Síntese e avaliação farmacológica de novos derivados cumarínicos híbridos planejados como protótipos de teranósticos para a doença de Alzheimer
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/14703 |
Resumo: | A doença de Alzheimer (DA) é uma doença neurodegenerativa muito comum, sendo considerada a forma mais comum de demência. Dados da ONU indicam que devido ao aumento previsto da expectativa de vida da população mundial, o aumento do número de pessoas com demência crescerá, atingindo 82 milhões em 2030 e 152 milhões em 2050, portanto a DA é considerada um problema de saúde pública importante. O conhecimento dos distúrbios tem levado ao desenvolvimento de fármacos com efeitos sintomáticos, os inibidores de colinesterases, aprovados em muitos países. Porém estes fármacos atuam apenas no estado comportamental e avanços da pesquisa na patogênese de DA também têm levado a protótipos potenciais modificadores da doença, como os complexantes de metais, que se encontram em fase clínica. Outra abordagem crescente para a DA são os compostos teranósticos, que conciliam propriedades terapêuticas e diagnósticas, se apresentando em um único agente, com o objetivo de otimizar a eficácia da terapêutica medicamentosa. Dentro do universo de compostos que possam atuar como sensores para diagnóstico, as cumarinas se mostram um excelente protótipo de teranóstico devido às propriedades de luminescência e ao grande número de atividades farmacológicas com viés de tratamento para a DA. Neste contexto o objetivo deste trabalho compreendeu o planejamento de cumarinas fluorescentes híbridas, que possuíssem potencial aplicação como teranósticos para DA através da inibição da AChE e complexação a metais. Duas séries de cumarinas foram sintetizadas e caracterizadas. A primeira série de compostos (CCM), visando a avaliação das propriedades de fluorescência e de complexação das cumarinas propostas, foi sintetizada por dois protocolos de síntese distintos: um térmico e outro por irradiação micro-ondas, que elevou os rendimentos e à redução de 23h no tempo reacional. Cinco compostos foram selecionados e sua caracterização fotofísica em metanol e água foi realizada, mostrando comportamentos diferenciados de acordo com a polaridade do meio. Adicionalmente, conforme o planejado, dois compostos mostraram a capacidade de atuar como sonda de Zn2+, sendo que o derividado de semicarbazona se mostrou útil como sonda de fluorescência também em meio aquoso. A segunda série (HM), planejada com a hibridação entre o farmacóforo para inibição da AChE (piperidina) e complexação ao Zn2+ (semicarbazida) foi sintetizada em 4 etapas reacionais, e os compostos híbridos apresentaram excelentes valores de atividade inibitória frente à AChE (12,94nM-128,28nM) bem próximos ao fármaco donepezil (6,55nM). Um dos híbridos ainda foi avaliado quanto a capacidade de complexar a Zn2+ em H2O/MeOH, validando a proposta deste trabalho de produzir híbridos moleculares que possam atuar como teranóstico para DA |
id |
UFRRJ-1_4ba140a2e4811e0b602da4b59c984ace |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/14703 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Pereira, Thiago MoreiraKümmerle, Arthur Eugen053.978.487-78http://lattes.cnpq.br/5598000938584486Miranda, Fabio da Silva022,548.829-96https://orcid.org/0000-0001-9977-242Xhttp://lattes.cnpq.br/3013640058442152Kümmerle, Arthur Eugen053.978.487-78http://lattes.cnpq.br/5598000938584486Silva, Fernando de Carvalho dahttps://orcid.org/0000-0002-2042-3778http://lattes.cnpq.br/7183643963574044Lima, Marco Edilson Freire dehttps://orcid.org/0000-0003-0563-3483http://lattes.cnpq.br/8392420706762318131.857.337-89http://lattes.cnpq.br/13361129254116522023-12-22T03:04:43Z2023-12-22T03:04:43Z2018-09-20PEREIRA, Thiago Moreira. Síntese e avaliação farmacológica de novos derivados cumarínicos híbridos planejados como protótipos de teranósticos para a doença de Alzheimer. 2018. 140 f. Dissertação(Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018.https://rima.ufrrj.br/jspui/handle/20.500.14407/14703A doença de Alzheimer (DA) é uma doença neurodegenerativa muito comum, sendo considerada a forma mais comum de demência. Dados da ONU indicam que devido ao aumento previsto da expectativa de vida da população mundial, o aumento do número de pessoas com demência crescerá, atingindo 82 milhões em 2030 e 152 milhões em 2050, portanto a DA é considerada um problema de saúde pública importante. O conhecimento dos distúrbios tem levado ao desenvolvimento de fármacos com efeitos sintomáticos, os inibidores de colinesterases, aprovados em muitos países. Porém estes fármacos atuam apenas no estado comportamental e avanços da pesquisa na patogênese de DA também têm levado a protótipos potenciais modificadores da doença, como os complexantes de metais, que se encontram em fase clínica. Outra abordagem crescente para a DA são os compostos teranósticos, que conciliam propriedades terapêuticas e diagnósticas, se apresentando em um único agente, com o objetivo de otimizar a eficácia da terapêutica medicamentosa. Dentro do universo de compostos que possam atuar como sensores para diagnóstico, as cumarinas se mostram um excelente protótipo de teranóstico devido às propriedades de luminescência e ao grande número de atividades farmacológicas com viés de tratamento para a DA. Neste contexto o objetivo deste trabalho compreendeu o planejamento de cumarinas fluorescentes híbridas, que possuíssem potencial aplicação como teranósticos para DA através da inibição da AChE e complexação a metais. Duas séries de cumarinas foram sintetizadas e caracterizadas. A primeira série de compostos (CCM), visando a avaliação das propriedades de fluorescência e de complexação das cumarinas propostas, foi sintetizada por dois protocolos de síntese distintos: um térmico e outro por irradiação micro-ondas, que elevou os rendimentos e à redução de 23h no tempo reacional. Cinco compostos foram selecionados e sua caracterização fotofísica em metanol e água foi realizada, mostrando comportamentos diferenciados de acordo com a polaridade do meio. Adicionalmente, conforme o planejado, dois compostos mostraram a capacidade de atuar como sonda de Zn2+, sendo que o derividado de semicarbazona se mostrou útil como sonda de fluorescência também em meio aquoso. A segunda série (HM), planejada com a hibridação entre o farmacóforo para inibição da AChE (piperidina) e complexação ao Zn2+ (semicarbazida) foi sintetizada em 4 etapas reacionais, e os compostos híbridos apresentaram excelentes valores de atividade inibitória frente à AChE (12,94nM-128,28nM) bem próximos ao fármaco donepezil (6,55nM). Um dos híbridos ainda foi avaliado quanto a capacidade de complexar a Zn2+ em H2O/MeOH, validando a proposta deste trabalho de produzir híbridos moleculares que possam atuar como teranóstico para DACAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPQ - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de JaneiroUFRRJAlzheimer's disease (AD) is a very common neurodegenerative disease and is considered the most common form of dementia. Data from ONU indicate that due to the expected increase in the life expectancy of the world's population, the increase in the number of people with dementia will increase, reaching 82 million in 2030 and 152 million in 2050, so AD is considered a major public health problem. The Knowledge of disorders has led to development of drugs with symptomatic effects, cholinesterase inhibitors, approved in many countries. However, these drugs only act in the behavioral state and research advances in the pathogenesis of AD have also led to potential disease-modifying prototypes, such as metal complexers, which are in the clinical phase. Another increasing approach to AD is the theranostics compounds, which combine therapeutic and diagnostic properties, presenting in a single agent, in order to optimize the efficacy of drug therapy. Within the universe of compounds that can act as sensors for diagnosis, coumarins proved to be an excellent prototype of theranostic due to the luminescence properties and the large number of pharmacological activities. In this context, the objective of this work was to design hybrid fluorescence coumarins, which has potential application as theranostic for AD through the inhibition of AChE and complexation to metals. Two series of coumarins were synthesized and characterized. The first series of compounds (CCM), aiming the evaluation of the fluorescence and complexation properties of the coumarins proposed, was synthesized by two different synthetic protocols: conventional heating and by microwave irradiation, which increased the yields and the reduction of 23h in reaction time. Five compounds were selected and their photophysical characterization in methanol and water was performed, showing different behaviors according to the polarity of the medium. Additionally, as planned, some coumarins showed the ability to act as Zn2+ probe, and one of them, coumarin-semicarbazone, proved to be useful as fluorescence probe also in aqueous medium. The second series (HM), planned with the hybridization between the pharmacophore for inhibition AChE (piperidine) and complexation to Zn2+ (semicarbazide) was synthesized in 4 reaction steps, demonstrating excellent values of inhibitory activity (12.94nM-128.28nM), closed to the available drug donepezil (6.55nM). One Hybrid was further evaluated for the ability to complex Zn2+ in H2O/MeOH, validating the proposal of this work to produce molecular hybrids that could act as theranostic for ADapplication/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em QuímicaUFRRJBrasilInstituto de QuímicaCumarinaFluorescênciaFibridaçãoCoumarinfluorescencehybridizationQuímicaSíntese e avaliação farmacológica de novos derivados cumarínicos híbridos planejados como protótipos de teranósticos para a doença de AlzheimerSynthesis and pharmacological evaluation of novel hybrid coumarin derivatives designed as prototype theranostics for Alzheimer's diseaseinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisABDELHAFEZ, O.M.; AMIN, K.M.; BATRAN, R.Z.; MAHER, T.J.; NADA, S.A.; SETHUMADHAVAN, H. Synthesis, anticoagulant and PIVKA-II induced by new 4-hydroxycoumarin derivatives. Bioorg. Med. Chem., v.18, p. 3371-3378, 2010. ALPAT, S. K.; ALPAT, S.; KUTLU, B.; OZBAYRAK O.; BUYUKISIK, H. B. Development of biosorption-based algal biosensor for Cu(II) using Tetraselmis chuii. Sens. Actuators, B, v. 128, p. 273-278, 2007. ALVAREZ, A.; ALARCÓN, R.; OPAZO, C.; CAMPOS, E.O.; MUÑOZ, F.J.; CALDERÓN, F.H.; DAJAS, F.; GENTRY, M.K.; DOCTOR, B.P.; DE MELLO, F.G.; INESTROSA, N.C. Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer's fibrils. J Neurosci. v.18, p. 3213-23, 1998. ALZHEIMER’S ASSOCIATION, Disponével em: <https://www.alz.org/brain_portuguese/09.asp>, acessado em Agosto de 2018. ANSAR, S.; BURLISON, J. A.; HADDEN, M. K.; MING, X.; KELLY, Y.; DESINO, E.; MICHAELIS, L. M.; BLAGG, B. S. J. A non-toxic Hsp90 inhibitor protects neurons from Ab-induced toxicity. Bioorg. Med. Chem. Lett. v. 17, p. 1984-1990, 2007 ANSLYN, E. V.;DOUGHERTY, D. A. Modern Physical Organic Chemistry. UCI books, 2006. Agência Nacional de Vigilância Sanitária. Disponível em: <https://consultas.anvisa.gov.br/#/medicamentos/q/?substancia=22353>. Acessado em Janeiro de 2018. ARAÚJO, C. R. M.; FILHO, C. A. L.; SANTOS, V. L. A.; MAIA, G. L. A.; GONSALVES, A. A. Desenvolvimento de fármacos por hibridação molecular: uma aula prática de química medicinal usando comprimidos de paracetamol e sulfadiazina e a ferramenta virtual. Quim. Nova, V. 38, N. 6, p. 868-873, 2015. 94 AUGUSTINE, J. K.; BOMBRUN, A.; RAMAPPA, B.; BOODAPPA, C. An efficient one-pot synthesis of coumarins mediated by propylphosphonic anhydride (T3P) via the Perkin condensation. Tetrahedron Lett., v.53 p.4422–4425, 2012. BARREIRO, E. J.; FRAGA, C. A. M.; MIRANDA, A. L. P.; RODRIGUES, C. R. A química medicinal de n-acilidrazonas: novos compostos-protótipos de fármacos analgésicos, antiinflamatórios e anti-trombóticos. Quim. Nova, v. 25, N. 1, p. 129-148, 2002. BASA P. N., A. BHOWMICK, L. M. HORN, A. G. Sykes, Zinc(II) Mediated ImineEnamine Tautomerization, Org. Lett., v. 14 p. 2698-2701, 2012. BLENNOW, K.; DE LEON, M. J.; ZETTERBERG, H. Alzheimer's disease. Lancet, v. 368, p. 387-403, 2006. BIOQUI, Disponível em <http://arquivobioqui.blogspot.com/2015/11/sintese-e-reciclagem-da-acetilcolina-na.html>, acessado em Agosto de 2018. BULUT, M.; ERK, C. Improved Synthesis of Some Hydroxycoumarins. Dyes Pigments. v. 30, p. 99-104, 1996. CASAS, J. S.; GARCIA-TASENDE, M. S.; SORDO, J. Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coord. Chem. Rev., v. 209, p. 197-261, 2000. CAREY, F. A; SUNDBERG, R. J. Advanced Organic Chemistry Part A: Structure and Mechanisms 2008. CHEIGNON, C.; TOMAS, M., BONNEFONT-ROUSSELOT, D.; FALLER, P.; HUREAU, C.; COLLIN, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s Disease. Redox Biol., 2017. CITRON M. Alzheimer's disease: strategies for disease modification. Nat. Ver. Drug Disc., v. 9, p. 387-98, 2010. 95 COSTA, P.; PILLI, R.; PINHEIRO, S.; VASCONCELLOS, M. Substâncias carboniladas e derivados 1ª ed., p.412, Porto Alegre: Artmed, 2003. CUNHA, S.; IUNESA, C. E. M.; OLIVEIRA, C. C.; SANTANA, L. L. B. Síntese de ácidos cumarino-3-carboxílicos e sua aplicação na síntese total da aiapina, cumarina e umbeliferona. Quim. Nova, V. 38, N. 8, p. 1125-1131, 2015. DEWICK, P. M. Medicinal natural products: a biosynthetic approach. Second edition. Jhon Wiley & Sons (2002). DOUGLAS, C. J. Phenylpropananoid metabolism and lignin biosyntesis: from weeds to trees. E. Science, v. 1(6), p. 171-177, 1996. ESTRADA, L. D., SOTO C. Disrupting beta-amyloid aggregation for Alzheimer disease treatment. Curr. Top. Med. Chem., v.7(1), p. 115-26, 2007. EVANS, C. G.; WISÉN S.; GESTWICKI J. E. Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1-42) aggregation in vitro. J. Biol. Chem.. v. 281(44), p. 33182-91, 2006. DOU, F.; NETZER, W. J.; TANEMURA, K.; LI, F.; HARTL, F. U.; TAKASHIMA, A.; GOURAS, G. K., GREENGARD, P.; XU H. Chaperones increase association of tau protein with microtubules. PNAS, v. 100 (2), p. 721-726, 2003. DU, L. P.; ZHANG, G. L.; MEI, D. Clinical evaluation and rational use of coumarin anticoagulants. Eval Anal Drug-use Hosp China, v. 8, p. 576-579, 2008. EATON, D. F. Reference materials for fluorescence measurement. Pure & Appl. Chem., v. 60, p. 1107-1114, 1988. FALCO, A. D.; CUKIERMAN, D. S.; HAUSER-DAVIS, R. A.; REY, N. A. Alzheimer's disease: etiological hypotheses and treatment perspectives. Quim. Nova, v. 39(1), p. 63-80, 2016. 96 FALLER P.; HUREAU C.; LA PENNA G. Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles. Acc. Chem. Res., v. 47(8), p. 2252-2259, 2014. FANG, X.; LI, H.; ZHAO, G.; FANG, X.; XU, J.; YANG, W. Blue fluorescent protein analogs as chemosensors for Zn2+. Biosens. Bioelectron, v. 42, p. 308-313, 2013. Food and Drugs Administration. Disponível em: <https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process> Acessado em: 04/01/2018. FERRI, C. P.; PRINCE, M.; BRAYNE, C.; BRODATY, H.; FRATIGLIONI, L.; GANGULI, M.; HALL, K.; HASEGAWA, K.; HENDRIE, H.; HUANG, Y.; JORM, A.; MATHERS, C.; MENEZES, P. R., RIMMER, E.; SCAZUFCA, M. Global prevalence of dementia: a Delphi consensus study. Lancet., v. 366(9503), p. 2112-2117, 2005. FERRARI, M. B.; BONARDI, A.; FAVA, G. G.; PELIZZI, C.; TARASCONI, P. Synthesis, spectroscopic and structural characterization of methyl pyruvate- and pyridoxal-hydrazinopyruvoylthiosemicarbazones Inorg. Chim. Acta, v. 223, p. 77-86, 1994. FONSECA, A.; REIS, J.; SILVA, T.; MATOS, M. J.; BAGETTA, D.; ORTUSO, F.; ALCARO, S.; URIARTE, E.; BORGES, F. Coumarin versus Chromone Monoamine Oxidase B Inhibitors: Quo Vadis?. J. Med. Chem.. v. 60, p. 7206-7212, 2017. FOSSEY, J.; LOUPY, A.; STRZELECKA, H. An ab initio study of protonation and alkylation of aminopyridine. Tetrahedron, v. 37, n. 10, p. 1935-1941, 1981. FRÈRE, S.; THIÉRY, V.; BESSON, T. Microwave acceleration of the Pechmann reaction on graphite/montmorillonite K10: application to the preparation of 4-substituted 7-aminocoumarins. Tetrahedron Lett., v. 42, p. 2791-2794, 2001. GILBERT, A.; BAGGOTT, J. In Essentials of Molecular Photochemistry, Blackwell Scientific Publications, Oxford 1991. 97 GOLDBERG, J. M.; S. BATJARGAL; B. S. CHEN; E. J. PETERSSON. Thioamide Quenching of Fluorescent Probes through Photoinduced Electron Transfer: Mechanistic Studies and Applications, J. Am. Chem. Soc., v. 135, p. 18651-18658, 2013. GOLDBERG, J. M.; S. BATJARGAL; E. J. PETERSSON. Thioamides as Fluorescence Quenching Probes: Minimalist Chromophores To Monitor Protein Dynamics., J. Am. Chem. Soc. v. 132, p. 14718-14720, 2010. GONG, Y.; CHANG, L.; VIOLA, K. L.; LACOR, P. N.; LAMBERT, M. P.; FINCH, C. E., KRAFFT, G. A., KLEIN, W. L. Alzheimer's disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA. v. 100(18), p. 10417-10422, 2003. HARDY, J. A.; HIGGINS, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science, v. 256(5054), p. 184-185, 1992. HARTMANN, J.; KIEWERT, C.; DUYSEN, E. G.; LOCKRIDGE, O.; GREIG, N. H.; KLEIN, J. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J. Neurochem. V. 100(5), p. 1421-1429, 2007. HAMULAKOVA, S.; JANOVEC, L.; HRABINOVA, M.; SPILOVSKA, K.; KORABECNY, J.; KRISTIAN, P.; KUCA, K.; IMRICH, J. Synthesis and Biological Evaluation of Novel Tacrine Derivatives and Tacrine−Coumarin Hybrids as Cholinesterase Inhibitors. J. Med. Chem., v. 57, p. 7073−7084, 2014. HAN, X.; HE, G. Toward a Rational Design to Regulate β-Amyloid Fibrillation for Alzheimer's Disease Treatment. ACS Chem Neurosci. v. 9(2), p. 198-210, 2018. HARGREAVES, R. J. "It ain't over 'til it's over"a-the search for treatments and cures for Alzheimer's disease. ACS Med Chem Lett., v. 3, p. 862-866, 2012. HELAL, A.; RASHID, M. H. O.; CHOI, C. H.; KIM, H. S. Chromogenic and fluogenic sensing of Cu2+ based on coumarin. Tetrahedron, v. 67, p. 2794-2802, 2011. 98 HENS, A.; MAITY, A,; RAJAK, K. K. N, N coordinating schiff base ligand acting as a fluorescence sensor for zinc(II) and colorimetric sensor for copper(II), and zinc(II) in mixed aqueous media. Inorg. Chim. Acta, v. 423, p. 408-420, 2014. HOU, J. T.; LIU, B. Y.; LI, K.; YU, K. K.; WU, M. B.; YU, X. Q. Two birds with one stone: Multifunctional and highly selective fluorescent probe for distinguishing Zn2+ from Cd2+ and selective recognition of sulfide anion. Talanta, v. 116, p. 434-440, 2013. HOULT, J. R. S.; PAYÁ, M. Pharmacological and Biochemical Actions of Simple Coumarins: Natural Products with Therapeutic Potential. General Pharmacology, v. 27, n. 4, p. 713-722, 1996. IARC. Globocam:Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. Disponível em < http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx> Acessado em abril de 2018. JAGUAR, version 8.7, Schrödinger, LLC, New York, NY, 2015. JALAL, S.; CHAND, K.; KATHURIA, A.; et al. Calreticulin transacetylase: a novel enzyme-mediated protein acetylation by acetoxy derivatives of 3-alkyl-4-methylcoumarins. Bioorg. Chem., v. 40, p. 131-136, 2012. JOUBERT, J.; FOKA, G. B.; REPSOLD, B. P.; OLIVER, D. W.; KAPP, E.; MALAN, S. F. Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer's disease. Eur. J. Med. Chem., v. 125, p. 853-864, 2017. KAMINSKI, J. J.; et al. Antiulcer agents. 1. Gastric antisecretory and cytoprotective properties of substituted imidazo[1,2-a]pyridines. J. Med. Chem., v. 28, n. 7, p. 876-892, 1985. 99 KEPP, K. P. Bioinorganic chemistry of Alzheimer's disease. Chem. Rev., v. 112(10), p. 5193-239, 2012. KESKIN, O.; GURSOY, A.; MA, B.; NUSSINOV, R. Principles of protein-protein interactions: what are the preferred ways for proteins to interact?. Chem. Rev., v. 108(4), p. 1225-1244, 2008. KHANACADEMY, Disponível em: <https://pt.khanacademy.org/science/physics/light-waves/introduction-to-light-waves/a/light-and-the-electromagnetic-spectrum>, acessado em Novembro de 2017. KOSTOVA, I.. Synthetic and Natural Coumarins as Antioxidants. Mini-Rev. Med. Chem., v6, p. 365-374, 2006. KRAEPELIN E. Psychiatrie. Ein Lehrbuch für Studierende und Ärzte II. Ed. Band Barth Verlag, Leipzig, 1910. KUMMERLE, A. E.; RAIMUNDO, J. M.; LEAL, C. M.; SILVA, G. S.; BALLIANO, T. L.; PEREIRA, M. A.; DE SIMONE, C. A.; SUDO, R. T.; ZAPATA-SUDO G.; FRAGA C. A. M.; BARREIRO, E. J. Studies towards the identification of putative bioactive conformation of potent vasodilator arylidene N-acylhydrazone derivatives. Eur. J. Med. Chem., v. 44, p. 4004-4009, 2009. KUPLICH, M. D. Síntese de novos heterociclos benzazólicos fluorescentes e sua incorporação em matrizes de celulose. Dissertaçao, UFGRS 2007. KUSUMA, B. R.; PETERSON, L. B.; ZHAO, H. P.; VIELHAUER, G.; HOLZBEIERLEIN, J.; BLAGG, B. S. J. Targeting the heat shock protein 90 dimer with dimeric inhibitors. J. Med. Chem., v. 54, p. 6234-53, 2011. LAI, G.; ANDERSON, W. K. A simplified procedure for the efficient conversion of aromatic aldehydes into esters. Synth. Commun., v. 27, n. 7, p. 1281-1283, 1997. 100 LAU, L.F.; SCHACHTER, J. B.; SEYMOUR, P. A.; SANNER, M. A. Tau protein phosphorylation as a therapeutic target in Alzheimer's disease. Curr. Top. Med. Chem., v. 2(4), p. 395-415, 2002. LAKOWICZ, J. R. In Principles of Fluorescence Spectroscopy, 2ª ed., Kluwer Academic/Plenum Publishers, New York 1999. LAN, J. S.; DING, Y.; LIU, Y.; KAN, P.; HOU, J. W.; ZHANG, X.Y.; XIE, S.S.; ZHANG, T. Design, synthesis and biological evaluation of novel coumarin-N-benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., v. 139, p. 48-59, 2017. LAUFER, M.C.; HAUSMANN, H.; HÖLDERICH, W.F. Synthesis of 7-hydroxycoumarins by Pechmann reaction using Nafion resin/silica nanocomposites as catalysts. J. Catal., v. 218, p. 315-320, 2003. LEE, S. J.; NAM, E.; LEE, H. J., SAVELIEFF, M. G.; LIM, M. H. Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors. Chem. Soc. Rev.. v. 46(2), p. 310-323, 2017. LEONETTI, F.; CATTO, M.; NICOLOTTI, O.; ET AL. Homo- and hetero-bivalent edrophonium-like ammonium salts as highly potent, dual binding site AChE inhibitors. Bioorg. Med. Chem., v. 16, p. 7450-7456, 2008. LEVY, E.; CARMAN, M. D.; FERNANDEZ-MADRID, I. J.; POWER, M. D.; LIEBERBURG, I.; VAN DUINEN, S. G.; FRANGIONE, B. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science, v. 248(4959), p. 1124-1126, 1990. LIMA, P. C.; et al. Synthesis and analgesic activity of novel N-acylarylhydrazones and isosters, derived from natural safrole. Eur. J. Med. Chem., v. 35, n. 2, p. 187-203, 2000. LOPES, A. B.; MIGUEZ E.; KUMMERLE A. E.; RUMJANEK, V. M.; FRAGA, C. A. M.; BARREIRO E. J., Characterization of Amide Bond Conformers for a Novel Heterocyclic Template of N-acylhydrazone Derivatives. Molecules, v. 18, p. 11683–11704, 2013. 101 MA, K.; THOMASON, L. A. M.; MCLAURIN J. Scyllo-inositol, preclinical, and clinical data for Alzheimer's disease. Adv. Pharmacol., v. 64, p. 177-212, 2012. MAGGI, R.; BIGI, F.; CARLONI, S.; MAZZACANI, A.; SARTORI, G. Uncatalysed reactions in water: Part 2. Preparation of 3-carboxycoumarins. Green Chem., v. 3, p. 173-174, 2001. MARCU, M. G.; SCHULTE, T. W.; NECKERS, L. Novobiocin and Related Coumarins and Depletion of Heat Shock Protein 90-Dependent Signaling Proteins. J. Natl Cancer Inst.. v. 92, p. 242-248, 2000. MARUYAMA, T.; OTAGIRI, M.; SCHULMAN, S. G.. Binding characteristics of coumarin anticoagulants to human α1 acid glycoprotein and human serum albumin. Intl. J. Pharm., v. 59, p. 137-143, 1990. MASON, J. M.; KOKKONI, N., STOTT, K., DOIG, A. J. Design strategies for anti-amyloid agents. Curr. Opin. Struct. Biol., v. 13(4), p. 526-32, 2003. MEDINA, F. G.; MARRERO, J. G.; MACÍAS-ALONSO M.; GONZALES, M. C.; CÓRDOVA-GUERRERO, I.; GARCIA, A. G. T.; OSEGUEDA-ROBLES, S. Coumarin heretocyclic derivative: chemical synthesis and biological activity. Nat. Prod. Rep., v. 32, p. 1472-1507. 2015. MELO, J. S. S.; BECKER, R. S.; MACANITA, A. L. J. Photophysical Behavior of Coumarins as a Function of Substitution and Solvent: Experimental Evidence for the Existence of a Lowest Lying 1(n,.pi.*) State. Phys. Chem., v. 98(24), p. 6054-6058, 1994. MONTANARI, S.; BARTOLINI, M.; NEVIANI, P.; BELLUTI, F.; GOBBI, S.; PRUCCOLI, L.; TAROZZI, A.; FALCHI, F.; ANDRISANO, V.; MISZTA, P.; CAVALLI, A. Multitarget Strategy to Address Alzheimer's Disease: Design, Synthesis, Biological Evaluation, and Computational Studies of Coumarin‐Based Derivatives. Chem. Med. Chem., v. 11(12), p. 1296-1308, 2016. MURRAY, R. D .H. Coumarins. Nat. Prod. Rep., v. 12, p. 477-505, 1995. NALIVAEVA, N. N.; TURNER, A. J. The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett., v. 587(13), p. 2046-2054, 2013. 102 NASCIMENTO-JUNIOR, N. M.; KUMMERLE, A. E.; BARREIRO, E. J.; FRAGA, C. A. M. Molecules, v. 16, p. 9274–9297, 2011. OMS, Disponível em: <http://www.who.int/es/news-room/fact-sheets/detail/dementia>, acessado em Agosto de 2018. OMS, Disponível em: <http://www.who.int/mediacentre/factsheets/fs362/es/>, acessado em novembro de 2017. OMURA, K. Oxidation of phenols with iodine in alkaline methanol. J. Org. Chem., v. 49, n. 17, p. 3046-3050, 1984. OKAMOTO, I.; NABETA, M.; YAMAMOTO, M.; MIKAMI, M.; TAKEYA, T.; TAMURA, O. Solvent-dependent conformational switching of the aromatic N-methyl amides depending upon the acceptor properties of solvents. Tetrahedron Lett., v. 47, p. 7143–7146, 2006. PALLA, G.; PREDIERI, G.; DOMIANO, P. Conformational behaviour and E/Z isomerization of N-acyl and N-aroylhydrazones. Tetrahedron, v. 42, p. 3649–3654, 1986. PARK, G. J.; LEE, M. M.; YOU, G. R.; CHOI, Y. W.; KIM, C. A turn-on and reversible fluorescence sensor with high affinity to Zn2+ in aqueous solution. Tetrahedron Lett., v. 55, p. 2517-2522, 2014. PAVIA, D. L.; LAMPMAN, G. M.; KRIZ, G. S.; VYVYAN, J. R. Introdução à Espectroscopia. 4ª edição. PENG, X. M.; DAMU, G. L. V.; ZHOU, C. Current Developments of Coumarin Compounds in Medicinal Chemistry. Curr. Pharm. Design, v. 19, p. 3884-3930, 2013. PEREIRA, T. M.; VITÓRIO, F.; AMARAL, R. C.; ZANONI, K. P. S.; IHA, N. Y. M.; KUMMERLE, A. E. Microwave-assisted synthesis and photophysical studies of novel fluorescent N-acylhydrazone and semicarbazone-7-OH-coumarin dyes. New J. Chem., v.40, p. 8846-8854, 2016. 103 PEREIRA, T. M.; FRANCO, D. P.; VITÓRIO, F.; KUMMERLE, A. E. Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years. Curr. Top. Med. Chem., v. 18, p. 124-148, 2018. PEREIRA, T. M.; FRANCO, D. P.; VITÓRIO, F.; AMARAL, R. C.; PONZONI, APARECIDA; KUMMERLE, A. E. Microwave-assisted synthesis and pka determination of umbelliferone: an experiment for the undergraduate organic chemistry laboratory. Quim. nova, 2018. QUATTROPANI, A.; DORBAIS, J.; COVINI, D.; PITTET, P.-A.; COLOVRAY, V.; THOMAS, R.J.; COXHEAD, R.; HALAZY, S.; SCHEER, A.; MISSOTTEN, M.; et al. Discovery and development of a new class of potent, selective, orally active oxytocin receptor antagonists. J. Med. Chem., v. 48, p. 7882–7905, 2005. QU, L.; YIN, C.; HUO, F.; CHAO, J.; ZHANG, Y.; CHENG, F. A pyridoxal-based dual chemosensor for visual detection of copper ion and ratiometric fluorescent detection of zinc ion Sens. Actuators, B, v. 191, p. 158-164, 2014. QUINN, D. M. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev., v. 87(5), p. 955–979, 1987. RANG, H. P.; DALE, M. M.; RITTER, J. M.; GARDNER, P. Farmacologia, 7ª Ed., Elsevier, 2012. REINKE, A. A.; GESTWICKI, J. E. Structure-activity relationships of amyloid beta-aggregation inhibitors based on curcumin: influence of linker length and flexibility. Chem. Biol. Drug Des. v. 70(3), p. 206-215, 2007. RIBEIRO, C. V. C.; KAPLAN, M. A. C. Tendências evolutivas de Famílias Produtoras de Cumarinas em Angiospermae. Quím. Nova, v. 25, n. 4, p. 533-538, 2002. RIBEIRO, I. G.; et al. Synthesis and antinociceptive properties of new structurally planned imidazo[1,2-a]pyridine 3-acylarylhydrazone derivatives. Eur. J. Med. Chem., v. 33, n. 3, p. 225-235, 1998. 104 ROUESSAC, F.; LECLERC, A. An Efficient Synthesis of Isofraxidin. Synt. Commun., v. 23, p. 1147-1153, 1993. ROBERT, A.; LIU, Y.; NGUYEN, M., MEUNIER, B. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease. Acc. Chem. Res., v. 48(5), p. 1332-1339, 2015. SAIDO, T.; LEISSRING, M. A. Proteolytic degradation of amyloid β-protein. Cold Spring Harbor Perspect. Med., v. 2(6):a006379, 2012. SALEEM, M.; LEE, K. H. Optical Sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv., v. 5, p. 72150-72287, 2015. SÁNCHEZ, C. G.; CASILDA, V. C.; MAYORAL, E. P.; ARANDA, R. M. M.; PEINADO, A. J. L.; BEJBLOVÁ, M.; CEJKA, J. Coumarins Preparation by Pechmann Reaction Under Ultrasound Irradiation. Synthesis of Hymecromone as Insecticide. Intermediate Catal. Lett., v. 128, p. 318–322, 2009. SANDHU, S.; BANSAL, Y.; SILAKARI, O.; BANSAL, G. Coumarin Hybrids as Novel Therapeutic Agents. Bioog. Med. Chem., v. 22, p. 3806-3814, 2014. SAVELIEFF, M. G.; LEE, S.; LIU, Y.; LIM, M. H. Untangling amyloid-β, tau, and metals in Alzheimer's disease. ACS Chem. Biol. v. 8(5), p. 856-65, 2013. SCIO, E. Coumarins isolated from Kielmeyera genus (Clusiaceae). Bras. Farm., v. 85(1), p. 27-31, 2004. SOLOMONS, T. W. G.; FRYHLE, C. B. Química Orgânica. v. 2, 2008. SOUMYA, T. V.; THASNIM, P.; BAHULAYAN, D. Step-economic and cost effective synthesis of coumarin based blue emitting fluorescent dyes. Tetrahedron Lett., v. 55, p. 4643–4647, 2014. 105 SOUZA, L. G.; RENNÓ, M. N.; FIGUEROA-VILLAR, J. D. Coumarins as cholinesterase inhibitors: a review. Chem. Biol. Interact. v. 254, p. 11-23, 2016. SOTO-ORTEGA, D. D , MURPHY, B. P., GONZALEZ-VELASQUEZ, F. J., et al. Inhibition of amyloid- aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center. Bioorg. Med. Chem., v. 19, p. 2596-602, 2011. SMAKULA HAND, E.; PAUDLER, W. W. Mechanism of the reaction of 2-haloketones with 2-aminopyridine. Tetrahedron, v. 38, n. 1, p. 49-55, 1982. STADERINI, M. ; AULIC, S. ; BARTOLINI, M.; TRAN, H. N. ; GONZALEZ-RUIZ, V.; PEREZ, D. ; CABEZAS, N. ; MARTINEZ, A. ; MARTIN, M. A. ; ANDRISANO, V. ; LEGNAME, G.; MENENDEZ, J. C.; BOLOGNESI, M. L. ACS Med. Chem. Lett., v. 4, p. 225-229, 2013. SRIVASTAVA, J.; BARBER, D. L.; JACOBSON, M. P. Intracellular pH Sensors: Design Principles and Functional Significance. PHYSIOLOGY, v. 22, p. 30–39, 2007. SYMEONIDIS, T.; CHAMILOS, M.; LITINA, D. J. H.; KALLITSAKIS, M.; LITINAS, K. E. Synthesis of hydroxycoumarins and hydroxybenzo[f]- or [h]coumarins as lipid peroxidation inhibitors. Bioorg. Med. Chem. Lett., v. 19, p. 1139–1142, 2009. TERRY, A. V. JR.; BUCCAFUSCO, J. J. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol Exp. Ther., v. 306(3), p. 821-827, 2003. TENÓRIO, R. P.; GÓES, A. J. S.; DE LIMA, J. G.; DE FARIA, A. R.; ALVES, A. J.; DE AQUINO, T. M.. Tiossemicarbazonas: métodos de obtenção, aplicações sintéticas e importância biológica. Quím. Nova, v. 28, n. 6, 2005. TÔUGU, V.; TIIMANN, A.; PALUMAA, P. Interactions of Zn(II) and Cu(II) ions with Alzheimer’s amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics, v. 3, p. 250–261, 2011. 106 TOROK, B.; DASGUPTA, S., TOROK, M. Chemistry of small molecule inhibitors in self-assembly of Alzheimer's disease related amyloidbeta peptide. Curr. Bioact. Comp., v. 4, p. 159-74, 2008. TRKOVNIK, M.; IVEZI, Z. J. Syntheses of some new coumarin‐quinolone carboxylic acids. J. Heterocyclic Chem., v. 37, p. 137-141, 2000. TURRO, N. J. In Modern Molecular Photochemistry, University Science Books, USA 1991. TUTULEA-ANASTASIU, M. D.; Wilson, D.; Del Valle, M.; Schreiner, C. M., Cretescu, I. A solid-contact ion selective electrode for copper(II) using a succinimide derivative as ionophore. Sensors. v. 13, p. 4367–4377, 2013. VITORIO, F.; PEREIRA, T. M.; CASTRO, R. N.; GUEDES, G. P.; GRAEBIN, C. S.; KUMMERLE, A. E. Synthesis and mechanism of novel fluorescent coumarin–dihydropyrimidinone dyads obtained by the Biginelli multicomponent reaction. New J. Chem., v. 39, p. 2323–2332, 2015. WANG, H.; LU, X. M.; YAO, H.; FENG, J. K.; LIU, R. J. Research progress on application of coumarin and its derivatives. Chem. Ind. Times, v. 23, p. 40-43, 2009. WHITESELL, L.; LINDQUIST, S. L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer. v. 5(10), p. 761-772, 2005. WHO. Cancer: Factsheets. Disponível em <http://www.who.int/mediacentre/factsheets/fs297/en/> Acesso em: 04 de abril de 2015. WU, J. S.; LIU, W. M.; ZHUANG, X. Q.; WANG, F.; WANG, P. F.; TAO, S. L.; ZHANG, X. H.; WU, S. K.; LEE, S. T. Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on C=N isomerization. Org. Lett., v. 9(1), p. 33-36, 2007. 107 WU, J.; SHENG, R.; LIU, W.; WANG, P.; ZHANG, H.; MA, J. Fluorescent sensors based on controllable conformational change for discrimination of Zn2+ over Cd2+. Tetrahedron, v. 68, p. 5458-5463, 2012. XIE, S. S.; WANG, X.; JIANG, N.; YU, W.; WANG, K.D.G.; LAN, J.S.; LI, Z.R.; KONG, L.Y. Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibitor proprerties against Alzheimer’s disease. Eur. J. Med. Chem., v. 95, p. 153-165, 2015. XU, H.; MIAO, R.; FANG, Z.; ZHONG, X. Quantum dot-based “turn-on” fluorescent probe for detection of zinc and cadmium ions in aqueous media. Anal. Chim. Acta., v. 687, p. 82-88, 2011. YAMADA, S.; MORIZONO, D.; YAMAMOTO, K. Mild oxidation of aldehydes to the corresponding carboxylic acids and esters: alkaline iodine oxidation revisited. Tetrahedron Lett., v. 33, n. 30, p. 4329-4332, 1992. You, Q. H.; Lee, A. W. M.; Chan, W. H.; Zhu, X. M.; Leung, K. C. F. A coumarin-based fluorescent probe for recognition of Cu2+ and fast detection of histidine in hard-to transfect cells by a sensing ensemble approach. Chem. Commun., v. 50, p. 6207-6210, 2014 ZHANG, G.; LI, Y.; XU, J.; ZHANG, C.; SHUANG, S.; DONG, C.; CHOI, M. M. F. Glutathione-protected fluorescent gold nanoclusters for sensitive and selective detection of Cu2+. Sens. Actuators, B, v. 183, p. 583-588, 2013. ZHANG, S. Y.; FU, D. J.; SUN, H. H.; YUE, X. X.; LIU, Y. C.; ZHANG, Y. B.; LIU, H. M. Synthesis and bioactivity of novel coumarin derivatives. Chem. Het. Comp., v. 52, p. 374–378, 2016. ZHAO, H.; DONNELLY, A. C.; KUSUMA, B. R.; BRANDT, G. E. L.; BROWN, D.; RAJEWSKI, R. A.; VIELHAUER, G.; HOLZBEIERLEIN, J.; COHEN, M. S.; BLAGG, B. S. J. Engineering an Antibiotic to Fight Cancer: Optimization of the Novobiocin Scaffold to Produce Anti-proliferative Agents. J. Med. Chem., v. 54, p. 3839-3853, 2011. ZHOU, X.; WANG, X. B.; WANG, T.; KONG, L. Y. Design, synthesis, and acetylcholinesterase inhibitory activity of novel coumarin analogs. Bioorg. Med. Chem., v. 16, p. 8011-8021, 2008.https://tede.ufrrj.br/retrieve/70227/2018%20-%20Thiago%20Moreira%20Pereira.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5863Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-08-11T13:20:44Z No. of bitstreams: 1 2018 - Thiago Moreira Pereira.pdf: 7071102 bytes, checksum: ef85206003f3bd7048fbc9f5c5e8ca6c (MD5)Made available in DSpace on 2022-08-11T13:20:44Z (GMT). No. of bitstreams: 1 2018 - Thiago Moreira Pereira.pdf: 7071102 bytes, checksum: ef85206003f3bd7048fbc9f5c5e8ca6c (MD5) Previous issue date: 2018-09-20info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2018 - Thiago Moreira Pereira.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14703/1/2018%20-%20Thiago%20Moreira%20Pereira.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2018 - Thiago Moreira Pereira.pdf.txtExtracted Texttext/plain211131https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14703/2/2018%20-%20Thiago%20Moreira%20Pereira.pdf.txtec33881f145d4446a54d5ea44c825d9cMD52ORIGINAL2018 - Thiago Moreira Pereira.pdf2018 - Thiago Moreira Pereiraapplication/pdf7071102https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14703/3/2018%20-%20Thiago%20Moreira%20Pereira.pdfef85206003f3bd7048fbc9f5c5e8ca6cMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14703/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/147032023-12-22 00:04:43.982oai:rima.ufrrj.br:20.500.14407/14703Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T03:04:43Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Síntese e avaliação farmacológica de novos derivados cumarínicos híbridos planejados como protótipos de teranósticos para a doença de Alzheimer |
dc.title.alternative.eng.fl_str_mv |
Synthesis and pharmacological evaluation of novel hybrid coumarin derivatives designed as prototype theranostics for Alzheimer's disease |
title |
Síntese e avaliação farmacológica de novos derivados cumarínicos híbridos planejados como protótipos de teranósticos para a doença de Alzheimer |
spellingShingle |
Síntese e avaliação farmacológica de novos derivados cumarínicos híbridos planejados como protótipos de teranósticos para a doença de Alzheimer Pereira, Thiago Moreira Cumarina Fluorescência Fibridação Coumarin fluorescence hybridization Química |
title_short |
Síntese e avaliação farmacológica de novos derivados cumarínicos híbridos planejados como protótipos de teranósticos para a doença de Alzheimer |
title_full |
Síntese e avaliação farmacológica de novos derivados cumarínicos híbridos planejados como protótipos de teranósticos para a doença de Alzheimer |
title_fullStr |
Síntese e avaliação farmacológica de novos derivados cumarínicos híbridos planejados como protótipos de teranósticos para a doença de Alzheimer |
title_full_unstemmed |
Síntese e avaliação farmacológica de novos derivados cumarínicos híbridos planejados como protótipos de teranósticos para a doença de Alzheimer |
title_sort |
Síntese e avaliação farmacológica de novos derivados cumarínicos híbridos planejados como protótipos de teranósticos para a doença de Alzheimer |
author |
Pereira, Thiago Moreira |
author_facet |
Pereira, Thiago Moreira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Pereira, Thiago Moreira |
dc.contributor.advisor1.fl_str_mv |
Kümmerle, Arthur Eugen |
dc.contributor.advisor1ID.fl_str_mv |
053.978.487-78 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5598000938584486 |
dc.contributor.advisor-co1.fl_str_mv |
Miranda, Fabio da Silva |
dc.contributor.advisor-co1ID.fl_str_mv |
022,548.829-96 https://orcid.org/0000-0001-9977-242X |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/3013640058442152 |
dc.contributor.referee1.fl_str_mv |
Kümmerle, Arthur Eugen |
dc.contributor.referee1ID.fl_str_mv |
053.978.487-78 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/5598000938584486 |
dc.contributor.referee2.fl_str_mv |
Silva, Fernando de Carvalho da |
dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000-0002-2042-3778 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/7183643963574044 |
dc.contributor.referee3.fl_str_mv |
Lima, Marco Edilson Freire de |
dc.contributor.referee3ID.fl_str_mv |
https://orcid.org/0000-0003-0563-3483 |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/8392420706762318 |
dc.contributor.authorID.fl_str_mv |
131.857.337-89 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1336112925411652 |
contributor_str_mv |
Kümmerle, Arthur Eugen Miranda, Fabio da Silva Kümmerle, Arthur Eugen Silva, Fernando de Carvalho da Lima, Marco Edilson Freire de |
dc.subject.eng.fl_str_mv |
Cumarina Fluorescência Fibridação Coumarin fluorescence hybridization |
topic |
Cumarina Fluorescência Fibridação Coumarin fluorescence hybridization Química |
dc.subject.cnpq.fl_str_mv |
Química |
description |
A doença de Alzheimer (DA) é uma doença neurodegenerativa muito comum, sendo considerada a forma mais comum de demência. Dados da ONU indicam que devido ao aumento previsto da expectativa de vida da população mundial, o aumento do número de pessoas com demência crescerá, atingindo 82 milhões em 2030 e 152 milhões em 2050, portanto a DA é considerada um problema de saúde pública importante. O conhecimento dos distúrbios tem levado ao desenvolvimento de fármacos com efeitos sintomáticos, os inibidores de colinesterases, aprovados em muitos países. Porém estes fármacos atuam apenas no estado comportamental e avanços da pesquisa na patogênese de DA também têm levado a protótipos potenciais modificadores da doença, como os complexantes de metais, que se encontram em fase clínica. Outra abordagem crescente para a DA são os compostos teranósticos, que conciliam propriedades terapêuticas e diagnósticas, se apresentando em um único agente, com o objetivo de otimizar a eficácia da terapêutica medicamentosa. Dentro do universo de compostos que possam atuar como sensores para diagnóstico, as cumarinas se mostram um excelente protótipo de teranóstico devido às propriedades de luminescência e ao grande número de atividades farmacológicas com viés de tratamento para a DA. Neste contexto o objetivo deste trabalho compreendeu o planejamento de cumarinas fluorescentes híbridas, que possuíssem potencial aplicação como teranósticos para DA através da inibição da AChE e complexação a metais. Duas séries de cumarinas foram sintetizadas e caracterizadas. A primeira série de compostos (CCM), visando a avaliação das propriedades de fluorescência e de complexação das cumarinas propostas, foi sintetizada por dois protocolos de síntese distintos: um térmico e outro por irradiação micro-ondas, que elevou os rendimentos e à redução de 23h no tempo reacional. Cinco compostos foram selecionados e sua caracterização fotofísica em metanol e água foi realizada, mostrando comportamentos diferenciados de acordo com a polaridade do meio. Adicionalmente, conforme o planejado, dois compostos mostraram a capacidade de atuar como sonda de Zn2+, sendo que o derividado de semicarbazona se mostrou útil como sonda de fluorescência também em meio aquoso. A segunda série (HM), planejada com a hibridação entre o farmacóforo para inibição da AChE (piperidina) e complexação ao Zn2+ (semicarbazida) foi sintetizada em 4 etapas reacionais, e os compostos híbridos apresentaram excelentes valores de atividade inibitória frente à AChE (12,94nM-128,28nM) bem próximos ao fármaco donepezil (6,55nM). Um dos híbridos ainda foi avaliado quanto a capacidade de complexar a Zn2+ em H2O/MeOH, validando a proposta deste trabalho de produzir híbridos moleculares que possam atuar como teranóstico para DA |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-09-20 |
dc.date.accessioned.fl_str_mv |
2023-12-22T03:04:43Z |
dc.date.available.fl_str_mv |
2023-12-22T03:04:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PEREIRA, Thiago Moreira. Síntese e avaliação farmacológica de novos derivados cumarínicos híbridos planejados como protótipos de teranósticos para a doença de Alzheimer. 2018. 140 f. Dissertação(Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/14703 |
identifier_str_mv |
PEREIRA, Thiago Moreira. Síntese e avaliação farmacológica de novos derivados cumarínicos híbridos planejados como protótipos de teranósticos para a doença de Alzheimer. 2018. 140 f. Dissertação(Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/14703 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
ABDELHAFEZ, O.M.; AMIN, K.M.; BATRAN, R.Z.; MAHER, T.J.; NADA, S.A.; SETHUMADHAVAN, H. Synthesis, anticoagulant and PIVKA-II induced by new 4-hydroxycoumarin derivatives. Bioorg. Med. Chem., v.18, p. 3371-3378, 2010. ALPAT, S. K.; ALPAT, S.; KUTLU, B.; OZBAYRAK O.; BUYUKISIK, H. B. Development of biosorption-based algal biosensor for Cu(II) using Tetraselmis chuii. Sens. Actuators, B, v. 128, p. 273-278, 2007. ALVAREZ, A.; ALARCÓN, R.; OPAZO, C.; CAMPOS, E.O.; MUÑOZ, F.J.; CALDERÓN, F.H.; DAJAS, F.; GENTRY, M.K.; DOCTOR, B.P.; DE MELLO, F.G.; INESTROSA, N.C. Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer's fibrils. J Neurosci. v.18, p. 3213-23, 1998. ALZHEIMER’S ASSOCIATION, Disponével em: <https://www.alz.org/brain_portuguese/09.asp>, acessado em Agosto de 2018. ANSAR, S.; BURLISON, J. A.; HADDEN, M. K.; MING, X.; KELLY, Y.; DESINO, E.; MICHAELIS, L. M.; BLAGG, B. S. J. A non-toxic Hsp90 inhibitor protects neurons from Ab-induced toxicity. Bioorg. Med. Chem. Lett. v. 17, p. 1984-1990, 2007 ANSLYN, E. V.;DOUGHERTY, D. A. Modern Physical Organic Chemistry. UCI books, 2006. Agência Nacional de Vigilância Sanitária. Disponível em: <https://consultas.anvisa.gov.br/#/medicamentos/q/?substancia=22353>. Acessado em Janeiro de 2018. ARAÚJO, C. R. M.; FILHO, C. A. L.; SANTOS, V. L. A.; MAIA, G. L. A.; GONSALVES, A. A. Desenvolvimento de fármacos por hibridação molecular: uma aula prática de química medicinal usando comprimidos de paracetamol e sulfadiazina e a ferramenta virtual. Quim. Nova, V. 38, N. 6, p. 868-873, 2015. 94 AUGUSTINE, J. K.; BOMBRUN, A.; RAMAPPA, B.; BOODAPPA, C. An efficient one-pot synthesis of coumarins mediated by propylphosphonic anhydride (T3P) via the Perkin condensation. Tetrahedron Lett., v.53 p.4422–4425, 2012. BARREIRO, E. J.; FRAGA, C. A. M.; MIRANDA, A. L. P.; RODRIGUES, C. R. A química medicinal de n-acilidrazonas: novos compostos-protótipos de fármacos analgésicos, antiinflamatórios e anti-trombóticos. Quim. Nova, v. 25, N. 1, p. 129-148, 2002. BASA P. N., A. BHOWMICK, L. M. HORN, A. G. Sykes, Zinc(II) Mediated ImineEnamine Tautomerization, Org. Lett., v. 14 p. 2698-2701, 2012. BLENNOW, K.; DE LEON, M. J.; ZETTERBERG, H. Alzheimer's disease. Lancet, v. 368, p. 387-403, 2006. BIOQUI, Disponível em <http://arquivobioqui.blogspot.com/2015/11/sintese-e-reciclagem-da-acetilcolina-na.html>, acessado em Agosto de 2018. BULUT, M.; ERK, C. Improved Synthesis of Some Hydroxycoumarins. Dyes Pigments. v. 30, p. 99-104, 1996. CASAS, J. S.; GARCIA-TASENDE, M. S.; SORDO, J. Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coord. Chem. Rev., v. 209, p. 197-261, 2000. CAREY, F. A; SUNDBERG, R. J. Advanced Organic Chemistry Part A: Structure and Mechanisms 2008. CHEIGNON, C.; TOMAS, M., BONNEFONT-ROUSSELOT, D.; FALLER, P.; HUREAU, C.; COLLIN, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s Disease. Redox Biol., 2017. CITRON M. Alzheimer's disease: strategies for disease modification. Nat. Ver. Drug Disc., v. 9, p. 387-98, 2010. 95 COSTA, P.; PILLI, R.; PINHEIRO, S.; VASCONCELLOS, M. Substâncias carboniladas e derivados 1ª ed., p.412, Porto Alegre: Artmed, 2003. CUNHA, S.; IUNESA, C. E. M.; OLIVEIRA, C. C.; SANTANA, L. L. B. Síntese de ácidos cumarino-3-carboxílicos e sua aplicação na síntese total da aiapina, cumarina e umbeliferona. Quim. Nova, V. 38, N. 8, p. 1125-1131, 2015. DEWICK, P. M. Medicinal natural products: a biosynthetic approach. Second edition. Jhon Wiley & Sons (2002). DOUGLAS, C. J. Phenylpropananoid metabolism and lignin biosyntesis: from weeds to trees. E. Science, v. 1(6), p. 171-177, 1996. ESTRADA, L. D., SOTO C. Disrupting beta-amyloid aggregation for Alzheimer disease treatment. Curr. Top. Med. Chem., v.7(1), p. 115-26, 2007. EVANS, C. G.; WISÉN S.; GESTWICKI J. E. Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1-42) aggregation in vitro. J. Biol. Chem.. v. 281(44), p. 33182-91, 2006. DOU, F.; NETZER, W. J.; TANEMURA, K.; LI, F.; HARTL, F. U.; TAKASHIMA, A.; GOURAS, G. K., GREENGARD, P.; XU H. Chaperones increase association of tau protein with microtubules. PNAS, v. 100 (2), p. 721-726, 2003. DU, L. P.; ZHANG, G. L.; MEI, D. Clinical evaluation and rational use of coumarin anticoagulants. Eval Anal Drug-use Hosp China, v. 8, p. 576-579, 2008. EATON, D. F. Reference materials for fluorescence measurement. Pure & Appl. Chem., v. 60, p. 1107-1114, 1988. FALCO, A. D.; CUKIERMAN, D. S.; HAUSER-DAVIS, R. A.; REY, N. A. Alzheimer's disease: etiological hypotheses and treatment perspectives. Quim. Nova, v. 39(1), p. 63-80, 2016. 96 FALLER P.; HUREAU C.; LA PENNA G. Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles. Acc. Chem. Res., v. 47(8), p. 2252-2259, 2014. FANG, X.; LI, H.; ZHAO, G.; FANG, X.; XU, J.; YANG, W. Blue fluorescent protein analogs as chemosensors for Zn2+. Biosens. Bioelectron, v. 42, p. 308-313, 2013. Food and Drugs Administration. Disponível em: <https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process> Acessado em: 04/01/2018. FERRI, C. P.; PRINCE, M.; BRAYNE, C.; BRODATY, H.; FRATIGLIONI, L.; GANGULI, M.; HALL, K.; HASEGAWA, K.; HENDRIE, H.; HUANG, Y.; JORM, A.; MATHERS, C.; MENEZES, P. R., RIMMER, E.; SCAZUFCA, M. Global prevalence of dementia: a Delphi consensus study. Lancet., v. 366(9503), p. 2112-2117, 2005. FERRARI, M. B.; BONARDI, A.; FAVA, G. G.; PELIZZI, C.; TARASCONI, P. Synthesis, spectroscopic and structural characterization of methyl pyruvate- and pyridoxal-hydrazinopyruvoylthiosemicarbazones Inorg. Chim. Acta, v. 223, p. 77-86, 1994. FONSECA, A.; REIS, J.; SILVA, T.; MATOS, M. J.; BAGETTA, D.; ORTUSO, F.; ALCARO, S.; URIARTE, E.; BORGES, F. Coumarin versus Chromone Monoamine Oxidase B Inhibitors: Quo Vadis?. J. Med. Chem.. v. 60, p. 7206-7212, 2017. FOSSEY, J.; LOUPY, A.; STRZELECKA, H. An ab initio study of protonation and alkylation of aminopyridine. Tetrahedron, v. 37, n. 10, p. 1935-1941, 1981. FRÈRE, S.; THIÉRY, V.; BESSON, T. Microwave acceleration of the Pechmann reaction on graphite/montmorillonite K10: application to the preparation of 4-substituted 7-aminocoumarins. Tetrahedron Lett., v. 42, p. 2791-2794, 2001. GILBERT, A.; BAGGOTT, J. In Essentials of Molecular Photochemistry, Blackwell Scientific Publications, Oxford 1991. 97 GOLDBERG, J. M.; S. BATJARGAL; B. S. CHEN; E. J. PETERSSON. Thioamide Quenching of Fluorescent Probes through Photoinduced Electron Transfer: Mechanistic Studies and Applications, J. Am. Chem. Soc., v. 135, p. 18651-18658, 2013. GOLDBERG, J. M.; S. BATJARGAL; E. J. PETERSSON. Thioamides as Fluorescence Quenching Probes: Minimalist Chromophores To Monitor Protein Dynamics., J. Am. Chem. Soc. v. 132, p. 14718-14720, 2010. GONG, Y.; CHANG, L.; VIOLA, K. L.; LACOR, P. N.; LAMBERT, M. P.; FINCH, C. E., KRAFFT, G. A., KLEIN, W. L. Alzheimer's disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA. v. 100(18), p. 10417-10422, 2003. HARDY, J. A.; HIGGINS, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science, v. 256(5054), p. 184-185, 1992. HARTMANN, J.; KIEWERT, C.; DUYSEN, E. G.; LOCKRIDGE, O.; GREIG, N. H.; KLEIN, J. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J. Neurochem. V. 100(5), p. 1421-1429, 2007. HAMULAKOVA, S.; JANOVEC, L.; HRABINOVA, M.; SPILOVSKA, K.; KORABECNY, J.; KRISTIAN, P.; KUCA, K.; IMRICH, J. Synthesis and Biological Evaluation of Novel Tacrine Derivatives and Tacrine−Coumarin Hybrids as Cholinesterase Inhibitors. J. Med. Chem., v. 57, p. 7073−7084, 2014. HAN, X.; HE, G. Toward a Rational Design to Regulate β-Amyloid Fibrillation for Alzheimer's Disease Treatment. ACS Chem Neurosci. v. 9(2), p. 198-210, 2018. HARGREAVES, R. J. "It ain't over 'til it's over"a-the search for treatments and cures for Alzheimer's disease. ACS Med Chem Lett., v. 3, p. 862-866, 2012. HELAL, A.; RASHID, M. H. O.; CHOI, C. H.; KIM, H. S. Chromogenic and fluogenic sensing of Cu2+ based on coumarin. Tetrahedron, v. 67, p. 2794-2802, 2011. 98 HENS, A.; MAITY, A,; RAJAK, K. K. N, N coordinating schiff base ligand acting as a fluorescence sensor for zinc(II) and colorimetric sensor for copper(II), and zinc(II) in mixed aqueous media. Inorg. Chim. Acta, v. 423, p. 408-420, 2014. HOU, J. T.; LIU, B. Y.; LI, K.; YU, K. K.; WU, M. B.; YU, X. Q. Two birds with one stone: Multifunctional and highly selective fluorescent probe for distinguishing Zn2+ from Cd2+ and selective recognition of sulfide anion. Talanta, v. 116, p. 434-440, 2013. HOULT, J. R. S.; PAYÁ, M. Pharmacological and Biochemical Actions of Simple Coumarins: Natural Products with Therapeutic Potential. General Pharmacology, v. 27, n. 4, p. 713-722, 1996. IARC. Globocam:Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. Disponível em < http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx> Acessado em abril de 2018. JAGUAR, version 8.7, Schrödinger, LLC, New York, NY, 2015. JALAL, S.; CHAND, K.; KATHURIA, A.; et al. Calreticulin transacetylase: a novel enzyme-mediated protein acetylation by acetoxy derivatives of 3-alkyl-4-methylcoumarins. Bioorg. Chem., v. 40, p. 131-136, 2012. JOUBERT, J.; FOKA, G. B.; REPSOLD, B. P.; OLIVER, D. W.; KAPP, E.; MALAN, S. F. Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer's disease. Eur. J. Med. Chem., v. 125, p. 853-864, 2017. KAMINSKI, J. J.; et al. Antiulcer agents. 1. Gastric antisecretory and cytoprotective properties of substituted imidazo[1,2-a]pyridines. J. Med. Chem., v. 28, n. 7, p. 876-892, 1985. 99 KEPP, K. P. Bioinorganic chemistry of Alzheimer's disease. Chem. Rev., v. 112(10), p. 5193-239, 2012. KESKIN, O.; GURSOY, A.; MA, B.; NUSSINOV, R. Principles of protein-protein interactions: what are the preferred ways for proteins to interact?. Chem. Rev., v. 108(4), p. 1225-1244, 2008. KHANACADEMY, Disponível em: <https://pt.khanacademy.org/science/physics/light-waves/introduction-to-light-waves/a/light-and-the-electromagnetic-spectrum>, acessado em Novembro de 2017. KOSTOVA, I.. Synthetic and Natural Coumarins as Antioxidants. Mini-Rev. Med. Chem., v6, p. 365-374, 2006. KRAEPELIN E. Psychiatrie. Ein Lehrbuch für Studierende und Ärzte II. Ed. Band Barth Verlag, Leipzig, 1910. KUMMERLE, A. E.; RAIMUNDO, J. M.; LEAL, C. M.; SILVA, G. S.; BALLIANO, T. L.; PEREIRA, M. A.; DE SIMONE, C. A.; SUDO, R. T.; ZAPATA-SUDO G.; FRAGA C. A. M.; BARREIRO, E. J. Studies towards the identification of putative bioactive conformation of potent vasodilator arylidene N-acylhydrazone derivatives. Eur. J. Med. Chem., v. 44, p. 4004-4009, 2009. KUPLICH, M. D. Síntese de novos heterociclos benzazólicos fluorescentes e sua incorporação em matrizes de celulose. Dissertaçao, UFGRS 2007. KUSUMA, B. R.; PETERSON, L. B.; ZHAO, H. P.; VIELHAUER, G.; HOLZBEIERLEIN, J.; BLAGG, B. S. J. Targeting the heat shock protein 90 dimer with dimeric inhibitors. J. Med. Chem., v. 54, p. 6234-53, 2011. LAI, G.; ANDERSON, W. K. A simplified procedure for the efficient conversion of aromatic aldehydes into esters. Synth. Commun., v. 27, n. 7, p. 1281-1283, 1997. 100 LAU, L.F.; SCHACHTER, J. B.; SEYMOUR, P. A.; SANNER, M. A. Tau protein phosphorylation as a therapeutic target in Alzheimer's disease. Curr. Top. Med. Chem., v. 2(4), p. 395-415, 2002. LAKOWICZ, J. R. In Principles of Fluorescence Spectroscopy, 2ª ed., Kluwer Academic/Plenum Publishers, New York 1999. LAN, J. S.; DING, Y.; LIU, Y.; KAN, P.; HOU, J. W.; ZHANG, X.Y.; XIE, S.S.; ZHANG, T. Design, synthesis and biological evaluation of novel coumarin-N-benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., v. 139, p. 48-59, 2017. LAUFER, M.C.; HAUSMANN, H.; HÖLDERICH, W.F. Synthesis of 7-hydroxycoumarins by Pechmann reaction using Nafion resin/silica nanocomposites as catalysts. J. Catal., v. 218, p. 315-320, 2003. LEE, S. J.; NAM, E.; LEE, H. J., SAVELIEFF, M. G.; LIM, M. H. Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors. Chem. Soc. Rev.. v. 46(2), p. 310-323, 2017. LEONETTI, F.; CATTO, M.; NICOLOTTI, O.; ET AL. Homo- and hetero-bivalent edrophonium-like ammonium salts as highly potent, dual binding site AChE inhibitors. Bioorg. Med. Chem., v. 16, p. 7450-7456, 2008. LEVY, E.; CARMAN, M. D.; FERNANDEZ-MADRID, I. J.; POWER, M. D.; LIEBERBURG, I.; VAN DUINEN, S. G.; FRANGIONE, B. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science, v. 248(4959), p. 1124-1126, 1990. LIMA, P. C.; et al. Synthesis and analgesic activity of novel N-acylarylhydrazones and isosters, derived from natural safrole. Eur. J. Med. Chem., v. 35, n. 2, p. 187-203, 2000. LOPES, A. B.; MIGUEZ E.; KUMMERLE A. E.; RUMJANEK, V. M.; FRAGA, C. A. M.; BARREIRO E. J., Characterization of Amide Bond Conformers for a Novel Heterocyclic Template of N-acylhydrazone Derivatives. Molecules, v. 18, p. 11683–11704, 2013. 101 MA, K.; THOMASON, L. A. M.; MCLAURIN J. Scyllo-inositol, preclinical, and clinical data for Alzheimer's disease. Adv. Pharmacol., v. 64, p. 177-212, 2012. MAGGI, R.; BIGI, F.; CARLONI, S.; MAZZACANI, A.; SARTORI, G. Uncatalysed reactions in water: Part 2. Preparation of 3-carboxycoumarins. Green Chem., v. 3, p. 173-174, 2001. MARCU, M. G.; SCHULTE, T. W.; NECKERS, L. Novobiocin and Related Coumarins and Depletion of Heat Shock Protein 90-Dependent Signaling Proteins. J. Natl Cancer Inst.. v. 92, p. 242-248, 2000. MARUYAMA, T.; OTAGIRI, M.; SCHULMAN, S. G.. Binding characteristics of coumarin anticoagulants to human α1 acid glycoprotein and human serum albumin. Intl. J. Pharm., v. 59, p. 137-143, 1990. MASON, J. M.; KOKKONI, N., STOTT, K., DOIG, A. J. Design strategies for anti-amyloid agents. Curr. Opin. Struct. Biol., v. 13(4), p. 526-32, 2003. MEDINA, F. G.; MARRERO, J. G.; MACÍAS-ALONSO M.; GONZALES, M. C.; CÓRDOVA-GUERRERO, I.; GARCIA, A. G. T.; OSEGUEDA-ROBLES, S. Coumarin heretocyclic derivative: chemical synthesis and biological activity. Nat. Prod. Rep., v. 32, p. 1472-1507. 2015. MELO, J. S. S.; BECKER, R. S.; MACANITA, A. L. J. Photophysical Behavior of Coumarins as a Function of Substitution and Solvent: Experimental Evidence for the Existence of a Lowest Lying 1(n,.pi.*) State. Phys. Chem., v. 98(24), p. 6054-6058, 1994. MONTANARI, S.; BARTOLINI, M.; NEVIANI, P.; BELLUTI, F.; GOBBI, S.; PRUCCOLI, L.; TAROZZI, A.; FALCHI, F.; ANDRISANO, V.; MISZTA, P.; CAVALLI, A. Multitarget Strategy to Address Alzheimer's Disease: Design, Synthesis, Biological Evaluation, and Computational Studies of Coumarin‐Based Derivatives. Chem. Med. Chem., v. 11(12), p. 1296-1308, 2016. MURRAY, R. D .H. Coumarins. Nat. Prod. Rep., v. 12, p. 477-505, 1995. NALIVAEVA, N. N.; TURNER, A. J. The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett., v. 587(13), p. 2046-2054, 2013. 102 NASCIMENTO-JUNIOR, N. M.; KUMMERLE, A. E.; BARREIRO, E. J.; FRAGA, C. A. M. Molecules, v. 16, p. 9274–9297, 2011. OMS, Disponível em: <http://www.who.int/es/news-room/fact-sheets/detail/dementia>, acessado em Agosto de 2018. OMS, Disponível em: <http://www.who.int/mediacentre/factsheets/fs362/es/>, acessado em novembro de 2017. OMURA, K. Oxidation of phenols with iodine in alkaline methanol. J. Org. Chem., v. 49, n. 17, p. 3046-3050, 1984. OKAMOTO, I.; NABETA, M.; YAMAMOTO, M.; MIKAMI, M.; TAKEYA, T.; TAMURA, O. Solvent-dependent conformational switching of the aromatic N-methyl amides depending upon the acceptor properties of solvents. Tetrahedron Lett., v. 47, p. 7143–7146, 2006. PALLA, G.; PREDIERI, G.; DOMIANO, P. Conformational behaviour and E/Z isomerization of N-acyl and N-aroylhydrazones. Tetrahedron, v. 42, p. 3649–3654, 1986. PARK, G. J.; LEE, M. M.; YOU, G. R.; CHOI, Y. W.; KIM, C. A turn-on and reversible fluorescence sensor with high affinity to Zn2+ in aqueous solution. Tetrahedron Lett., v. 55, p. 2517-2522, 2014. PAVIA, D. L.; LAMPMAN, G. M.; KRIZ, G. S.; VYVYAN, J. R. Introdução à Espectroscopia. 4ª edição. PENG, X. M.; DAMU, G. L. V.; ZHOU, C. Current Developments of Coumarin Compounds in Medicinal Chemistry. Curr. Pharm. Design, v. 19, p. 3884-3930, 2013. PEREIRA, T. M.; VITÓRIO, F.; AMARAL, R. C.; ZANONI, K. P. S.; IHA, N. Y. M.; KUMMERLE, A. E. Microwave-assisted synthesis and photophysical studies of novel fluorescent N-acylhydrazone and semicarbazone-7-OH-coumarin dyes. New J. Chem., v.40, p. 8846-8854, 2016. 103 PEREIRA, T. M.; FRANCO, D. P.; VITÓRIO, F.; KUMMERLE, A. E. Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years. Curr. Top. Med. Chem., v. 18, p. 124-148, 2018. PEREIRA, T. M.; FRANCO, D. P.; VITÓRIO, F.; AMARAL, R. C.; PONZONI, APARECIDA; KUMMERLE, A. E. Microwave-assisted synthesis and pka determination of umbelliferone: an experiment for the undergraduate organic chemistry laboratory. Quim. nova, 2018. QUATTROPANI, A.; DORBAIS, J.; COVINI, D.; PITTET, P.-A.; COLOVRAY, V.; THOMAS, R.J.; COXHEAD, R.; HALAZY, S.; SCHEER, A.; MISSOTTEN, M.; et al. Discovery and development of a new class of potent, selective, orally active oxytocin receptor antagonists. J. Med. Chem., v. 48, p. 7882–7905, 2005. QU, L.; YIN, C.; HUO, F.; CHAO, J.; ZHANG, Y.; CHENG, F. A pyridoxal-based dual chemosensor for visual detection of copper ion and ratiometric fluorescent detection of zinc ion Sens. Actuators, B, v. 191, p. 158-164, 2014. QUINN, D. M. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev., v. 87(5), p. 955–979, 1987. RANG, H. P.; DALE, M. M.; RITTER, J. M.; GARDNER, P. Farmacologia, 7ª Ed., Elsevier, 2012. REINKE, A. A.; GESTWICKI, J. E. Structure-activity relationships of amyloid beta-aggregation inhibitors based on curcumin: influence of linker length and flexibility. Chem. Biol. Drug Des. v. 70(3), p. 206-215, 2007. RIBEIRO, C. V. C.; KAPLAN, M. A. C. Tendências evolutivas de Famílias Produtoras de Cumarinas em Angiospermae. Quím. Nova, v. 25, n. 4, p. 533-538, 2002. RIBEIRO, I. G.; et al. Synthesis and antinociceptive properties of new structurally planned imidazo[1,2-a]pyridine 3-acylarylhydrazone derivatives. Eur. J. Med. Chem., v. 33, n. 3, p. 225-235, 1998. 104 ROUESSAC, F.; LECLERC, A. An Efficient Synthesis of Isofraxidin. Synt. Commun., v. 23, p. 1147-1153, 1993. ROBERT, A.; LIU, Y.; NGUYEN, M., MEUNIER, B. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease. Acc. Chem. Res., v. 48(5), p. 1332-1339, 2015. SAIDO, T.; LEISSRING, M. A. Proteolytic degradation of amyloid β-protein. Cold Spring Harbor Perspect. Med., v. 2(6):a006379, 2012. SALEEM, M.; LEE, K. H. Optical Sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv., v. 5, p. 72150-72287, 2015. SÁNCHEZ, C. G.; CASILDA, V. C.; MAYORAL, E. P.; ARANDA, R. M. M.; PEINADO, A. J. L.; BEJBLOVÁ, M.; CEJKA, J. Coumarins Preparation by Pechmann Reaction Under Ultrasound Irradiation. Synthesis of Hymecromone as Insecticide. Intermediate Catal. Lett., v. 128, p. 318–322, 2009. SANDHU, S.; BANSAL, Y.; SILAKARI, O.; BANSAL, G. Coumarin Hybrids as Novel Therapeutic Agents. Bioog. Med. Chem., v. 22, p. 3806-3814, 2014. SAVELIEFF, M. G.; LEE, S.; LIU, Y.; LIM, M. H. Untangling amyloid-β, tau, and metals in Alzheimer's disease. ACS Chem. Biol. v. 8(5), p. 856-65, 2013. SCIO, E. Coumarins isolated from Kielmeyera genus (Clusiaceae). Bras. Farm., v. 85(1), p. 27-31, 2004. SOLOMONS, T. W. G.; FRYHLE, C. B. Química Orgânica. v. 2, 2008. SOUMYA, T. V.; THASNIM, P.; BAHULAYAN, D. Step-economic and cost effective synthesis of coumarin based blue emitting fluorescent dyes. Tetrahedron Lett., v. 55, p. 4643–4647, 2014. 105 SOUZA, L. G.; RENNÓ, M. N.; FIGUEROA-VILLAR, J. D. Coumarins as cholinesterase inhibitors: a review. Chem. Biol. Interact. v. 254, p. 11-23, 2016. SOTO-ORTEGA, D. D , MURPHY, B. P., GONZALEZ-VELASQUEZ, F. J., et al. Inhibition of amyloid- aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center. Bioorg. Med. Chem., v. 19, p. 2596-602, 2011. SMAKULA HAND, E.; PAUDLER, W. W. Mechanism of the reaction of 2-haloketones with 2-aminopyridine. Tetrahedron, v. 38, n. 1, p. 49-55, 1982. STADERINI, M. ; AULIC, S. ; BARTOLINI, M.; TRAN, H. N. ; GONZALEZ-RUIZ, V.; PEREZ, D. ; CABEZAS, N. ; MARTINEZ, A. ; MARTIN, M. A. ; ANDRISANO, V. ; LEGNAME, G.; MENENDEZ, J. C.; BOLOGNESI, M. L. ACS Med. Chem. Lett., v. 4, p. 225-229, 2013. SRIVASTAVA, J.; BARBER, D. L.; JACOBSON, M. P. Intracellular pH Sensors: Design Principles and Functional Significance. PHYSIOLOGY, v. 22, p. 30–39, 2007. SYMEONIDIS, T.; CHAMILOS, M.; LITINA, D. J. H.; KALLITSAKIS, M.; LITINAS, K. E. Synthesis of hydroxycoumarins and hydroxybenzo[f]- or [h]coumarins as lipid peroxidation inhibitors. Bioorg. Med. Chem. Lett., v. 19, p. 1139–1142, 2009. TERRY, A. V. JR.; BUCCAFUSCO, J. J. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol Exp. Ther., v. 306(3), p. 821-827, 2003. TENÓRIO, R. P.; GÓES, A. J. S.; DE LIMA, J. G.; DE FARIA, A. R.; ALVES, A. J.; DE AQUINO, T. M.. Tiossemicarbazonas: métodos de obtenção, aplicações sintéticas e importância biológica. Quím. Nova, v. 28, n. 6, 2005. TÔUGU, V.; TIIMANN, A.; PALUMAA, P. Interactions of Zn(II) and Cu(II) ions with Alzheimer’s amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics, v. 3, p. 250–261, 2011. 106 TOROK, B.; DASGUPTA, S., TOROK, M. Chemistry of small molecule inhibitors in self-assembly of Alzheimer's disease related amyloidbeta peptide. Curr. Bioact. Comp., v. 4, p. 159-74, 2008. TRKOVNIK, M.; IVEZI, Z. J. Syntheses of some new coumarin‐quinolone carboxylic acids. J. Heterocyclic Chem., v. 37, p. 137-141, 2000. TURRO, N. J. In Modern Molecular Photochemistry, University Science Books, USA 1991. TUTULEA-ANASTASIU, M. D.; Wilson, D.; Del Valle, M.; Schreiner, C. M., Cretescu, I. A solid-contact ion selective electrode for copper(II) using a succinimide derivative as ionophore. Sensors. v. 13, p. 4367–4377, 2013. VITORIO, F.; PEREIRA, T. M.; CASTRO, R. N.; GUEDES, G. P.; GRAEBIN, C. S.; KUMMERLE, A. E. Synthesis and mechanism of novel fluorescent coumarin–dihydropyrimidinone dyads obtained by the Biginelli multicomponent reaction. New J. Chem., v. 39, p. 2323–2332, 2015. WANG, H.; LU, X. M.; YAO, H.; FENG, J. K.; LIU, R. J. Research progress on application of coumarin and its derivatives. Chem. Ind. Times, v. 23, p. 40-43, 2009. WHITESELL, L.; LINDQUIST, S. L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer. v. 5(10), p. 761-772, 2005. WHO. Cancer: Factsheets. Disponível em <http://www.who.int/mediacentre/factsheets/fs297/en/> Acesso em: 04 de abril de 2015. WU, J. S.; LIU, W. M.; ZHUANG, X. Q.; WANG, F.; WANG, P. F.; TAO, S. L.; ZHANG, X. H.; WU, S. K.; LEE, S. T. Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on C=N isomerization. Org. Lett., v. 9(1), p. 33-36, 2007. 107 WU, J.; SHENG, R.; LIU, W.; WANG, P.; ZHANG, H.; MA, J. Fluorescent sensors based on controllable conformational change for discrimination of Zn2+ over Cd2+. Tetrahedron, v. 68, p. 5458-5463, 2012. XIE, S. S.; WANG, X.; JIANG, N.; YU, W.; WANG, K.D.G.; LAN, J.S.; LI, Z.R.; KONG, L.Y. Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibitor proprerties against Alzheimer’s disease. Eur. J. Med. Chem., v. 95, p. 153-165, 2015. XU, H.; MIAO, R.; FANG, Z.; ZHONG, X. Quantum dot-based “turn-on” fluorescent probe for detection of zinc and cadmium ions in aqueous media. Anal. Chim. Acta., v. 687, p. 82-88, 2011. YAMADA, S.; MORIZONO, D.; YAMAMOTO, K. Mild oxidation of aldehydes to the corresponding carboxylic acids and esters: alkaline iodine oxidation revisited. Tetrahedron Lett., v. 33, n. 30, p. 4329-4332, 1992. You, Q. H.; Lee, A. W. M.; Chan, W. H.; Zhu, X. M.; Leung, K. C. F. A coumarin-based fluorescent probe for recognition of Cu2+ and fast detection of histidine in hard-to transfect cells by a sensing ensemble approach. Chem. Commun., v. 50, p. 6207-6210, 2014 ZHANG, G.; LI, Y.; XU, J.; ZHANG, C.; SHUANG, S.; DONG, C.; CHOI, M. M. F. Glutathione-protected fluorescent gold nanoclusters for sensitive and selective detection of Cu2+. Sens. Actuators, B, v. 183, p. 583-588, 2013. ZHANG, S. Y.; FU, D. J.; SUN, H. H.; YUE, X. X.; LIU, Y. C.; ZHANG, Y. B.; LIU, H. M. Synthesis and bioactivity of novel coumarin derivatives. Chem. Het. Comp., v. 52, p. 374–378, 2016. ZHAO, H.; DONNELLY, A. C.; KUSUMA, B. R.; BRANDT, G. E. L.; BROWN, D.; RAJEWSKI, R. A.; VIELHAUER, G.; HOLZBEIERLEIN, J.; COHEN, M. S.; BLAGG, B. S. J. Engineering an Antibiotic to Fight Cancer: Optimization of the Novobiocin Scaffold to Produce Anti-proliferative Agents. J. Med. Chem., v. 54, p. 3839-3853, 2011. ZHOU, X.; WANG, X. B.; WANG, T.; KONG, L. Y. Design, synthesis, and acetylcholinesterase inhibitory activity of novel coumarin analogs. Bioorg. Med. Chem., v. 16, p. 8011-8021, 2008. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Química |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Química |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14703/1/2018%20-%20Thiago%20Moreira%20Pereira.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14703/2/2018%20-%20Thiago%20Moreira%20Pereira.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14703/3/2018%20-%20Thiago%20Moreira%20Pereira.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14703/4/license.txt |
bitstream.checksum.fl_str_mv |
cc73c4c239a4c332d642ba1e7c7a9fb2 ec33881f145d4446a54d5ea44c825d9c ef85206003f3bd7048fbc9f5c5e8ca6c 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810108155462418432 |