Estudo do equilíbrio líquido-líquido de sistemas ternários 2-propanol-sal-água: experimental e modelagem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/13334 |
Resumo: | Com a grande importância industrial e econômica que o isopropanol apresenta no cenário mundial e nacional, torna-se cada vez mais importante a produção deste álcool com elevada pureza. Entretanto, o comportamento azeotrópico que este composto apresenta em solução aquosa dificulta sua purificação completa. Desta forma, o estudo de novas técnicas sustentáveis e economicamente viáveis é de extrema importância. Neste cenário, a extração líquido-líquido a partir de um sistema aquoso bifásico (SAB) surge como um método em potencial devido as suas vantagens como menor custo, não toxicidade e possibilidade de aplicação em grande escala. A separação das fases deste sistema se baseia no efeito “salting-out” que os sais apresentam frente aos solventes hidrofílicos, como o isopropanol. Logo, este trabalho consiste no estudo do equilíbrio líquido-líquido de sistemas ternários compostos por isopropanol-sais de sódio-água a 298,15 K e 101,3 kPa. Para isto, foram estudados três diferentes sais, o NaNO3, o Na2SO4 e o NaCH3COO. As curvas binodais dos sistemas foram determinadas experimentalmente e modeladas usando modelos empíricos encontrados na literatura. As linhas de amarração foram mensuradas e a confiabilidade de seus dados de equilíbrio foi testada. A avaliação da força do efeito salino foi realizada para cada um dos sistemas. Os modelos e-NRTL e UNIQUAC estendido foram utilizados visando uma melhor correlação dos dados experimentais, a fim da obtenção de parâmetros essenciais para um possível projeto industrial. Embasado nos resultados encontrados, as metodologias experimentais de obtenção das curvas binodais e das linhas de amarração foram satisfatórias. Além disto, o sulfato de sódio mostrou o maior efeito “salting-out”, porém o nitrato e o acetato apresentaram melhores possibilidades de utilização para o objetivo inicialmente proposto. O e-NRTL e UNIQUAC estendido apresentaram desvios baixos, indicando uma boa correlação dos dados experimentais ao utilizar estes modelos termodinâmicos. |
id |
UFRRJ-1_49c9cf529611af31cd3b659633f951cf |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/13334 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Souza, Pedro Peixoto do Amaral deMendes, Marisa FernandesCPF: 023.918.187-50Mendes, Maria FernandesPessoa, Fernando Luiz PellegriniParedes, Márcio Luis LyraCPF: 134.640.347-39http://lattes.cnpq.br/21931754796822932023-12-22T02:45:39Z2023-12-22T02:45:39Z2019-07-18SOUZA, Pedro Peixoto do Amaral de. Estudo do equilíbrio líquido-líquido de sistemas ternários 2-propanol-sal-água: experimental e modelagem. 2019. 106 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Departamento de Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.https://rima.ufrrj.br/jspui/handle/20.500.14407/13334Com a grande importância industrial e econômica que o isopropanol apresenta no cenário mundial e nacional, torna-se cada vez mais importante a produção deste álcool com elevada pureza. Entretanto, o comportamento azeotrópico que este composto apresenta em solução aquosa dificulta sua purificação completa. Desta forma, o estudo de novas técnicas sustentáveis e economicamente viáveis é de extrema importância. Neste cenário, a extração líquido-líquido a partir de um sistema aquoso bifásico (SAB) surge como um método em potencial devido as suas vantagens como menor custo, não toxicidade e possibilidade de aplicação em grande escala. A separação das fases deste sistema se baseia no efeito “salting-out” que os sais apresentam frente aos solventes hidrofílicos, como o isopropanol. Logo, este trabalho consiste no estudo do equilíbrio líquido-líquido de sistemas ternários compostos por isopropanol-sais de sódio-água a 298,15 K e 101,3 kPa. Para isto, foram estudados três diferentes sais, o NaNO3, o Na2SO4 e o NaCH3COO. As curvas binodais dos sistemas foram determinadas experimentalmente e modeladas usando modelos empíricos encontrados na literatura. As linhas de amarração foram mensuradas e a confiabilidade de seus dados de equilíbrio foi testada. A avaliação da força do efeito salino foi realizada para cada um dos sistemas. Os modelos e-NRTL e UNIQUAC estendido foram utilizados visando uma melhor correlação dos dados experimentais, a fim da obtenção de parâmetros essenciais para um possível projeto industrial. Embasado nos resultados encontrados, as metodologias experimentais de obtenção das curvas binodais e das linhas de amarração foram satisfatórias. Além disto, o sulfato de sódio mostrou o maior efeito “salting-out”, porém o nitrato e o acetato apresentaram melhores possibilidades de utilização para o objetivo inicialmente proposto. O e-NRTL e UNIQUAC estendido apresentaram desvios baixos, indicando uma boa correlação dos dados experimentais ao utilizar estes modelos termodinâmicos.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorThe great industrial and economic importance of isopropanol around the world and in the national scenario, strongly affects the production of this alcohol with high purity. However, the azeotropic behavior of this compound in aqueous solution complicates its complete purification. Thus, the study of a sustainable and economically viable new technique becomes extremely important. From this point of view, a liquid-liquid extraction from an aqueous two-phase system (ATPS) appears as a potential method due to its advantages such as low cost, non-toxic and possibility of large-scale application. The separation of the phases of this system is based on the salting-out effect, showing the behavior of the salts against hydrophilic solvents, such as isopropanol. Due to that, this work has as goal the study of the liquid-liquid equilibrium of ternary systems composed of isopropanol-sodium salts-water at 298.15 K and 101.3 kPa, specifically NaNO3, Na2SO4 and NaCH3COO. The binodal curves of the systems were experimentally determined and modeled using empirical models found in the literature. The tie-lines were measured and the reliability of their equilibrium data was tested. The evaluation of the force of the saline effect was studied for each of the systems. The e-NRTL and extended UNIQUAC models were used for a better correlation of the experimental data in order to obtain important parameters for a possible industrial design. Based on the found results, the experimental methodology to obtain the binodal curves and the tie-lines was satisfactory. In addition, sodium sulphate showed the highest salting-out effect, although nitrate and acetate presented better possibilities of use for the initially proposed objective. The e-NRTL and extended UNIQUAC showed lower deviations what indicates the good correlation of the experimental data using these thermodynamic models.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Engenharia QuímicaUFRRJBrasilInstituto de Tecnologiaequilíbrio líquido-líquidoazeótropo2-propanolmodelagem termodinâmicaliquid-liquid equilibriumazeotropethermodynamics modellingQuímicaEstudo do equilíbrio líquido-líquido de sistemas ternários 2-propanol-sal-água: experimental e modelagemStudy of liquid-liquid equilibrium of ternary systems 2-propanol-salt-water: experimental and modellinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisABRAMS, D. S.; PRAUSNITZ, J. M. Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. AIChe Journal, v. 21, n. 1, p. 116-128, 1975. DOI: 10.1002/aic.690210115. ALBERTSSON, P.-Å. Chromatography and Partition of Cells and Cell Fragments. Nature, v. 177, n. 4513, p. 771-774, 1956. DOI: 10.1038/177771a0. ALBERTSSON, P.-Å.; CAJARVILLE, A.; BROOKS, D. E.; TJERNELD, F. Partition of proteins in aqueous polymer two-phase systems and the effect of molecular weight of the polymer. Biochimica et Biophysica Acta (BBA) - General Subjects, v. 926, n. 1, p. 87-93, 1987. DOI: 10.1016/0304-4165(87)90185-1. ALVARENGA, J. M. D.; FIDELES, R. A.; SILVA, M. V.; MURARI, G. F.; TAYLOR, J. G.; LEMOS, L. R.; RODRIGUES, G. D.; MAGESTE, A. B. Partition study of textile dye Remazol Yellow Gold RNL in aqueous two-phase systems. Fluid Phase Equilibria, v. 391, p. 1-8, 2015. DOI: 10.1016/j.fluid.2015.01.022. ALVES, K. C. Modelagem Termodinâmica de Sistemas Aquosos Bifásicos Contendo Sais e Polímeros. Dissertação (Mestrado em Engenharia) - Departamento de Engenharia Química II, USP. São Paulo, p. 118. 2008. ANGELIS, A. D. Propanol market to increase at an annualised rate of 3.9%, 2013. Disponivel em: <http://www.mynewsdesk.com/uk/pressreleases/propanol-market-to-increase-at-an-annualised-rate-of-3-9-906343>. Acesso em 2018. BACKHURST, J. R.; RICHARDSON, J. F.; HARKER, J. H. Coulson and Richardson's Chemical engineering. 5ª. ed. Amsterdam: Elsevier, v. 2, 2015. BANIK, R. M.; SANTHIAGU, A.; KANARI, B.; SABARINATH, C.; UPADHYAY, S.N. Technological aspects of extractive fermentation using aqueous two-phase systems. World Journal of Microbiology and Biotechnology, v. 19, n. 4, p. 337–348, 2003. DOI: 10.1023/A:1023940809095. BASKARAN, D.; CHINNAPPAN, K.; MANIVASAGAN, R.; SELVARAJ, R. Liquid−Liquid Equilibrium of Polymer−Inorganic Salt Aqueous Two-Phase Systems: Experimental Determination and Correlation. Journal of Chemical & Engineering Data, v. 62, p. 738−743, 2017. DOI: 10.1021/acs.jced.6b00805. BOLLAS, G. M.; CHEN, C. C.; BARTON, P. I. Refined Electrolyte-NRTL Model: Activity Coefficient Expressions for Application to Multi-Electrolyte Systems. AIChe Journal, v. 54, n. 6, p. 1608-1624, 2008. DOI: 10.1002/aic.11485. BRUNJES, A. S.; BOGART, M. J. P. Vapor-Liquid Equilibria for Commercially Important Systems of Organic Solvents: The Binary Systems Ethanol-n-Butanol, Acetone-Water and Isopropanol-Water. Industrial & Engineering Chemistry Research, v. 35, n. 2, p. 255-260, Fevereiro 1943. DOI: 10.1021/ie50398a032. BULGARIU, L.; BULGARIU, D. Extraction of metal ions in aqueous polyethylene glycol–inorganic salt two-phase systems in the presence of inorganic extractants: Correlation between extraction behaviour and stability constants of extracted species. Journal of Chromatography A, v. 1196–1197, p. 117-124, 2008. DOI: 10.1016/j.chroma.2008.03.054. CARDOSO, M. J. E. D. M.; O'CONNELL, J. Activity coefficients in mixed solvent electrolyte solutions. Fluid Phase Equilibria, v. 33, n. 3, p. 315-326, 1987. DOI: 10.1016/0378-3812(87)85043-4. CARREIRA, F. M. Simulação da recuperação de químicos de condensados de licor fino. Dissertação (Mestrado em Engenharia Química) - Departamento de Química, Universidade de Aveiro. Aveiro, p. 71. 2012. CHÁFER, A.; TORRE, J.; LLADOSA, E.; MONTÓN, J. B. Liquid–liquid equilibria of 4-methyl-2-pentanone + 1-propanol or 2-propanol + water ternary systems: Measurements and correlation at different temperatures. Fluid Phase Equilibria, v. 361, p. 23–29, 2013. DOI: 10.1016/j.fluid.2013.10.034. CHANG, C. W.; HSIUNG, T. L.; LUI, C. P.; TU, C. H. Densities, surface tensions, and isobaric vapor–liquid equilibria for the mixtures of 2-propanol, water, and 1,2-propanediol. Fluid Phase Equilibria, v. 389, p. 28-40, 2015. DOI: 10.1016/j.fluid.2014.12.040. CHEN, C.; EVANS, L. B. A Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems. AIChe Journal, v. 32, n. 3, p. 444-454, 1986. DOI: 10.1002/aic.690320311. CHEN, C. C.; SONG, Y. Generalized Electrolyte-NRTL Model for Mixed-Solvent Electrolyte Systems. AIChe Journal, v. 50, n. 8, p. 1928-1941, 2004. DOI: 10.1002/aic.10151. COMEX STAT. Base de dados do Comércio Exterior Brasileiro, 2018. Disponivel em: <http://www.mdic.gov.br/comercio-exterior/estatisticas-de-comercio-exterior/base-de-dados-do-comercio-exterior-brasileiro-arquivos-para-download>. Acesso em: 2018. DAHAL, R.; MORIAM, K.; SEPPÄLÄ, P. Downstream process: liquid-liquid extraction. Trabalho Acadêmico (Licenciatura em Tecnologia Química) - School of Chemical Technology, Aalto University. Espoo, p. 11. 2016. DE FRÉ, R. M.; VERHOEYE, L. A. hase Equilibria in Systems Composed on an Aliphatic and an Aromatic Hydrocarbon. Journal of Applied Chemistry and Biotechnology, v. 26, p. 469-487 , 1976. DOI: 10.1002/jctb.5020260168. DEBYE, V. P.; HÜCKEL, E. Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Zeitschrift, v. 24, n. 9, p. 185–206, 1923. DUTIA, P. Isopropyl alcohol: A techno-commercial profile, 2012. Disponivel em: <http://doczz.net/doc/6463566/i-isopropyl-alcohol--a-techno-commercial-profile-special-.>. Acessado em 2018. FENG, Z.; LI, J. Q.; SUN, X.; SUN, L.; CHEN, J. Liquid–liquid equilibria of aqueous systems containing alcohol and ammonium sulfate. Fluid Phase Equilibria, v. 317, p. 1–8, 2011. DOI: 10.1016/j.fluid.2011.12.023. GOMES, G. C. C. Isopropanol. Revista Virtual de Química, p. 2138-2146, 2016. GONZÁLEZ-TELLO, P.; CAMACHO, F.; BLÁZQUEZ, G.; ALARCÓN, F. J. Liquid-Liquid Equilibrium in the System Poly(ethylene glycol)+MgSO4+H2O at 298 K. Journal of Chemical & Engineering Data, v. 41, p. 1333-1336, 1996. DOI: S0021-9568(96)00075-1. GUEDES, B. P. Análise da sensibilidade e do comportamento dinâmico de uma coluna de destilação azeotrópica não-Convencional. Dissertação (Mestrado em Engenharia de Processos) - Centro de Ciências e Tecnologia, UFCG. Campina Grande, p. 50. 2006. GUO, W.; MA, J.; WANG, Y.; HAN, J.; LI, Y.; SONG, S. Liquid–liquid equilibrium of aqueous two-phase systems composed of hydrophilic alcohols (ethanol/2-propanol/1-propanol) and MgSO4/ZnSO4 at (303.15 and 313.15) K and correlation. Thermochimica Acta, v. 546, p. 8-15, 2012. DOI: 10.1016/j.tca.2012.07.022. GUPTA, B. S.; TAH, M.; LEE, M. J. A green process for recovery of 1-propanol/2-propanol from their aqueous solutions: Experimental and MD simulation studies. The Journal of Chemical Thermodynamics, v. 105, p. 76-85, 2017. DOI: 10.1016/j.jct.2016.10.001. GUTIERREZ-HERNANDEZ, J. P. Extractive distillation with ionic liquids as solvents: selection and conceptual process design. Technische Universiteit Eindhoven, Eindhoven, Janeiro 2013. DOI: 10.6100/IR751728. HAGHTALAB, A.; PEYVANDI, K. Electrolyte-UNIQUAC-NRF model for the correlation of the mean activity coefficient of electrolyte solutions. Fluid Phase Equilibria, v. 281, n. 2, p. 163-171, 2009. DOI: https://doi.org/10.1016/j.fluid.2009.04.013. HATTI-KAUL, R. Aqueous Two-Phase Systems: Methods and Protocols. 11. ed. Totowa, New Jersey: Human Press, 2000. HAYNES, W. M. CRC Handbook of Chemistry and Physics. 96. ed. Boca Raton, Flórida: CRC Press/Taylor and Francis, 2016. HERNANDES, E. E. Estudo da pervaporação de soluções diluídas de compostos voláteis do aroma de café: benzaldeído e ácido acético. Dissertação (Mestrado em Engenharia de Alimentos) - Setor de Tecnologia, UFPR. Curitiba, p. 95. 2015. INCHEM. INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY. IPCS INCHEM HOME, 1990. Disponivel em: <http://www.inchem.org/documents/ehc/ehc/ehc103.htm#SubSectionNumber:3.2.2>. Acesso em 2018. JAIME-LEAL, J. E.; BONILLA-PETRICIOLET, A.; BHARGAVA, V.; FATEEN, S. E. K. Nonlinear Parameter Estimation of e-NRTL Model For Quaternary Ammonium Ionic Liquids Using Cuckoo Search. Chemical Engineering Research and Design, v. 93, p. 464-472, 2015. DOI: 10.1016/j.cherd.2014.06.014. KABIRI-BADR, M.; CABEZAS JR., H. A thermodynamic model for the phase behavior of salt-polymer aqueous two-phase systems. Fluid Phase Equilibria, v. 115, n. 1-2, p. 39-58, 1996. DOI: 10.1016/0378-3812(95)02831-5. KAMIHIRA, M.; KUMAR, A. Development of Separation Technique for Stem Cells. Cell Separation, v. 106, p. 173-193, 2007. DOI: 10.1007/10_2006_043. KANEHASHI, S.; NAGAI, K. 2.8 Fundamentals and Perspectives for Pervaporation. Comprehensive Membrane Science and Engineering II, v. 2, p. 191-225., 2017. KAYATI, G.; SHAHRIARI, M. Measurement and Correlation of Phase Diagram Data of Hydrophilic Alcohols (1-Propanol/2-Propanol) + Salts (Na2SO4/(NH4)2SO4/NH4NO3) + Water Systems. Chemical and Biochemical Engineering Quarterly, v. 30, n. 1, p. 73-80, 2016. DOI: 10.15255/CABEQ.2015.2308. KHOSRAVI, T.; MOSLEH, S.; BAKHTIARI, O.; MOHAMMADI, T. Mixed matrix membranes of Matrimid 5218 loaded with zeolite 4A for pervaporation separation of water–isopropanol mixtures. Chemical Engineering Research and Design, v. 90, n. 12, p. 2353-2363, 2012. DOI: 10.1016/j.cherd.2012.06.005. KOCH, J.; SHIVELER, G. Design Principles for Liquid-Liquid Extraction. AlChE: The Global Home of Chemical Engineers, 2015. Disponivel em: <https://www.aiche.org/resources/publications/cep/2015/november/design-principles-liquid-liquid-extraction>. Acesso em: 03 jan. 2019. LASDON, L. S.; WAREN, A. D.; JAIN, A.; RATNER, M. Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming. ACM Transactions on Mathematical Software, v. 4, n. 1, p. 34-50, 1978. DOI: 10.1145/355769.355773. LEBO, R. B. Properties of mixtures of isopropyl alcohol and water. Journal of the American Chemical Society, v. 43, n. 5, p. 1005-1011, Maio 1921. DOI: 10.1021/ja01438a004. LEE, B. H.; QIN, Y.; PRAUSNITZ, J. M. Thermodynamic representation of ternary liquid–liquid equilibria near-to and far-from the plait point. Fluid Phase Equilibria, v. 240, p. 67–72, 2006. LEI, Z. Azeotropic Distillation. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2017. LI, C.; HAN, J.; WANG, Y.; YAN, Y.; PAN, J.; XU, X.; ZHANG, Z. Phase Behavior for the Aqueous Two-Phase Systems Containing the Ionic Liquid 1-Butyl-3-methylimidazolium Tetrafluoroborate and Kosmotropic Salts. Journal of Chemical & Engineering Data, v. 55, n. 3, p. 1087–1092, 2010. DOI: 10.1021/je900533h. LIU, H.; HE, C.; WEN, D.; LIU, H.; LIU, F.; LI, K. Extraction of testosterone and epitestosterone in human urine using 2-propanol–salt–H2O system. Analytica Chimica Acta, v. 557, n. 1-2, p. 329-336, 2006. DOI: 10.1016/j.aca.2005.10.020. LIU, W.; ZHANG, Z.; RI, Y.; XU, X.; WANG, Y. Liquid-liquid equilibria for ternary mixtures of water + 2-propanol + 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids at 298.15 K. Fluid Phase Equilibria, v. 412, p. 205-210, 2016. DOI: 10.1016/j.fluid.2015.12.051. LIU, Y.; FENG, Y. Q.; ZHAO, Y. Liquid−Liquid Equilibrium of Various Aqueous Two-Phase Systems: Experiment and Correlation. Journal of Chemical & Engineering Data, v. 58, n. 10, p. 2775–2784, 2013. DOI: 10.1021/je400453b. LIU, Z.; XU, D.; MA, Y.; ZHU, J.; GAO, J.; SHI, P.; MA, X.; WANG, Y. Liquid-liquid equilibrium determination and thermodynamics modeling for extraction of isopropanol from its aqueous solution. Fluid Phase Equilibria, v. 458, p. 40-46, 2018. DOI: 10.1016/j.fluid.2017.11.010. LO, S. C.; RAMANAN, R. N.; TEY, B. T.; LING, T. C.; SHOW, P. L.; OOI, C. W. Liquid–Liquid Equilibrium of Alcohols + Ammonium/Potassium/Sodium Acetate + Water Systems: Experimental and Correlation. Journal of Chemical & Engineering Data, v. 60, n. 10, p. 2848-2857, 2015. DOI: 10.1021/acs.jced.5b00200. LOGSDON, J. E.; LOKE, R. A. Isopropyl Alcohol. In: KIRK, R. E.; OTHMER, D. F. Kirk-Othmer Encyclopedia of Chemical Technology. 5ª. ed. New York, EUA: John Wiley & Sons, 2000. LU, Y.; HAO, T.; HU, S.; HAN, J.; TAN, Z.; YAN, Y. Measurement and correlation of phase diagram data for acetone and sulfate aqueous two-phase systems at different temperatures. Thermochimica Acta, v. 568, p. 209-217, 2013. DOI: 10.1016/j.tca.2013.07.002. LYKLEMA, J. Simple Hofmeister series. Chemical Physics Letters, v. 467, n. 4–6, p. 217-222, 2009. DOI: 10.1016/j.cplett.2008.11.013. MACEDO, E. A.; SKOVBORG, P.; RASMUSSEN, P. Calculation of phase equilibria for solutions of strong electrolytes in solvent-water mixtures. Chemical Engineering Science, v. 45, n. 4, p. 875-882, 1990. DOI: 10.1016/0009-2509(90)85009-3. MACHADO, A. B. Estudos do Processo de Extração Líquido-Líquido para a Purificação do Ácido Acrílico. Dissertação (Mestrado em Engenharia Química) - UNICAMP. Campinas, p. 141. 2007. MANDAL, S.; KULKARNI, B. D. Separation Strategies for Processing of Dilute Liquid Streams. International Journal of Chemical Engineering, v. 2011, p. 1-19, 2011. DOI: 10.1155/2011/659012. MARCUS, Y. Thermodynamics of Solvation of Ions: Part 5 Gibbs Free Energy of Hydration at 298.15 K. Journal of Chemical Society, Faraday Transactions, v. 87, n. 18, p. 2995-2999, 1991. DOI: 10.1039/FT9918702995. MARCUS, Y. A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophysical Chemistry, v. 51, p. 111-12, 1994. DOI: 10.1016/0301-4622(94)00051-4. MARTINS, J. P.; OLIVEIRA, F.; COIMBRA, J.; SILVA, L. H. M.; SILVA, M. C. H.; NASCIMENTO, I. S. B. Equilibrium Phase Behavior for Ternary Mixtures of Poly(ethylene) Glycol 6000 + Water + Sulfate Salts at Different Temperatures. Journal of Chemical and Engineering Data, v. 53, n. 10, p. 2441–2443, 2009. DOI: 10.1021/je800443p. MERCHUK, J. C.; ANDREWS, B. A.; ASENJO, J. A. Aqueous two-phase systems for protein separation: Studies on phase inversion. Journal of Chromatography B: Biomedical Sciences and Applications, v. 711, n. 1-2, p. 285-293, 1998. DOI: 10.1016/S0378-4347(97)00594-X. MERCK. THE MERCK INDEX. Royal Society of Chemistry, 2013. Disponivel em: <https://www.rsc.org/Merck-Index/monograph/m6524/isopropyl%20alcohol?q=unauthorize>. Acesso em: 2018. MERCK. Merck Milipore. Produtos Químicos para Industrias e Laboratórios, 2019. Disponivel em: <https://www.merckmillipore.com/BR/pt?ReferrerURL=https%3A%2F%2Fwww.google.com%2F>. Acesso em: 2019. MISTRY, S. L.; KAUL, A.; MERCHUK, J. C.; ASENJO, J. A. Mathematical modelling and computer simulation of aqueous twophase continuous protein extraction. Journal of Chromatography A., v. 741, n. 2, p. 151-163, 1996. DOI: 10.1016/0021-9673(96)00179-3. MUTALIK, V.; MANJESHWARA, L. S.; SAIRAM, M.; AMINABHAVI, T. M. Thermodynamic interactions in binary mixtures of anisole with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, pentan-1-ol, and 3-methylbutan-1-ol at T = (298.15, 303.15, and 308.15) K. The Journal of Chemical Thermodynamics, v. 38, n. 12, p. 1620-1628, 2006. DOI: 10.1016/j.jct.2006.03.018. NEMATI-KANDE, E.; SHEKAARI, H. Thermodynamic investigation of the ATPSs composed of some (aliphatic alcohol + sodium carbonate + water) ternary systems. The Journal of Chemical Thermodynamics, v. 57, p. 541-549, 2013. DOI: 10.1016/j.jct.2012.07.021. NEMATI-KANDE, E.; SHEKAARI, H.; JAFARI, S. A. Liquid–liquid equilibrium of 1-propanol, 2-propanol, 2-methyl-2-propanol or 2-butanol + sodium sulfite + water aqueous two phase systems. Fluid Phase Equilibria, v. 329, p. 42-54, 2012. DOI: 10.1016/j.fluid.2012.05.012. ORCHILLÉS, A. V.; MIGUEL, P. J.; GONZÁLEZ-ALFARO, V.; LLOPIS, F. J.; VERCHER, E. Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid. The Journal of Chemical Thermodynamics, v. 110, p. 16-24, 2017. DOI: 10.1016/j.jct.2017.02.005. OTHMER, D. F.; TOBIAS, P. E. Liquid-Liquid Extraction Data - The Line Correlation. Industrial and Engineering Chemistry , v. 34, n. 6, p. 693-696, 1942. DOI: 10.1021/ie50390a600. PAPA, A. J. Propanols. In: BOHNET, M., et al. Ullmann's Encyclopedia of Industrial Chemistry. 7ª. ed. Weinheim, Alemanha: Wiley-VCH Verlag GmbH, v. 30, 2011. p. 243-254. PENG, M.; VANE, L. M.; LIU, S. X. Recent advances in VOCs removal from water by pervaporation. Journal of Hazardous Materials, v. 98, n. 1-3, p. 69-90, 2003. DOI: 10.1016/s0304-3894(02)00360-6. PEREIRO, A. B.; ARAÚJO, J. M. M.; ESPERANÇA, J. M. S. S.; MARRUCHO, I. M.; REBELO, L. P. N. Ionic liquids in separations of azeotropic systems – A review. The Journal of Chemical Thermodynamics, v. 46, p. 2-28, Março 2012. DOI: doi:10.1016/j.jct.2011.05.026. PIENAAR, C.; SCHWARZ, C. E.; KNOETZE, J. H.; BURGER, A. J. Vapor−Liquid−Liquid Equilibria Measurements for the Dehydration of Ethanol, Isopropanol, and n-Propanol via Azeotropic Distillation Using DIPE and Isooctane as Entrainers. Journal of Chemical & Engineering Data, v. 58, p. 537-550, Janeiro 2013. DOI: 10.1021/je300847v. PIMENTEL, J. G. Obtenção de Dados de Equilíbrio de Sistemas Aquosos formados por Álcool/Sais/Água para Extração de Corantes. Dissertação (Mestrado em Ciências Ambientais) - UESB. Itapetinga, p. 80. 2016. PIMENTEL, J. G.; BICALHO, S. F.; GANDOLFI, O. R. R.; VERISSIMO, L. A. A.; CASTRO, S. S.; SOUZA, E. A.; VELOSO, C. M.; FONTAN, R. C. I.; SAMPAIO, V. S.; BONOMO, R C. F. Evaluation of salting-out effect in the liquideliquid equilibrium of aqueous two-phase systems composed of 2-propanol and Na2SO4/MgSO4 at different temperatures. Fluid Phase Equilibria, v. 450, p. 184-193, 2017. DOI: 10.1016/j.fluid.2017.08.001. PINTO, P. L. Extração e separação de flavonoides do extrato da casca do maracujá. Dissertação (Mestrado em Engenharia Química) – Centro de Tecnologia, UFC. Fortaleza, p. 57. 2018. PIRAHMADI, F.; DEHGHANI, M. R.; BEHZADI, B.; SEYEDI, S. M.; RABIEE, H. Experimental and theoretical study on liquid–liquid equilibrium of 1-butanol + water + NaNO3 at 25 and 35 ºC. Fluid Phase Equilibria, v. 299, p. 122-126, 2010. DOI: 10.1016/j.fluid.2010.09.013. PIRAHMADI, F.; BEHZADI, B.; DEHGHANI, M. R. Experimental measurement and thermodynamic modeling of liquid–liquid equilibrium for 1-pentanol + water + NaNO3 at 298,15 and 308,15 K. Fluid Phase Equilibria, v. 307, p. 39-44, 2011. DOI: 10.1016/j.fluid.2011.05.003. PITZER, K. S. Electrolytes. From dilute solutions to fused salts. Journal of the American Chemical Society, v. 102, n. 9, p. 2902–2906, 1980. DOI: 10.1021/ja00529a006. POLING, B. E.; PRAUSNITZ, J. M.; O'CONNELL, J. P. The Properties of Gases and Liquids. [S.l.]: McGRAW-HILL, 2001. PORTO, T. S.; SILVA, G. M. M.; PORTO, C. S.; CAVALCANTI, M. T. H.; NETO, B. B.; LIMA-FILHO, J. L.; CONVERTI, A.; PORTO, A. L. F.; PESSOA JR., A. Liquid–liquid extraction of proteases from fermented broth by PEG/citrate aqueous two-phase system. Chemical Engineering and Processing: Process Intensification, v. 47, n. 4, p. 716-721, 2008. DOI: 10.1016/j.cep.2006.12.004. PÖRTSH, A. The phase behaviour, flow behaviour, andInterfacial properties of protein-polysaccharide aqueous two-phase systems with sugar. Tese (Doutorado em Engenharia Química) - College of Engineering and Physical Sciences, University of Birmingham. Birmingham, p. 258. 2011. RAJA, S.; MURTY, V. R.; THIVAHARAN, V.; RAJASEKAR, V.; RAMESH, V. Aqueous Two Phase Systems for the Recovery of Biomolecules – A Review. Science and Technology, v. 1, n. 1, p. 7-16, 2012. DOI: 10.5923/j.scit.20110101.02. REGUPATHI, I.; MURUGESAN, S.; GOVINDARAJAN, R.; AMARESH, S. P.; THANAPALAN, M. Liquid−Liquid Equilibrium of Poly(ethylene glycol) 6000 + Triammonium Citrate + Water Systems at Different Temperatures. Journal of Chemical & Engineering Data, v. 54, n. 3, p. 1094–1097, 2009. DOI: 10.1021/je8008478. REGUPATHI, I.; SRIKANTH, C. K.; SINDHU, N. Liquid–Liquid Equilibrium of Poly(ethylene glycol) 2000 + Diammonium Hydrogen Citrate + Water System at Different Temperatures. Journal of Chemical & Engineering Data, v. 56, n. 9, p. 3643–3650, 2011. DOI: 10.1021/je200485x. REIS, M. H. M. Desenvolvimento de um programa para geração de mapas de curvas residuais e aplicação a processos de destilação azeotrópica e extrativa. Dissertação (Mestrado em Engenharia Química). Faculdade de Engenharia Química, UNICAMP. Campinas, p. 163. 2002. RENON, H.; PRAUSNITZ, J. M. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. AIChe Journal, v. 14, n. 1, p. 135-144, 1968. DOI: 10.1002/aic.690140124. SANDER, B.; FREDENSLUND, A.; RASMUSSEN, P. Calculation of vapour-liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation. Chemical Engineering Science, v. 41, n. 5, p. 1171-1183, 1986. DOI: 10.1016/0009-2509(86)87090-7. SANGLARD, M. G.; FARIAS, F. O.; SOSA, F. H. B.; SANTOS, T. P. M.; IGARASHI-MAFRA, L.; MAFRA, M. R. Measurement and correlation of aqueous biphasic systems composed of alcohol (1-propanol/2-propanol/tert-butanol)+(NH4)2SO4+ H2O at 298 K and a textile dye partition. Fluid Phase Equilibria, v. 466, p. 7-13, 2018. DOI: 10.1016/j.fluid.2018.03.009. SANTOS, I. J. B.; CARVALHO, R. M. M.; SILVA, M. C. H.; SILVA, L. H. M. Phase Diagram, Densities, and the Refractive Index of New Aqueous Two-Phase System Formed by PEO1500 + Thiosulfate + H2O at Different Temperatures. Journal Chemical and Engineering Data, v. 57, n. 2, p. 274–279, 2012. DOI: 10.1021/je200744s. SARAVANAN, S.; LAGADD, J.; RAO, R.; NAIR, B. U.; RAMASAMI, T. Aqueous two-phase poly(ethylene glycol)–poly(acrylic acid) system for protein partitioning: Influence of molecular weight, pH and temperature. Process Biochemistry, v. 43, n. 9, p. 905-911, 2008. DOI: 10.1016/j.procbio.2008.04.011. SATO, T.; OHUJI, R.; YAMANOVCHI, H. JP77012166, 05 abr. 1977. SILVA, L. H. M. D.; LOH, W. Sistemas aquosos bifásicos: fundamentos e aplicações para partição/purificação de proteínas. Química Nova, v. 29, n. 6, p. 1345-1351, 2006. DOI: 10.1590/S0100-40422006000600033. SILVERIO, S. C.; RODRÍGUEZ, O.; TEIXEIRA, J. A.; MACEDO, E. A. The Effect of Salts on the Liquid−Liquid Phase Equilibria of PEG600+Salt Aqueous Two-Phase Systems. Journal of Chemical & Engineering Data, v. 58, p. 3528−3535, 2013. DOI: 10.1021/je400825w. SIMONI, L. D.; LIN, Y.; BRENNECKE, J. F.; STADTHERR, M. A. Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC. Industrial & Engineering Chemistry Research, v. 47, n. 1, p. 256-272, 2008. DOI: 10.1021/ie070956j. SMITH, J. M.; NESS, H. C. V.; ABBOTT, M. M. Introduction to chemical engineering thermodynamics. 7ª. ed. Boston: The McGraw-Hill Companies, Inc., 2005. SONG, Y.; CHEN, C. C. Symmetric Electrolyte Nonrandom Two-Liquid Activity Coefficient Model. Industrial & Engineering Chemistry Research, v. 48, n. 16, p. 7788–7797, 2009. DOI: 10.1021/ie9004578. SWANEPOEL, R. M.; SCHWARZ, C. E. Influence of Temperature on the Liquid–Liquid Phase Equilibria of Ternary (Water + Alcohol + Entrainer) Systems. Journal of Chemical & Engineering Data, v. 62, n. 9, p. 2740–2754, 2017. DOI: 10.1021/acs.jced.7b00110. TABERNER, C. S.; CUNHA, R. B. D. Desidratação do etanol por pervaporação com membranas. Monografia (Graduação em Engenharia Química) - Departamento de Engenharia Química, USP. São Paulo, p. 40. 2010. TANG, Y.; LI, Z.; LI, Y. Salting effect in partially miscible systems of n-butanol-water: 2. An extended Setschenow equation and its application. Fluid Phase Equilibria, v. 105, n. 2, p. 241-258, 1995. DOI: 10.1016/0378-3812(94)02616-9. TAVARES, C. A. Estudo da extração líquido-líquido para desidratação do álcool isopropílico. Monografia (Graduação em Engenharia Química) - Departamento de Engenharia Química, UFRRJ. Seropédica, p. 43. 2018. TREYBAL, R. E.; WEBER, L. D.; DALEY, J. F. The System J Acetone-Water-1,1,2-Trichloroethane. Industrial and Engineering Chemistry, v. 8, n. 38, p. 817-821, 1946. DOI: 10.1021/ie50440a021. WALES, M. D.; HUANG, C.; JOOS, L. B.; PROBST, K. V.; VADLANI, P. V.; ANTHONY, J. L.; REZAC, M. E. Liquid−Liquid Equilibria for Ternary Systems of Water + Methoxycyclopentane + Alcohol (Methanol, Ethanol, 1-Propanol, or 2-Propanol). Journal of Chemical and Engineering Data, v. 61, n. 4, p. 1479-1484, 2016. DOI: 10.1021/acs.jced.5b00803. WANG, C.; GUO, J.; CHENG, K.; CHEN, Y. Ternary (liquid + liquid) equilibria for the extraction of ethanol, or 2-propanol from aqueous solutions with 1,1′-oxybis(butane) at different temperatures. The Journal of Chemical Thermodynamics, v. 94, p. 119-126, 2016. DOI: 10.1016/j.jct.2015.11.006. WANG, S. J.; WONG, D. S. H.; YU, S. W. Effect of Entrainer Loss on Plant-Wide Design and Control of an Isopropanol Dehydration Process. Industrial & Engineering Chemistry Research, v. 47, n. 17, p. 6672-6684, Julho 2008. DOI: 10.1021/ie8002683. WANG, Y.; HAN, J.; XU, X.; HU, S.; YAN, Y. Partition behavior and partition mechanism of antibiotics in ethanol/2-propanol–ammonium sulfate aqueous two-phase systems. Separation and Purification Technology, v. 75, n. 3, p. 352-357, 2010. DOI: 10.1016/j.seppur.2010.09.004. WANG, Y.; YAN, Y.; HU, S.; HAN, J.; XU, X. Phase Diagrams of Ammonium Sulfate + Ethanol/1-Propanol/2-Propanol + Water Aqueous Two-Phase Systems at 298.15 K and Correlation. Journal of Chemical & Engineering Data, v. 55, n. 2, p. 876-881, 2010. DOI: 10.1021/je900504e. WANG, Y.; LIU, Y.; CUI, P. Measurement and correlation of liquid–liquid equilibrium data for 2-methyl-1-propanol + 2-propanol + water at several temperatures. Fluid Phase Equilibria, v. 340, p. 37-41, 2013. DOI: 10.1016/j.fluid.2012.11.040. WEISSERMEL, K.; ARPE, H.-J. Industrial Organic Chemistry. 4ª. ed. Weinheim, Alemanha: WILEY‐VCH Verlag GmbH & Co. KGaA, 2003. WIDAGDO, S.; SEIDER, W. D. Azeotropic Distillation. AlChE Journal, v. 42, n. 1, p. 96-130, Janeiro 1996. DOI: 10.1002/aic.690420110. WU, Y. Y.; ZHU, J. W.; CHEN, K.; WU, B.; SHEN, Y. L. Liquid–liquid equilibria of water + 2,3-butanediol + ethyl acetate at several temperatures. Fluid Phase Equilibria, v. 266, n. 1-2, p. 42-46, 2008. DOI: 10.1016/j.fluid.2008.01.009. XAVIER, L.; FREIRE, M. S.; VIDAL‐TATO, I.; GONZÁLEZ‐ÁLVAREZ, J. Aqueous two‐phase systems for the extraction of phenolic compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes. The Journal of Chemical Technology and Biotechnology, v. 89, n. 11, p. 1772-1778, 2013. DOI: 10.1002/jctb.4260. XU, X.; MADEIRA, P. P.; MACEDO, E. A. Representation of liquid–liquid equilibria for polymer–salt aqueous two-phase systems. Chemical Engineering Science 59 (2004) 1153–1159, v. 59, p. 1153–1159, 2004. DOI: 10.1016/j.ces.2004.01.004. ZAFAR, M.; ALI, M.; KHAN, S. M.; JAMIL, T.; BUTT, M. T. Zahid Effect of additives on the properties and performance of cellulose acetate derivative membranes in the separation of isopropanol/water mixtures. Desalination, v. 285, p. 359-365, 2012. DOI: 10.1016/j.desal.2011.10.027. ZAFARANI-MOATTAR, M. T.; HOSSEINPOUR-HASHEMI, V.; BANISAEID, S.; BEIRAMI, M. A. S. The study of phase behavior of aqueous 1-propanol/2-propanol/2-butanol/2-methyl-2-propanol systems in the presence of disodium tartrate or disodium succinate at T = 298.15 K. Fluid Phase Equilibria, v. 338, p. 37-45, 2013. DOI: 10.1016/j.fluid.2012.10.019. ZAFARANI-MOATTAR, M. T.; SHEKAARI, H.; JAFARI, P. Liquid-liquid equilibria of choline chloride + 1-propanol or 2-propanol + water ternary systems at different temperatures: Study of choline chloride ability for recovering of these alcohols from water mixtures. Journal of Molecular Liquids, v. 273, p. 463–475, 2018. DOI: 10.1016/j.molliq.2018.10.050. ZHANG, Z.; ZHANG, L.; ZHANG, Q.; SUN, D.; PAN, F.; DAI, S. Separation of 2-propanol and water azeotropic system using ionic liquids as entrainers. Fluid Phase Equilibria, v. 412, p. 94-100, 2016. DOI: 10.1016/j.fluid.2015.11.034.https://tede.ufrrj.br/retrieve/68676/2019%20-%20Pedro%20Peixoto%20do%20Amaral%20de%20Souza.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5502Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-03-30T21:21:36Z No. of bitstreams: 1 2019 - Pedro Peixoto do Amaral de Souza.pdf: 1869540 bytes, checksum: 3166659c02411af7e32008c59c3e124f (MD5)Made available in DSpace on 2022-03-30T21:21:36Z (GMT). No. of bitstreams: 1 2019 - Pedro Peixoto do Amaral de Souza.pdf: 1869540 bytes, checksum: 3166659c02411af7e32008c59c3e124f (MD5) Previous issue date: 2019-07-18info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Pedro Peixoto do Amaral de Souza.pdf.jpgGenerated Thumbnailimage/jpeg3791https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13334/1/2019%20-%20Pedro%20Peixoto%20do%20Amaral%20de%20Souza.pdf.jpga811614f51ee3c118b3b790b84380dc7MD51TEXT2019 - Pedro Peixoto do Amaral de Souza.pdf.txtExtracted Texttext/plain218668https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13334/2/2019%20-%20Pedro%20Peixoto%20do%20Amaral%20de%20Souza.pdf.txt44138d90fe32780af783b4a8991207c0MD52ORIGINAL2019 - Pedro Peixoto do Amaral de Souza.pdfapplication/pdf1869540https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13334/3/2019%20-%20Pedro%20Peixoto%20do%20Amaral%20de%20Souza.pdf3166659c02411af7e32008c59c3e124fMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13334/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/133342023-12-21 23:45:39.143oai:rima.ufrrj.br:20.500.14407/13334Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T02:45:39Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Estudo do equilíbrio líquido-líquido de sistemas ternários 2-propanol-sal-água: experimental e modelagem |
dc.title.alternative.eng.fl_str_mv |
Study of liquid-liquid equilibrium of ternary systems 2-propanol-salt-water: experimental and modelling |
title |
Estudo do equilíbrio líquido-líquido de sistemas ternários 2-propanol-sal-água: experimental e modelagem |
spellingShingle |
Estudo do equilíbrio líquido-líquido de sistemas ternários 2-propanol-sal-água: experimental e modelagem Souza, Pedro Peixoto do Amaral de equilíbrio líquido-líquido azeótropo 2-propanol modelagem termodinâmica liquid-liquid equilibrium azeotrope thermodynamics modelling Química |
title_short |
Estudo do equilíbrio líquido-líquido de sistemas ternários 2-propanol-sal-água: experimental e modelagem |
title_full |
Estudo do equilíbrio líquido-líquido de sistemas ternários 2-propanol-sal-água: experimental e modelagem |
title_fullStr |
Estudo do equilíbrio líquido-líquido de sistemas ternários 2-propanol-sal-água: experimental e modelagem |
title_full_unstemmed |
Estudo do equilíbrio líquido-líquido de sistemas ternários 2-propanol-sal-água: experimental e modelagem |
title_sort |
Estudo do equilíbrio líquido-líquido de sistemas ternários 2-propanol-sal-água: experimental e modelagem |
author |
Souza, Pedro Peixoto do Amaral de |
author_facet |
Souza, Pedro Peixoto do Amaral de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Souza, Pedro Peixoto do Amaral de |
dc.contributor.advisor1.fl_str_mv |
Mendes, Marisa Fernandes |
dc.contributor.advisor1ID.fl_str_mv |
CPF: 023.918.187-50 |
dc.contributor.referee1.fl_str_mv |
Mendes, Maria Fernandes |
dc.contributor.referee2.fl_str_mv |
Pessoa, Fernando Luiz Pellegrini |
dc.contributor.referee3.fl_str_mv |
Paredes, Márcio Luis Lyra |
dc.contributor.authorID.fl_str_mv |
CPF: 134.640.347-39 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2193175479682293 |
contributor_str_mv |
Mendes, Marisa Fernandes Mendes, Maria Fernandes Pessoa, Fernando Luiz Pellegrini Paredes, Márcio Luis Lyra |
dc.subject.por.fl_str_mv |
equilíbrio líquido-líquido azeótropo 2-propanol modelagem termodinâmica |
topic |
equilíbrio líquido-líquido azeótropo 2-propanol modelagem termodinâmica liquid-liquid equilibrium azeotrope thermodynamics modelling Química |
dc.subject.eng.fl_str_mv |
liquid-liquid equilibrium azeotrope thermodynamics modelling |
dc.subject.cnpq.fl_str_mv |
Química |
description |
Com a grande importância industrial e econômica que o isopropanol apresenta no cenário mundial e nacional, torna-se cada vez mais importante a produção deste álcool com elevada pureza. Entretanto, o comportamento azeotrópico que este composto apresenta em solução aquosa dificulta sua purificação completa. Desta forma, o estudo de novas técnicas sustentáveis e economicamente viáveis é de extrema importância. Neste cenário, a extração líquido-líquido a partir de um sistema aquoso bifásico (SAB) surge como um método em potencial devido as suas vantagens como menor custo, não toxicidade e possibilidade de aplicação em grande escala. A separação das fases deste sistema se baseia no efeito “salting-out” que os sais apresentam frente aos solventes hidrofílicos, como o isopropanol. Logo, este trabalho consiste no estudo do equilíbrio líquido-líquido de sistemas ternários compostos por isopropanol-sais de sódio-água a 298,15 K e 101,3 kPa. Para isto, foram estudados três diferentes sais, o NaNO3, o Na2SO4 e o NaCH3COO. As curvas binodais dos sistemas foram determinadas experimentalmente e modeladas usando modelos empíricos encontrados na literatura. As linhas de amarração foram mensuradas e a confiabilidade de seus dados de equilíbrio foi testada. A avaliação da força do efeito salino foi realizada para cada um dos sistemas. Os modelos e-NRTL e UNIQUAC estendido foram utilizados visando uma melhor correlação dos dados experimentais, a fim da obtenção de parâmetros essenciais para um possível projeto industrial. Embasado nos resultados encontrados, as metodologias experimentais de obtenção das curvas binodais e das linhas de amarração foram satisfatórias. Além disto, o sulfato de sódio mostrou o maior efeito “salting-out”, porém o nitrato e o acetato apresentaram melhores possibilidades de utilização para o objetivo inicialmente proposto. O e-NRTL e UNIQUAC estendido apresentaram desvios baixos, indicando uma boa correlação dos dados experimentais ao utilizar estes modelos termodinâmicos. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-07-18 |
dc.date.accessioned.fl_str_mv |
2023-12-22T02:45:39Z |
dc.date.available.fl_str_mv |
2023-12-22T02:45:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SOUZA, Pedro Peixoto do Amaral de. Estudo do equilíbrio líquido-líquido de sistemas ternários 2-propanol-sal-água: experimental e modelagem. 2019. 106 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Departamento de Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/13334 |
identifier_str_mv |
SOUZA, Pedro Peixoto do Amaral de. Estudo do equilíbrio líquido-líquido de sistemas ternários 2-propanol-sal-água: experimental e modelagem. 2019. 106 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Departamento de Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/13334 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
ABRAMS, D. S.; PRAUSNITZ, J. M. Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. AIChe Journal, v. 21, n. 1, p. 116-128, 1975. DOI: 10.1002/aic.690210115. ALBERTSSON, P.-Å. Chromatography and Partition of Cells and Cell Fragments. Nature, v. 177, n. 4513, p. 771-774, 1956. DOI: 10.1038/177771a0. ALBERTSSON, P.-Å.; CAJARVILLE, A.; BROOKS, D. E.; TJERNELD, F. Partition of proteins in aqueous polymer two-phase systems and the effect of molecular weight of the polymer. Biochimica et Biophysica Acta (BBA) - General Subjects, v. 926, n. 1, p. 87-93, 1987. DOI: 10.1016/0304-4165(87)90185-1. ALVARENGA, J. M. D.; FIDELES, R. A.; SILVA, M. V.; MURARI, G. F.; TAYLOR, J. G.; LEMOS, L. R.; RODRIGUES, G. D.; MAGESTE, A. B. Partition study of textile dye Remazol Yellow Gold RNL in aqueous two-phase systems. Fluid Phase Equilibria, v. 391, p. 1-8, 2015. DOI: 10.1016/j.fluid.2015.01.022. ALVES, K. C. Modelagem Termodinâmica de Sistemas Aquosos Bifásicos Contendo Sais e Polímeros. Dissertação (Mestrado em Engenharia) - Departamento de Engenharia Química II, USP. São Paulo, p. 118. 2008. ANGELIS, A. D. Propanol market to increase at an annualised rate of 3.9%, 2013. Disponivel em: <http://www.mynewsdesk.com/uk/pressreleases/propanol-market-to-increase-at-an-annualised-rate-of-3-9-906343>. Acesso em 2018. BACKHURST, J. R.; RICHARDSON, J. F.; HARKER, J. H. Coulson and Richardson's Chemical engineering. 5ª. ed. Amsterdam: Elsevier, v. 2, 2015. BANIK, R. M.; SANTHIAGU, A.; KANARI, B.; SABARINATH, C.; UPADHYAY, S.N. Technological aspects of extractive fermentation using aqueous two-phase systems. World Journal of Microbiology and Biotechnology, v. 19, n. 4, p. 337–348, 2003. DOI: 10.1023/A:1023940809095. BASKARAN, D.; CHINNAPPAN, K.; MANIVASAGAN, R.; SELVARAJ, R. Liquid−Liquid Equilibrium of Polymer−Inorganic Salt Aqueous Two-Phase Systems: Experimental Determination and Correlation. Journal of Chemical & Engineering Data, v. 62, p. 738−743, 2017. DOI: 10.1021/acs.jced.6b00805. BOLLAS, G. M.; CHEN, C. C.; BARTON, P. I. Refined Electrolyte-NRTL Model: Activity Coefficient Expressions for Application to Multi-Electrolyte Systems. AIChe Journal, v. 54, n. 6, p. 1608-1624, 2008. DOI: 10.1002/aic.11485. BRUNJES, A. S.; BOGART, M. J. P. Vapor-Liquid Equilibria for Commercially Important Systems of Organic Solvents: The Binary Systems Ethanol-n-Butanol, Acetone-Water and Isopropanol-Water. Industrial & Engineering Chemistry Research, v. 35, n. 2, p. 255-260, Fevereiro 1943. DOI: 10.1021/ie50398a032. BULGARIU, L.; BULGARIU, D. Extraction of metal ions in aqueous polyethylene glycol–inorganic salt two-phase systems in the presence of inorganic extractants: Correlation between extraction behaviour and stability constants of extracted species. Journal of Chromatography A, v. 1196–1197, p. 117-124, 2008. DOI: 10.1016/j.chroma.2008.03.054. CARDOSO, M. J. E. D. M.; O'CONNELL, J. Activity coefficients in mixed solvent electrolyte solutions. Fluid Phase Equilibria, v. 33, n. 3, p. 315-326, 1987. DOI: 10.1016/0378-3812(87)85043-4. CARREIRA, F. M. Simulação da recuperação de químicos de condensados de licor fino. Dissertação (Mestrado em Engenharia Química) - Departamento de Química, Universidade de Aveiro. Aveiro, p. 71. 2012. CHÁFER, A.; TORRE, J.; LLADOSA, E.; MONTÓN, J. B. Liquid–liquid equilibria of 4-methyl-2-pentanone + 1-propanol or 2-propanol + water ternary systems: Measurements and correlation at different temperatures. Fluid Phase Equilibria, v. 361, p. 23–29, 2013. DOI: 10.1016/j.fluid.2013.10.034. CHANG, C. W.; HSIUNG, T. L.; LUI, C. P.; TU, C. H. Densities, surface tensions, and isobaric vapor–liquid equilibria for the mixtures of 2-propanol, water, and 1,2-propanediol. Fluid Phase Equilibria, v. 389, p. 28-40, 2015. DOI: 10.1016/j.fluid.2014.12.040. CHEN, C.; EVANS, L. B. A Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems. AIChe Journal, v. 32, n. 3, p. 444-454, 1986. DOI: 10.1002/aic.690320311. CHEN, C. C.; SONG, Y. Generalized Electrolyte-NRTL Model for Mixed-Solvent Electrolyte Systems. AIChe Journal, v. 50, n. 8, p. 1928-1941, 2004. DOI: 10.1002/aic.10151. COMEX STAT. Base de dados do Comércio Exterior Brasileiro, 2018. Disponivel em: <http://www.mdic.gov.br/comercio-exterior/estatisticas-de-comercio-exterior/base-de-dados-do-comercio-exterior-brasileiro-arquivos-para-download>. Acesso em: 2018. DAHAL, R.; MORIAM, K.; SEPPÄLÄ, P. Downstream process: liquid-liquid extraction. Trabalho Acadêmico (Licenciatura em Tecnologia Química) - School of Chemical Technology, Aalto University. Espoo, p. 11. 2016. DE FRÉ, R. M.; VERHOEYE, L. A. hase Equilibria in Systems Composed on an Aliphatic and an Aromatic Hydrocarbon. Journal of Applied Chemistry and Biotechnology, v. 26, p. 469-487 , 1976. DOI: 10.1002/jctb.5020260168. DEBYE, V. P.; HÜCKEL, E. Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Zeitschrift, v. 24, n. 9, p. 185–206, 1923. DUTIA, P. Isopropyl alcohol: A techno-commercial profile, 2012. Disponivel em: <http://doczz.net/doc/6463566/i-isopropyl-alcohol--a-techno-commercial-profile-special-.>. Acessado em 2018. FENG, Z.; LI, J. Q.; SUN, X.; SUN, L.; CHEN, J. Liquid–liquid equilibria of aqueous systems containing alcohol and ammonium sulfate. Fluid Phase Equilibria, v. 317, p. 1–8, 2011. DOI: 10.1016/j.fluid.2011.12.023. GOMES, G. C. C. Isopropanol. Revista Virtual de Química, p. 2138-2146, 2016. GONZÁLEZ-TELLO, P.; CAMACHO, F.; BLÁZQUEZ, G.; ALARCÓN, F. J. Liquid-Liquid Equilibrium in the System Poly(ethylene glycol)+MgSO4+H2O at 298 K. Journal of Chemical & Engineering Data, v. 41, p. 1333-1336, 1996. DOI: S0021-9568(96)00075-1. GUEDES, B. P. Análise da sensibilidade e do comportamento dinâmico de uma coluna de destilação azeotrópica não-Convencional. Dissertação (Mestrado em Engenharia de Processos) - Centro de Ciências e Tecnologia, UFCG. Campina Grande, p. 50. 2006. GUO, W.; MA, J.; WANG, Y.; HAN, J.; LI, Y.; SONG, S. Liquid–liquid equilibrium of aqueous two-phase systems composed of hydrophilic alcohols (ethanol/2-propanol/1-propanol) and MgSO4/ZnSO4 at (303.15 and 313.15) K and correlation. Thermochimica Acta, v. 546, p. 8-15, 2012. DOI: 10.1016/j.tca.2012.07.022. GUPTA, B. S.; TAH, M.; LEE, M. J. A green process for recovery of 1-propanol/2-propanol from their aqueous solutions: Experimental and MD simulation studies. The Journal of Chemical Thermodynamics, v. 105, p. 76-85, 2017. DOI: 10.1016/j.jct.2016.10.001. GUTIERREZ-HERNANDEZ, J. P. Extractive distillation with ionic liquids as solvents: selection and conceptual process design. Technische Universiteit Eindhoven, Eindhoven, Janeiro 2013. DOI: 10.6100/IR751728. HAGHTALAB, A.; PEYVANDI, K. Electrolyte-UNIQUAC-NRF model for the correlation of the mean activity coefficient of electrolyte solutions. Fluid Phase Equilibria, v. 281, n. 2, p. 163-171, 2009. DOI: https://doi.org/10.1016/j.fluid.2009.04.013. HATTI-KAUL, R. Aqueous Two-Phase Systems: Methods and Protocols. 11. ed. Totowa, New Jersey: Human Press, 2000. HAYNES, W. M. CRC Handbook of Chemistry and Physics. 96. ed. Boca Raton, Flórida: CRC Press/Taylor and Francis, 2016. HERNANDES, E. E. Estudo da pervaporação de soluções diluídas de compostos voláteis do aroma de café: benzaldeído e ácido acético. Dissertação (Mestrado em Engenharia de Alimentos) - Setor de Tecnologia, UFPR. Curitiba, p. 95. 2015. INCHEM. INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY. IPCS INCHEM HOME, 1990. Disponivel em: <http://www.inchem.org/documents/ehc/ehc/ehc103.htm#SubSectionNumber:3.2.2>. Acesso em 2018. JAIME-LEAL, J. E.; BONILLA-PETRICIOLET, A.; BHARGAVA, V.; FATEEN, S. E. K. Nonlinear Parameter Estimation of e-NRTL Model For Quaternary Ammonium Ionic Liquids Using Cuckoo Search. Chemical Engineering Research and Design, v. 93, p. 464-472, 2015. DOI: 10.1016/j.cherd.2014.06.014. KABIRI-BADR, M.; CABEZAS JR., H. A thermodynamic model for the phase behavior of salt-polymer aqueous two-phase systems. Fluid Phase Equilibria, v. 115, n. 1-2, p. 39-58, 1996. DOI: 10.1016/0378-3812(95)02831-5. KAMIHIRA, M.; KUMAR, A. Development of Separation Technique for Stem Cells. Cell Separation, v. 106, p. 173-193, 2007. DOI: 10.1007/10_2006_043. KANEHASHI, S.; NAGAI, K. 2.8 Fundamentals and Perspectives for Pervaporation. Comprehensive Membrane Science and Engineering II, v. 2, p. 191-225., 2017. KAYATI, G.; SHAHRIARI, M. Measurement and Correlation of Phase Diagram Data of Hydrophilic Alcohols (1-Propanol/2-Propanol) + Salts (Na2SO4/(NH4)2SO4/NH4NO3) + Water Systems. Chemical and Biochemical Engineering Quarterly, v. 30, n. 1, p. 73-80, 2016. DOI: 10.15255/CABEQ.2015.2308. KHOSRAVI, T.; MOSLEH, S.; BAKHTIARI, O.; MOHAMMADI, T. Mixed matrix membranes of Matrimid 5218 loaded with zeolite 4A for pervaporation separation of water–isopropanol mixtures. Chemical Engineering Research and Design, v. 90, n. 12, p. 2353-2363, 2012. DOI: 10.1016/j.cherd.2012.06.005. KOCH, J.; SHIVELER, G. Design Principles for Liquid-Liquid Extraction. AlChE: The Global Home of Chemical Engineers, 2015. Disponivel em: <https://www.aiche.org/resources/publications/cep/2015/november/design-principles-liquid-liquid-extraction>. Acesso em: 03 jan. 2019. LASDON, L. S.; WAREN, A. D.; JAIN, A.; RATNER, M. Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming. ACM Transactions on Mathematical Software, v. 4, n. 1, p. 34-50, 1978. DOI: 10.1145/355769.355773. LEBO, R. B. Properties of mixtures of isopropyl alcohol and water. Journal of the American Chemical Society, v. 43, n. 5, p. 1005-1011, Maio 1921. DOI: 10.1021/ja01438a004. LEE, B. H.; QIN, Y.; PRAUSNITZ, J. M. Thermodynamic representation of ternary liquid–liquid equilibria near-to and far-from the plait point. Fluid Phase Equilibria, v. 240, p. 67–72, 2006. LEI, Z. Azeotropic Distillation. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2017. LI, C.; HAN, J.; WANG, Y.; YAN, Y.; PAN, J.; XU, X.; ZHANG, Z. Phase Behavior for the Aqueous Two-Phase Systems Containing the Ionic Liquid 1-Butyl-3-methylimidazolium Tetrafluoroborate and Kosmotropic Salts. Journal of Chemical & Engineering Data, v. 55, n. 3, p. 1087–1092, 2010. DOI: 10.1021/je900533h. LIU, H.; HE, C.; WEN, D.; LIU, H.; LIU, F.; LI, K. Extraction of testosterone and epitestosterone in human urine using 2-propanol–salt–H2O system. Analytica Chimica Acta, v. 557, n. 1-2, p. 329-336, 2006. DOI: 10.1016/j.aca.2005.10.020. LIU, W.; ZHANG, Z.; RI, Y.; XU, X.; WANG, Y. Liquid-liquid equilibria for ternary mixtures of water + 2-propanol + 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids at 298.15 K. Fluid Phase Equilibria, v. 412, p. 205-210, 2016. DOI: 10.1016/j.fluid.2015.12.051. LIU, Y.; FENG, Y. Q.; ZHAO, Y. Liquid−Liquid Equilibrium of Various Aqueous Two-Phase Systems: Experiment and Correlation. Journal of Chemical & Engineering Data, v. 58, n. 10, p. 2775–2784, 2013. DOI: 10.1021/je400453b. LIU, Z.; XU, D.; MA, Y.; ZHU, J.; GAO, J.; SHI, P.; MA, X.; WANG, Y. Liquid-liquid equilibrium determination and thermodynamics modeling for extraction of isopropanol from its aqueous solution. Fluid Phase Equilibria, v. 458, p. 40-46, 2018. DOI: 10.1016/j.fluid.2017.11.010. LO, S. C.; RAMANAN, R. N.; TEY, B. T.; LING, T. C.; SHOW, P. L.; OOI, C. W. Liquid–Liquid Equilibrium of Alcohols + Ammonium/Potassium/Sodium Acetate + Water Systems: Experimental and Correlation. Journal of Chemical & Engineering Data, v. 60, n. 10, p. 2848-2857, 2015. DOI: 10.1021/acs.jced.5b00200. LOGSDON, J. E.; LOKE, R. A. Isopropyl Alcohol. In: KIRK, R. E.; OTHMER, D. F. Kirk-Othmer Encyclopedia of Chemical Technology. 5ª. ed. New York, EUA: John Wiley & Sons, 2000. LU, Y.; HAO, T.; HU, S.; HAN, J.; TAN, Z.; YAN, Y. Measurement and correlation of phase diagram data for acetone and sulfate aqueous two-phase systems at different temperatures. Thermochimica Acta, v. 568, p. 209-217, 2013. DOI: 10.1016/j.tca.2013.07.002. LYKLEMA, J. Simple Hofmeister series. Chemical Physics Letters, v. 467, n. 4–6, p. 217-222, 2009. DOI: 10.1016/j.cplett.2008.11.013. MACEDO, E. A.; SKOVBORG, P.; RASMUSSEN, P. Calculation of phase equilibria for solutions of strong electrolytes in solvent-water mixtures. Chemical Engineering Science, v. 45, n. 4, p. 875-882, 1990. DOI: 10.1016/0009-2509(90)85009-3. MACHADO, A. B. Estudos do Processo de Extração Líquido-Líquido para a Purificação do Ácido Acrílico. Dissertação (Mestrado em Engenharia Química) - UNICAMP. Campinas, p. 141. 2007. MANDAL, S.; KULKARNI, B. D. Separation Strategies for Processing of Dilute Liquid Streams. International Journal of Chemical Engineering, v. 2011, p. 1-19, 2011. DOI: 10.1155/2011/659012. MARCUS, Y. Thermodynamics of Solvation of Ions: Part 5 Gibbs Free Energy of Hydration at 298.15 K. Journal of Chemical Society, Faraday Transactions, v. 87, n. 18, p. 2995-2999, 1991. DOI: 10.1039/FT9918702995. MARCUS, Y. A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophysical Chemistry, v. 51, p. 111-12, 1994. DOI: 10.1016/0301-4622(94)00051-4. MARTINS, J. P.; OLIVEIRA, F.; COIMBRA, J.; SILVA, L. H. M.; SILVA, M. C. H.; NASCIMENTO, I. S. B. Equilibrium Phase Behavior for Ternary Mixtures of Poly(ethylene) Glycol 6000 + Water + Sulfate Salts at Different Temperatures. Journal of Chemical and Engineering Data, v. 53, n. 10, p. 2441–2443, 2009. DOI: 10.1021/je800443p. MERCHUK, J. C.; ANDREWS, B. A.; ASENJO, J. A. Aqueous two-phase systems for protein separation: Studies on phase inversion. Journal of Chromatography B: Biomedical Sciences and Applications, v. 711, n. 1-2, p. 285-293, 1998. DOI: 10.1016/S0378-4347(97)00594-X. MERCK. THE MERCK INDEX. Royal Society of Chemistry, 2013. Disponivel em: <https://www.rsc.org/Merck-Index/monograph/m6524/isopropyl%20alcohol?q=unauthorize>. Acesso em: 2018. MERCK. Merck Milipore. Produtos Químicos para Industrias e Laboratórios, 2019. Disponivel em: <https://www.merckmillipore.com/BR/pt?ReferrerURL=https%3A%2F%2Fwww.google.com%2F>. Acesso em: 2019. MISTRY, S. L.; KAUL, A.; MERCHUK, J. C.; ASENJO, J. A. Mathematical modelling and computer simulation of aqueous twophase continuous protein extraction. Journal of Chromatography A., v. 741, n. 2, p. 151-163, 1996. DOI: 10.1016/0021-9673(96)00179-3. MUTALIK, V.; MANJESHWARA, L. S.; SAIRAM, M.; AMINABHAVI, T. M. Thermodynamic interactions in binary mixtures of anisole with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, pentan-1-ol, and 3-methylbutan-1-ol at T = (298.15, 303.15, and 308.15) K. The Journal of Chemical Thermodynamics, v. 38, n. 12, p. 1620-1628, 2006. DOI: 10.1016/j.jct.2006.03.018. NEMATI-KANDE, E.; SHEKAARI, H. Thermodynamic investigation of the ATPSs composed of some (aliphatic alcohol + sodium carbonate + water) ternary systems. The Journal of Chemical Thermodynamics, v. 57, p. 541-549, 2013. DOI: 10.1016/j.jct.2012.07.021. NEMATI-KANDE, E.; SHEKAARI, H.; JAFARI, S. A. Liquid–liquid equilibrium of 1-propanol, 2-propanol, 2-methyl-2-propanol or 2-butanol + sodium sulfite + water aqueous two phase systems. Fluid Phase Equilibria, v. 329, p. 42-54, 2012. DOI: 10.1016/j.fluid.2012.05.012. ORCHILLÉS, A. V.; MIGUEL, P. J.; GONZÁLEZ-ALFARO, V.; LLOPIS, F. J.; VERCHER, E. Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid. The Journal of Chemical Thermodynamics, v. 110, p. 16-24, 2017. DOI: 10.1016/j.jct.2017.02.005. OTHMER, D. F.; TOBIAS, P. E. Liquid-Liquid Extraction Data - The Line Correlation. Industrial and Engineering Chemistry , v. 34, n. 6, p. 693-696, 1942. DOI: 10.1021/ie50390a600. PAPA, A. J. Propanols. In: BOHNET, M., et al. Ullmann's Encyclopedia of Industrial Chemistry. 7ª. ed. Weinheim, Alemanha: Wiley-VCH Verlag GmbH, v. 30, 2011. p. 243-254. PENG, M.; VANE, L. M.; LIU, S. X. Recent advances in VOCs removal from water by pervaporation. Journal of Hazardous Materials, v. 98, n. 1-3, p. 69-90, 2003. DOI: 10.1016/s0304-3894(02)00360-6. PEREIRO, A. B.; ARAÚJO, J. M. M.; ESPERANÇA, J. M. S. S.; MARRUCHO, I. M.; REBELO, L. P. N. Ionic liquids in separations of azeotropic systems – A review. The Journal of Chemical Thermodynamics, v. 46, p. 2-28, Março 2012. DOI: doi:10.1016/j.jct.2011.05.026. PIENAAR, C.; SCHWARZ, C. E.; KNOETZE, J. H.; BURGER, A. J. Vapor−Liquid−Liquid Equilibria Measurements for the Dehydration of Ethanol, Isopropanol, and n-Propanol via Azeotropic Distillation Using DIPE and Isooctane as Entrainers. Journal of Chemical & Engineering Data, v. 58, p. 537-550, Janeiro 2013. DOI: 10.1021/je300847v. PIMENTEL, J. G. Obtenção de Dados de Equilíbrio de Sistemas Aquosos formados por Álcool/Sais/Água para Extração de Corantes. Dissertação (Mestrado em Ciências Ambientais) - UESB. Itapetinga, p. 80. 2016. PIMENTEL, J. G.; BICALHO, S. F.; GANDOLFI, O. R. R.; VERISSIMO, L. A. A.; CASTRO, S. S.; SOUZA, E. A.; VELOSO, C. M.; FONTAN, R. C. I.; SAMPAIO, V. S.; BONOMO, R C. F. Evaluation of salting-out effect in the liquideliquid equilibrium of aqueous two-phase systems composed of 2-propanol and Na2SO4/MgSO4 at different temperatures. Fluid Phase Equilibria, v. 450, p. 184-193, 2017. DOI: 10.1016/j.fluid.2017.08.001. PINTO, P. L. Extração e separação de flavonoides do extrato da casca do maracujá. Dissertação (Mestrado em Engenharia Química) – Centro de Tecnologia, UFC. Fortaleza, p. 57. 2018. PIRAHMADI, F.; DEHGHANI, M. R.; BEHZADI, B.; SEYEDI, S. M.; RABIEE, H. Experimental and theoretical study on liquid–liquid equilibrium of 1-butanol + water + NaNO3 at 25 and 35 ºC. Fluid Phase Equilibria, v. 299, p. 122-126, 2010. DOI: 10.1016/j.fluid.2010.09.013. PIRAHMADI, F.; BEHZADI, B.; DEHGHANI, M. R. Experimental measurement and thermodynamic modeling of liquid–liquid equilibrium for 1-pentanol + water + NaNO3 at 298,15 and 308,15 K. Fluid Phase Equilibria, v. 307, p. 39-44, 2011. DOI: 10.1016/j.fluid.2011.05.003. PITZER, K. S. Electrolytes. From dilute solutions to fused salts. Journal of the American Chemical Society, v. 102, n. 9, p. 2902–2906, 1980. DOI: 10.1021/ja00529a006. POLING, B. E.; PRAUSNITZ, J. M.; O'CONNELL, J. P. The Properties of Gases and Liquids. [S.l.]: McGRAW-HILL, 2001. PORTO, T. S.; SILVA, G. M. M.; PORTO, C. S.; CAVALCANTI, M. T. H.; NETO, B. B.; LIMA-FILHO, J. L.; CONVERTI, A.; PORTO, A. L. F.; PESSOA JR., A. Liquid–liquid extraction of proteases from fermented broth by PEG/citrate aqueous two-phase system. Chemical Engineering and Processing: Process Intensification, v. 47, n. 4, p. 716-721, 2008. DOI: 10.1016/j.cep.2006.12.004. PÖRTSH, A. The phase behaviour, flow behaviour, andInterfacial properties of protein-polysaccharide aqueous two-phase systems with sugar. Tese (Doutorado em Engenharia Química) - College of Engineering and Physical Sciences, University of Birmingham. Birmingham, p. 258. 2011. RAJA, S.; MURTY, V. R.; THIVAHARAN, V.; RAJASEKAR, V.; RAMESH, V. Aqueous Two Phase Systems for the Recovery of Biomolecules – A Review. Science and Technology, v. 1, n. 1, p. 7-16, 2012. DOI: 10.5923/j.scit.20110101.02. REGUPATHI, I.; MURUGESAN, S.; GOVINDARAJAN, R.; AMARESH, S. P.; THANAPALAN, M. Liquid−Liquid Equilibrium of Poly(ethylene glycol) 6000 + Triammonium Citrate + Water Systems at Different Temperatures. Journal of Chemical & Engineering Data, v. 54, n. 3, p. 1094–1097, 2009. DOI: 10.1021/je8008478. REGUPATHI, I.; SRIKANTH, C. K.; SINDHU, N. Liquid–Liquid Equilibrium of Poly(ethylene glycol) 2000 + Diammonium Hydrogen Citrate + Water System at Different Temperatures. Journal of Chemical & Engineering Data, v. 56, n. 9, p. 3643–3650, 2011. DOI: 10.1021/je200485x. REIS, M. H. M. Desenvolvimento de um programa para geração de mapas de curvas residuais e aplicação a processos de destilação azeotrópica e extrativa. Dissertação (Mestrado em Engenharia Química). Faculdade de Engenharia Química, UNICAMP. Campinas, p. 163. 2002. RENON, H.; PRAUSNITZ, J. M. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. AIChe Journal, v. 14, n. 1, p. 135-144, 1968. DOI: 10.1002/aic.690140124. SANDER, B.; FREDENSLUND, A.; RASMUSSEN, P. Calculation of vapour-liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation. Chemical Engineering Science, v. 41, n. 5, p. 1171-1183, 1986. DOI: 10.1016/0009-2509(86)87090-7. SANGLARD, M. G.; FARIAS, F. O.; SOSA, F. H. B.; SANTOS, T. P. M.; IGARASHI-MAFRA, L.; MAFRA, M. R. Measurement and correlation of aqueous biphasic systems composed of alcohol (1-propanol/2-propanol/tert-butanol)+(NH4)2SO4+ H2O at 298 K and a textile dye partition. Fluid Phase Equilibria, v. 466, p. 7-13, 2018. DOI: 10.1016/j.fluid.2018.03.009. SANTOS, I. J. B.; CARVALHO, R. M. M.; SILVA, M. C. H.; SILVA, L. H. M. Phase Diagram, Densities, and the Refractive Index of New Aqueous Two-Phase System Formed by PEO1500 + Thiosulfate + H2O at Different Temperatures. Journal Chemical and Engineering Data, v. 57, n. 2, p. 274–279, 2012. DOI: 10.1021/je200744s. SARAVANAN, S.; LAGADD, J.; RAO, R.; NAIR, B. U.; RAMASAMI, T. Aqueous two-phase poly(ethylene glycol)–poly(acrylic acid) system for protein partitioning: Influence of molecular weight, pH and temperature. Process Biochemistry, v. 43, n. 9, p. 905-911, 2008. DOI: 10.1016/j.procbio.2008.04.011. SATO, T.; OHUJI, R.; YAMANOVCHI, H. JP77012166, 05 abr. 1977. SILVA, L. H. M. D.; LOH, W. Sistemas aquosos bifásicos: fundamentos e aplicações para partição/purificação de proteínas. Química Nova, v. 29, n. 6, p. 1345-1351, 2006. DOI: 10.1590/S0100-40422006000600033. SILVERIO, S. C.; RODRÍGUEZ, O.; TEIXEIRA, J. A.; MACEDO, E. A. The Effect of Salts on the Liquid−Liquid Phase Equilibria of PEG600+Salt Aqueous Two-Phase Systems. Journal of Chemical & Engineering Data, v. 58, p. 3528−3535, 2013. DOI: 10.1021/je400825w. SIMONI, L. D.; LIN, Y.; BRENNECKE, J. F.; STADTHERR, M. A. Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC. Industrial & Engineering Chemistry Research, v. 47, n. 1, p. 256-272, 2008. DOI: 10.1021/ie070956j. SMITH, J. M.; NESS, H. C. V.; ABBOTT, M. M. Introduction to chemical engineering thermodynamics. 7ª. ed. Boston: The McGraw-Hill Companies, Inc., 2005. SONG, Y.; CHEN, C. C. Symmetric Electrolyte Nonrandom Two-Liquid Activity Coefficient Model. Industrial & Engineering Chemistry Research, v. 48, n. 16, p. 7788–7797, 2009. DOI: 10.1021/ie9004578. SWANEPOEL, R. M.; SCHWARZ, C. E. Influence of Temperature on the Liquid–Liquid Phase Equilibria of Ternary (Water + Alcohol + Entrainer) Systems. Journal of Chemical & Engineering Data, v. 62, n. 9, p. 2740–2754, 2017. DOI: 10.1021/acs.jced.7b00110. TABERNER, C. S.; CUNHA, R. B. D. Desidratação do etanol por pervaporação com membranas. Monografia (Graduação em Engenharia Química) - Departamento de Engenharia Química, USP. São Paulo, p. 40. 2010. TANG, Y.; LI, Z.; LI, Y. Salting effect in partially miscible systems of n-butanol-water: 2. An extended Setschenow equation and its application. Fluid Phase Equilibria, v. 105, n. 2, p. 241-258, 1995. DOI: 10.1016/0378-3812(94)02616-9. TAVARES, C. A. Estudo da extração líquido-líquido para desidratação do álcool isopropílico. Monografia (Graduação em Engenharia Química) - Departamento de Engenharia Química, UFRRJ. Seropédica, p. 43. 2018. TREYBAL, R. E.; WEBER, L. D.; DALEY, J. F. The System J Acetone-Water-1,1,2-Trichloroethane. Industrial and Engineering Chemistry, v. 8, n. 38, p. 817-821, 1946. DOI: 10.1021/ie50440a021. WALES, M. D.; HUANG, C.; JOOS, L. B.; PROBST, K. V.; VADLANI, P. V.; ANTHONY, J. L.; REZAC, M. E. Liquid−Liquid Equilibria for Ternary Systems of Water + Methoxycyclopentane + Alcohol (Methanol, Ethanol, 1-Propanol, or 2-Propanol). Journal of Chemical and Engineering Data, v. 61, n. 4, p. 1479-1484, 2016. DOI: 10.1021/acs.jced.5b00803. WANG, C.; GUO, J.; CHENG, K.; CHEN, Y. Ternary (liquid + liquid) equilibria for the extraction of ethanol, or 2-propanol from aqueous solutions with 1,1′-oxybis(butane) at different temperatures. The Journal of Chemical Thermodynamics, v. 94, p. 119-126, 2016. DOI: 10.1016/j.jct.2015.11.006. WANG, S. J.; WONG, D. S. H.; YU, S. W. Effect of Entrainer Loss on Plant-Wide Design and Control of an Isopropanol Dehydration Process. Industrial & Engineering Chemistry Research, v. 47, n. 17, p. 6672-6684, Julho 2008. DOI: 10.1021/ie8002683. WANG, Y.; HAN, J.; XU, X.; HU, S.; YAN, Y. Partition behavior and partition mechanism of antibiotics in ethanol/2-propanol–ammonium sulfate aqueous two-phase systems. Separation and Purification Technology, v. 75, n. 3, p. 352-357, 2010. DOI: 10.1016/j.seppur.2010.09.004. WANG, Y.; YAN, Y.; HU, S.; HAN, J.; XU, X. Phase Diagrams of Ammonium Sulfate + Ethanol/1-Propanol/2-Propanol + Water Aqueous Two-Phase Systems at 298.15 K and Correlation. Journal of Chemical & Engineering Data, v. 55, n. 2, p. 876-881, 2010. DOI: 10.1021/je900504e. WANG, Y.; LIU, Y.; CUI, P. Measurement and correlation of liquid–liquid equilibrium data for 2-methyl-1-propanol + 2-propanol + water at several temperatures. Fluid Phase Equilibria, v. 340, p. 37-41, 2013. DOI: 10.1016/j.fluid.2012.11.040. WEISSERMEL, K.; ARPE, H.-J. Industrial Organic Chemistry. 4ª. ed. Weinheim, Alemanha: WILEY‐VCH Verlag GmbH & Co. KGaA, 2003. WIDAGDO, S.; SEIDER, W. D. Azeotropic Distillation. AlChE Journal, v. 42, n. 1, p. 96-130, Janeiro 1996. DOI: 10.1002/aic.690420110. WU, Y. Y.; ZHU, J. W.; CHEN, K.; WU, B.; SHEN, Y. L. Liquid–liquid equilibria of water + 2,3-butanediol + ethyl acetate at several temperatures. Fluid Phase Equilibria, v. 266, n. 1-2, p. 42-46, 2008. DOI: 10.1016/j.fluid.2008.01.009. XAVIER, L.; FREIRE, M. S.; VIDAL‐TATO, I.; GONZÁLEZ‐ÁLVAREZ, J. Aqueous two‐phase systems for the extraction of phenolic compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes. The Journal of Chemical Technology and Biotechnology, v. 89, n. 11, p. 1772-1778, 2013. DOI: 10.1002/jctb.4260. XU, X.; MADEIRA, P. P.; MACEDO, E. A. Representation of liquid–liquid equilibria for polymer–salt aqueous two-phase systems. Chemical Engineering Science 59 (2004) 1153–1159, v. 59, p. 1153–1159, 2004. DOI: 10.1016/j.ces.2004.01.004. ZAFAR, M.; ALI, M.; KHAN, S. M.; JAMIL, T.; BUTT, M. T. Zahid Effect of additives on the properties and performance of cellulose acetate derivative membranes in the separation of isopropanol/water mixtures. Desalination, v. 285, p. 359-365, 2012. DOI: 10.1016/j.desal.2011.10.027. ZAFARANI-MOATTAR, M. T.; HOSSEINPOUR-HASHEMI, V.; BANISAEID, S.; BEIRAMI, M. A. S. The study of phase behavior of aqueous 1-propanol/2-propanol/2-butanol/2-methyl-2-propanol systems in the presence of disodium tartrate or disodium succinate at T = 298.15 K. Fluid Phase Equilibria, v. 338, p. 37-45, 2013. DOI: 10.1016/j.fluid.2012.10.019. ZAFARANI-MOATTAR, M. T.; SHEKAARI, H.; JAFARI, P. Liquid-liquid equilibria of choline chloride + 1-propanol or 2-propanol + water ternary systems at different temperatures: Study of choline chloride ability for recovering of these alcohols from water mixtures. Journal of Molecular Liquids, v. 273, p. 463–475, 2018. DOI: 10.1016/j.molliq.2018.10.050. ZHANG, Z.; ZHANG, L.; ZHANG, Q.; SUN, D.; PAN, F.; DAI, S. Separation of 2-propanol and water azeotropic system using ionic liquids as entrainers. Fluid Phase Equilibria, v. 412, p. 94-100, 2016. DOI: 10.1016/j.fluid.2015.11.034. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Química |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13334/1/2019%20-%20Pedro%20Peixoto%20do%20Amaral%20de%20Souza.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13334/2/2019%20-%20Pedro%20Peixoto%20do%20Amaral%20de%20Souza.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13334/3/2019%20-%20Pedro%20Peixoto%20do%20Amaral%20de%20Souza.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13334/4/license.txt |
bitstream.checksum.fl_str_mv |
a811614f51ee3c118b3b790b84380dc7 44138d90fe32780af783b4a8991207c0 3166659c02411af7e32008c59c3e124f 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810107879926005760 |