZL, R. J.; MESSINA, J. P.; HUPY, J. P.; DELAMATER, P.; ENANDER, H.; HUGHEY, B. D.; BOEHM, R.; MITROKA, M. J.; FASHOWAY, M. T. Modeling the complexity of different, recently deglaciated soil landscapes as a function of map scale. Geoderma, Elsevier BV, v. 123, n. 1-2, p. 115–130, Nov 2004. ISSN 0016-7061. HUTCHINSON, M. F. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, v. 106, n. 3-4, p. 211–232, 1989. ISSN 0022-1694. HYNDMAN, R. J.; FAN, Y. Sample quantiles in statistical packages. The American Statistician, Taylor & Francis, Ltd. on behalf of the American Statistical Association, v. 50, n. 4, p. 361–365, 1996. ISSN 00031305. Disponível em: <http://www.jstor.org/stable/2684934>. IBGE. Modelo de Ondulação Geoidal – MAPGEO2010. 2010. Disponível em: <http: //www.ibge.gov.br/home/geociencias/geodesia/modelo_geoidal.shtm>. ISO. ISO 7144:1986 Documentation – Presentation of theses and similar documents. [S.l.], 1986. 10 p. Disponível em: <http://ww
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Agronomia - Ciência do Solo
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Agronomia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9041/1/2016%20-%20Alessandro%20Samuel-Rosa.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9041/2/2016%20-%20Alessandro%20Samuel-Rosa.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9041/3/2016%20-%20Alessandro%20Samuel-Rosa.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9041/4/license.txt
bitstream.checksum.fl_str_mv 72cb22242fad84df973682863859d155
223e14b0c241d13ddc7a8756132b079f
a0a3616c8eebff1967865a1b10d57d01
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810107988437893120