Vocalizações subaquáticas e fenômenos não lineares em focas antárticas

Detalhes bibliográficos
Autor(a) principal: Maciel, Israel de Sá
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/10805
Resumo: Pinípedes produzem uma variedade de sons subaquáticos que frequentemente são relacionados com atividades reprodutivas e interações sociais. Diversas espécies de focas apresentam evidências de vocalizações com variações geográficas e individuais. A maioria dos trabalhos com focas estudou o repertório em ambiente terrestre e com olhares para as análises lineares. Entretanto, algumas características das vocalizações não podem ser explicadas apenas com análises lineares ou levando em conta apenas uma parte da vida do animal. Os fenômenos não lineares (FNLs) presentes em vocalizações (banda lateral, harmônico, sub-harmônico, bifonação, pulos de frequência e caos determinístico) ainda são pouco estudados. Dada a importância deste fenômeno nas vocalizações para o reconhecimento individual, principalmente em mamíferos sociais, este trabalho buscou estudar as vocalizações subaquáticas de focas antárticas, visando conhecer seu repertório vocal e seus FNLs, bem como discutir a possível função dos mesmos. Em 2013, a Marinha do Brasil realizou gravações acústicas na Ilha Meia Lua na Antártica. Nesta coleta foram registrados 128GB de arquivos de som nos dias entre 12 e 30 de novembro, totalizando 7.448 arquivos de 3 minutos cada. Nestas gravações foi constatada a presença de focas pertencentes à Tribo Lobodontini. Contatou-se também a presença de 15 tipos de vocalizações no período entre os dias 12 a 16/novembro. Em todos os dias que houve gravações de focas foi observado um padrão nos tipos L, K e E, organizados na sequência K, L e E, respectivamente. Após a inspeção visual de todos os arquivos, foram encontrados pulos de frequência, bifonações, harmônicos, bandas laterais e caos determinístico em nove tipos de vocalizações (A, C, E, F, K, L, M, N e O). As não linearidades foram abundantes em todos os arquivos, estando presentes em 75,56% (N=1829) das vocalizações. O caos determinístico foi o mais comumente observado, estando presente em 53,86% das feições não lineares e 43,08% das vocalizações em geral. Levando em conta apenas as vocalizações tonais, 88,85% das vocalizações foram não lineares. A repetição do padrão KLE parece apresentar uma função de reconhecimento. Os FNLs, principalmente os do tipo caos determinístico, estiveram muito presentes nas vocalizações estudadas, indicando que este tipo de emissão possui uma função importante na comunicação. Além disso, estes parecem pertencer ao repertório acústico padrão de Lobodontines antárticos.
id UFRRJ-1_4d53bb41feed2876fe69cf0f9cf59f4f
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/10805
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Maciel, Israel de SáSimão, Sheila Marino695.108.147-68Simão, Sheila MarinoSilva, Ana Telles Carvalho eSilva, Hélio Ricardo daOliveira, Rodrigo Hipólito TardinEsberard, Carlos Eduardo135.889.467-68http://lattes.cnpq.br/68364463402588692023-12-22T01:43:13Z2023-12-22T01:43:13Z2016-02-02MACIEL, Israel de Sá. Vocalizações subaquáticas e fenômenos não lineares em focas antárticas. 2016. 31 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.https://rima.ufrrj.br/jspui/handle/20.500.14407/10805Pinípedes produzem uma variedade de sons subaquáticos que frequentemente são relacionados com atividades reprodutivas e interações sociais. Diversas espécies de focas apresentam evidências de vocalizações com variações geográficas e individuais. A maioria dos trabalhos com focas estudou o repertório em ambiente terrestre e com olhares para as análises lineares. Entretanto, algumas características das vocalizações não podem ser explicadas apenas com análises lineares ou levando em conta apenas uma parte da vida do animal. Os fenômenos não lineares (FNLs) presentes em vocalizações (banda lateral, harmônico, sub-harmônico, bifonação, pulos de frequência e caos determinístico) ainda são pouco estudados. Dada a importância deste fenômeno nas vocalizações para o reconhecimento individual, principalmente em mamíferos sociais, este trabalho buscou estudar as vocalizações subaquáticas de focas antárticas, visando conhecer seu repertório vocal e seus FNLs, bem como discutir a possível função dos mesmos. Em 2013, a Marinha do Brasil realizou gravações acústicas na Ilha Meia Lua na Antártica. Nesta coleta foram registrados 128GB de arquivos de som nos dias entre 12 e 30 de novembro, totalizando 7.448 arquivos de 3 minutos cada. Nestas gravações foi constatada a presença de focas pertencentes à Tribo Lobodontini. Contatou-se também a presença de 15 tipos de vocalizações no período entre os dias 12 a 16/novembro. Em todos os dias que houve gravações de focas foi observado um padrão nos tipos L, K e E, organizados na sequência K, L e E, respectivamente. Após a inspeção visual de todos os arquivos, foram encontrados pulos de frequência, bifonações, harmônicos, bandas laterais e caos determinístico em nove tipos de vocalizações (A, C, E, F, K, L, M, N e O). As não linearidades foram abundantes em todos os arquivos, estando presentes em 75,56% (N=1829) das vocalizações. O caos determinístico foi o mais comumente observado, estando presente em 53,86% das feições não lineares e 43,08% das vocalizações em geral. Levando em conta apenas as vocalizações tonais, 88,85% das vocalizações foram não lineares. A repetição do padrão KLE parece apresentar uma função de reconhecimento. Os FNLs, principalmente os do tipo caos determinístico, estiveram muito presentes nas vocalizações estudadas, indicando que este tipo de emissão possui uma função importante na comunicação. Além disso, estes parecem pertencer ao repertório acústico padrão de Lobodontines antárticos.CAPESPinnipeds produce a variety of underwater sounds that are often related to reproductive activities and social interactions. In addition, several species of seals provide evidence of vocalizations with geographical and individual variations. Most of bioacoustics researches with seals studied the terrestrial environment repertoire using linear analysis. However, some characteristics of vocalizations can not be explained with linear analysis only or taking into account only one part of the animal's life. The nonlinear phenomena (NLP) present in vocalizations (sideband, harmonic, sub-harmonic, biphonation, jump of frequency and deterministic chaos) are still poorly studied. Given the importance of this phenomena in vocalizations to individual recognition, especially in social mammals, was studied the underwater vocalizations of Antarctic seals in order to know their vocal repertoire and their NLP as well as discuss their possible function. In 2013, Brazilian Navy conducted acoustic recordings on Half Moon Island. In this collection were recorded 128GB of sound files between 12th and 30th of November. A total of 18 days of uninterrupted collections, producing 7,448 files of 3 minutes each. These recordings were taken at the presence of seals to Lobodontini Tribe. A total of 15 types of vocalizations were found in the period between days 12-16/November. A pattern in the vocalizations types L, K and E, arranged in sequence K, L and E, respectively, was observed in all seal recordings. All files presented biphonations, jumps of frequency, harmonics, sidebands and chaos in nine types of vocalizations (A, C, E, F, K, L, M, N and O). The nonlinearities were abundant on all files, being present in 75.56% (N = 1829) of vocalizations. Deterministic chaos was most common, present in 53.86% of non-linear features and 43.08% of vocalizations in general. Taking into account only the tonal vocalizations, 88.85% of vocalizations were nonlinear. The repetition of the KLE pattern also displays a recognition function. The NLP, mainly deterministic chaos, had high incidence in the studied vocalizations indicating that this type has an important role in communication. Furthermore, it seems to belong to the acoustic pattern of Antarctic‟s Lobodontines.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Biologia AnimalUFRRJBrasilInstituto de Ciências Biológicas e da SaúdeBioacousticspinnipedsLobodontinesacoustic repertoireAntarticBioacústicapinípedesLobodontinesrepertório acústicoAntárticaZoologiaVocalizações subaquáticas e fenômenos não lineares em focas antárticasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisANDERSON, M.J. A new method for non‐parametric multivariate analysis of variance. Austral Ecology, v. 26, n. 1, p. 32-46. 2001. BALLARD, K.A.; KOVACS, K.M. The acoustic repertoire of hooded seals (Cystophora cristata). Canadian Journal of Zoology, v. 73, p. 1362–1374. 1995. BENKO, T. P.; PERC, M. Singing of Neoconocephalus robustus as an example of deterministic chaos in insects. Journal of Biosciences, v. 32, n. 4, p. 797–804. 2007. BERTA, A.; SUMICH, J. L.; KOVACS, K. M. Marine mammals: evolutionary biology. Academic Press, p. 270-311, 2005. DIGBY, A.; BELL, B.D.; TEAL, P.D. Non-linear phenomena in little spotted kiwi calls. Bioacoustics, v. 23, n. 2, p.113–128. 2014. EDOH, K.; HUGHES, D.; KATZ, R. Nonlinearity in cicada sound signals. Journal of Biological Systems, v. 21, n. 1, p.1350004. 2013. FACCHINI, A.; BASTIANONI, S.; MARCHETTINI, N.; RUSTICI, M. Characterization of chaotic dynamics in the vocalization of Cervus elaphus corsicanus. The Journal of the Acoustical Society of America, v. 114, n. 6, p. 3040–3043. 2003. FEE, M. S.; SHRAIMAN, B.; PESARAN, B.; MITRA, P.P. The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature, v. 395, p. 67–71. 1998. FENG, A.S.; RIEDE, T.; ARCH, V.S.; YU, Z.; XU, Z.M.; YU, X.J.; SHEN, X.J. Diversity of the vocal signals of concave-eared torrent frogs (Odorrana tormota): evidence for individual signatures. Ethology, v. 115, n. 11, p. 1015–1028. 2009. FILATOVA, O.A.; DEECKE, V.B.; FORD, J.K.B.; MATKIN, C.O.; BARRETT-LENNARD, L.G.; GUZEEV, M.A.; BURDIN, A.M.; HOYT, E. Call diversity in the North Pacific killer whale populations: implications for dialect evolution and population history. Animal Behavior, v. 83, n. 3, p. 595–603. 2012. FILATOVA, O.A.; FEDUTIN, I.D.; NAGAYLIK, M.M.; BURDIN, A.M.; HOYT, E. Usage of monophonic and biphonic calls by free-ranging resident killer whales (Orcinus orca) in Kamchatka, Russian Far East. Acta Ethologica, v. 12, p. 37- 44. 2009. FITCH, W.T.; NEUBAUER, J.; HERZEL, H. Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behaviour. v. 63, p. 407-418. 2002. FLETCHER, N.H. Acoustical background to the many varieties of birdsong. Acoustics Australia, v. 38, p. 59–62. 2010. FLETCHER, N.H. A class of chaotic bird calls? Journal of Acoustic Society of America, v. 108, n. 2, p. 821–826. 2000. HANGGI, E. Importance of vocal cues in other-pup recognition in a California sea lion. Marine Mammals Science, v. 8, p. 430–432. 1992. HANGGI, E.; SCHUSTERMAN, R.J. Underwater acoustic displays and individual variation in male harbor seals, Phoca vitulina. Animal Behavior, v. 48, p. 1275–1283. 1994. HEMILÄ, S.; NUMMELA, S.; REUTER, T. What middle ear parameters tell about impedance matching and high frequency hearing. Hearing Research. v. 85, p. 31–44. 1995. KASTELEIN, R.A.; THOMAS, J.A.; NACHTIGALL, P.E. Sensory systems of aquatic mammals. DeSpil, Netherlands. 1995. KETTEN, D.R. The marine mammal ear: specializations for aquatic audition and echolocation. In: The evolutionary biology of hearing. Springer New York, p. 717-750. 1992. KOVACS, K.M. Mother-pup reunions in harp seals, Phoca groenlandica: cues for the relocation of pups. Canadian Journal of Zoology, v. 73, p. 843–849. 1995. LE BOEUF, B.J.; WHITING, R.J.; GANTT, R.F. Perinatal behavior of northern elephant seal females and their young. Behaviour, v. 43, n. 3, p. 121-156. 1973. LE BOEUF, B.J.; PETRINOVICH, L.F. Elephant seal dialects: are they reliable? Rapports et Proces-Verbaux des Reunions (Denmark), v. 169, p. 213-218 1975. MANN, D.A.; O‟SHEA, T J.; NOWACEK, D.P. Nonlinear dynamics in manatee vocalizations. Marine Mammals Science, v. 22, n. 3, p. 548–555. 2006. MENDE, W.; HERZEL, H.; WERMKE, K. Bifurcations and chaos in newborn infant cries. Physics Letters A, v. 145, p. 418–424. 1990. MERCADO III, E.; SCHNEIDER, J.N.; PACK, A.A.; HERMAN, L.M. Sound production by singing humpback whales. The Journal of the Acoustical Society of America, v. 127, n. 4, p. 2678–2691. 2010. MØHL, B. Hearing in seals. In: The behavior and physiology of pinnipeds. Editado por R. Harrison, R. Hubbard, R. Peterson, C. Rice, and R. Schusterman, Appleton-Cenrury, New York,NY, p. 172-195, 1968. MOORS, H.B.; TERHUNE, J.M. Repetition patterns in Weddell seal (Leptonychotes weddellii) underwater multiple element calls. The Journal of the Acoustical Society of America, v. 116, n. 2, p. 1261-1270. 2004. NEMIROFF, L.; WHITEHEAD, H. Structural characteristics of pulsed calls of long-finned pilot whales Globicephala melas. Bioacoustics, v. 19, n. 1-2, p. 67-92. 2009. NICHOLS, C.R., WILLIAMS, R.G. Encyclopedia of marine science. Infobase Publishing, p. 30-32. 2009. NUMMELA, S. Scaling of the mammalian middle ear. Hearing Research, v. 85, n. 1, p. 18-30. 1995. OKSANEN, J.; KINDT, R.; LEGENDRE, P.; O‟HARA, B.; STEVENS, M.H.H.; OKSANEN, M.J.; SUGGESTS, M.A.S.S. The vegan package. Community ecology package, p. 631-637. 2007. OWREN, M. J.; RENDALL, D. Sound on the rebound: bringing form and function back to the forefront in understanding non-human primate vocal signalling. Evolutionary Anthropology, v. 10, n. 2, p. 58–71 2001. PAHL, B.C.; TERHUNE, J.M.; BURTON, H.R. Repertoire and geographic variation in underwater vocalisations of Weddell seals (Leptonychotes weddellii, Pinnipedia: Phocidae) at the Vestfold Hills, Antarctica. Australian Journal of Zoology, v. 45, n. 2, p. 171-187. 1997. PAPALE, E.; BUFFA, G.; FILICIOTTO, F.; MACCARRONE, V.; MAZZOLA, S.; CERAULO, M.; GIACOMA, C.; BUSCAINO, G. Biphonic calls as signature whistles in a free-ranging bottlenose dolphin. Bioacoustics, n. ahead-of-print, p. 1-9. 2015. PERRIN, W.F.; WURSIG, B. Eds. Encyclopedia of marine mammals. In Boyd, I.L. Antartic Marine Mammals. Academic Press, p. 30-36. 2009. PETTITT, B.; BOURNE, G.; BEE, M. Quantitative acoustic analysis of the vocal repertoire of the golden rocket frog (Anomaloglossus beebei). The Journal of the Acoustical Society of America, v. 131, n. 6, p. 4811-4820. 2012. RAY, C.; WATKINS, W.A.; BURNS, J.J. Underwater song of Erignathus (bearded seal). Zoologica (New York), v. 54, n. 2, p. 79-83. 1969. REIMAN, A.J.; TERHUNE, J. M. The maximum range of vocal communication in air between a harbor seal (Phoca vitulina) pup and its mother. Marine Mammals Science, v. 9, p. 182–189. 1993. REPENNING, C.A. Adaptive evolution of sea lions and walruses. Systematic Zoology, v. 25, p. 375–390. 1972. RICE, A.N.; LAND, B.R.; BASS, A.H. Nonlinear acoustic complexity in a fish „two-voice‟ system. Proceedings of the Royal Society B: Biological Sciences, p. rspb20110656. 2011. RIEDE, R.; ARCADI, A.C.; OWREN, M.J. Nonlinear acoustics in the pant hoots of common chimpanzees (Pan troglodytes): vocalizing at the edge. The Journal of the Acoustical Society of America, v. 121, n. 3, p. 1758–1767. 2007. RIEDE, T.; OWREN, M.J.; ARCADI, A.C. Nonlinear acoustics in pant hoots of common chimpanzees (Pan troglodytes): frequency jumps, subharmonics, biphonation, and deterministic chaos. American Journal of Primatology, v. 64, n. 3, p. 277–291. 2004. ROBB, M.P.; SAXMAN, J.H. Acoustic observations in young children‟s non-cry vocalizations. Journal of the Acoustical Society of America, v. 83, p. 1876–1882. 1988. ROGERS, T.L.; CATO, D.H.; BRYDEN, M.M. Underwater vocal repertoire of the leopard seal (Hydrurga leptonyx) in Prydz Bay, Antarctica. Sensory Systems of Aquatic Mammals. De Spil, The Netherlands. Editado por R. A. Kastelein, J. A. Thomas e and P. E. Nachtigall. p. 223-236. 1995. ROGERS, T.L.; CATO, D. H. Individual variation in the acoustic behaviour of the adult male leopard seal, Hydrurga leptonyx. Behaviour, v. 139, n. 10, p. 1267-1286. 2002. ROUX, J. P.; JOUVENTIN, P. Behavioral cues to individual recognition in the subantarctic fur seal, Arctocephalus tropicalis. NOAA Technical Report NMFS, v. 51, p. 95-102. 1987. SIRVIO, P.; MICHELSSON, K. Sound spectrographic cry analysis of normal and abnormal newborn infants. Folia Phoniatrica, v. 28, p. 161–173. 1976. STIRLING, I.; CALVERT, W.; SPENCER, C. Evidence of stereotyped underwater vocalizations of male Atlantic walruses (Odobenus rosmarus rosmarus). Canadian Journal of Zoology, v. 65, n. 9, p. 2311-2321. 1987. STIRLING, I.; THOMAS, J.A. Relationships between underwater vocalizations and mating systems in phocid seals. Aquatic Mammals, v. 29, n. 2, p. 227-246. 2003. SAUVÉ, C.C.; BEAUPLET, G.; HAMMILL, M.O.; CHARRIER, I. Acoustic analysis of airborne, underwater, and amphibious mother attraction calls by wild harbor seal pups (Phoca vitulina). Journal of Mammalogy, v. 96, n. 3, p. 591-602. 2015. TERHUNE, J. M.; RONALD, K. Some hooded seal (Cystophora cristata) sounds in March. Canadian Journal of Zoology, v. 51, p. 319–321. 1973. THOMAS, J.; KASTELEIN, R.A.; SUPIN, A.Y. Marine Mammal Sensory Systems, Plenum Press, New York. 1992. THOMAS, J.A.; KUECHLE, V.B. Quantitative analysis of the Weddell seal (Leptonychotes weddellii) underwater vocalizations at McMurdo Sound, Antarctica. Journal of the Acoustical Society of America, v. 72, p. 1730–1738. 1982. THOMAS, J. A.; STIRLING, I. Geographic variation in the underwater vocalisations of Weddell seals (Leptonychotes weddellii) from Palmer Peninsula and McMurdo Sound, Antarctica. Canadian Journal of Zoology, v. 61, p. 2203-2212. 1983. THOMAS, J.A.; GOLLADAY, C.L. Geographic variation in leopard seal (Hydrurga leptonyx) underwater vocalizations. In: Sensory Systems of Aquatic Mammals. Editado por Kastelein RA, Thomas JA, Nachtigall PE, v. 61 p. 201-221. 1995. TYACK, P.L.; MILLER, E.H. Vocal anatomy, acoustic communication and echolocation. In: Marine mammal biology: An evolutionary approach. Editado por R. Hoetzel, Oxford, UK: Blackwell Science. p. 142-184. 2002. TYSON, R.B.; NOWACEK, D.P.; MILLER, P.J.O. Nonlinear phenomena in the vocalizations of North Atlantic right whales (Eubalaena glacialis) and killer whales (Orcinus orca). Journal of the Acoustical Society of America, v. 122, n. 3, p. 1365–1373. 2007. TRUBY, H.M.; LIND, J. Cry sounds of the newborn infant. In: Newborn Infant Cry. Editado por J. Lind). Uppsala: Almquist e Wiksells Boktryckeri, p. 7–59. 1965. VAN PARIJS, S.M.; KOVACS, K.M.; LYDERSEN, C. Spatial and temporal distribution of vocalising male bearded seals - implications for male mating strategies. Behaviour, v. 138, n. 7, p. 905-922. 2001. VOLODIN, I.A.; VOLODINA, E.V. Biphonation as a prominent feature of dhole Cuon alpinus sounds. Bioacoustics, v. 13, n. 2, p. 105–120. 2002. VOLODINA, E.V.; VOLODIN, I.A.; ISAEVA, I.V.; UNCK, C. Biphonation may function to enhance individual recognition in the dhole, Cuon alpinus. Ethology, v. 112, p. 815–825. 2006. WATKINS, W. A.; RAY, G. C. In‐air and underwater sounds of the Ross seal, Ommatophocarossi. The Journal of the Acoustical Society of America, v. 77, n. 4, p. 1598-1600. 1985. WATKINS, W. A. The harmonic interval: fact or artifact in spectral analysis of pulse trains. In: Marine Bio-Acoustics. Editado por W. N. Tavolga, (Pergamon, Oxford), v. 2 p. 15-43. 1968. WILDEN, I.; HERZEL, H.; PETERS, G.; TEMBROCK, G. Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics, v. 9, n. 3, p. 171–196. 1998. WYSS, A.R. The walrus auditory region and the monophyly of Pinnipeds. American Museum Novitates, v. 2871, p. 1–31. 1987. ZOLLINGER, S.A.; RIEDE, T.; SUTHERS, R.A. Two-voice complexity from a single side of the northern mockingbird Mimus polyglottos vocalizations. The Journal of Experimental Biology, v. 211, p. 1978–1991. 2008.https://tede.ufrrj.br/retrieve/6223/2016%20-%20Israel%20de%20S%c3%a1%20Maciel.pdf.jpghttps://tede.ufrrj.br/retrieve/20982/2016%20-%20Israel%20de%20S%c3%a1%20Maciel.pdf.jpghttps://tede.ufrrj.br/retrieve/27343/2016%20-%20Israel%20de%20S%c3%a1%20Maciel.pdf.jpghttps://tede.ufrrj.br/retrieve/33728/2016%20-%20Israel%20de%20S%c3%a1%20Maciel.pdf.jpghttps://tede.ufrrj.br/retrieve/40162/2016%20-%20Israel%20de%20S%c3%a1%20Maciel.pdf.jpghttps://tede.ufrrj.br/retrieve/46550/2016%20-%20Israel%20de%20S%c3%a1%20Maciel.pdf.jpghttps://tede.ufrrj.br/retrieve/52868/2016%20-%20Israel%20de%20S%c3%a1%20Maciel.pdf.jpghttps://tede.ufrrj.br/retrieve/59340/2016%20-%20Israel%20de%20S%c3%a1%20Maciel.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/2162Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2017-11-08T17:53:03Z No. of bitstreams: 1 2016 - Israel de Sá Maciel.pdf: 3184590 bytes, checksum: 1d079e88bc7d2ff9256dc558436b7cd3 (MD5)Made available in DSpace on 2017-11-08T17:53:03Z (GMT). No. of bitstreams: 1 2016 - Israel de Sá Maciel.pdf: 3184590 bytes, checksum: 1d079e88bc7d2ff9256dc558436b7cd3 (MD5) Previous issue date: 2016-02-02info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTEXT2016 - Israel de Sá Maciel.pdf.txtExtracted Texttext/plain71331https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10805/1/2016%20-%20Israel%20de%20S%c3%a1%20Maciel.pdf.txt7beb346d66048577adea622f4c7fbcc0MD51ORIGINAL2016 - Israel de Sá Maciel.pdfDocumento principalapplication/pdf3180519https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10805/2/2016%20-%20Israel%20de%20S%c3%a1%20Maciel.pdfad14ff14bfd2a9be936b3e7cbb945ff9MD52THUMBNAIL2016 - Israel de Sá Maciel.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10805/3/2016%20-%20Israel%20de%20S%c3%a1%20Maciel.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10805/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/108052023-12-21 22:43:13.272oai:rima.ufrrj.br:20.500.14407/10805Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:43:13Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Vocalizações subaquáticas e fenômenos não lineares em focas antárticas
title Vocalizações subaquáticas e fenômenos não lineares em focas antárticas
spellingShingle Vocalizações subaquáticas e fenômenos não lineares em focas antárticas
Maciel, Israel de Sá
Bioacoustics
pinnipeds
Lobodontines
acoustic repertoire
Antartic
Bioacústica
pinípedes
Lobodontines
repertório acústico
Antártica
Zoologia
title_short Vocalizações subaquáticas e fenômenos não lineares em focas antárticas
title_full Vocalizações subaquáticas e fenômenos não lineares em focas antárticas
title_fullStr Vocalizações subaquáticas e fenômenos não lineares em focas antárticas
title_full_unstemmed Vocalizações subaquáticas e fenômenos não lineares em focas antárticas
title_sort Vocalizações subaquáticas e fenômenos não lineares em focas antárticas
author Maciel, Israel de Sá
author_facet Maciel, Israel de Sá
author_role author
dc.contributor.author.fl_str_mv Maciel, Israel de Sá
dc.contributor.advisor1.fl_str_mv Simão, Sheila Marino
dc.contributor.advisor1ID.fl_str_mv 695.108.147-68
dc.contributor.referee1.fl_str_mv Simão, Sheila Marino
dc.contributor.referee2.fl_str_mv Silva, Ana Telles Carvalho e
dc.contributor.referee3.fl_str_mv Silva, Hélio Ricardo da
dc.contributor.referee4.fl_str_mv Oliveira, Rodrigo Hipólito Tardin
dc.contributor.referee5.fl_str_mv Esberard, Carlos Eduardo
dc.contributor.authorID.fl_str_mv 135.889.467-68
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6836446340258869
contributor_str_mv Simão, Sheila Marino
Simão, Sheila Marino
Silva, Ana Telles Carvalho e
Silva, Hélio Ricardo da
Oliveira, Rodrigo Hipólito Tardin
Esberard, Carlos Eduardo
dc.subject.eng.fl_str_mv Bioacoustics
pinnipeds
Lobodontines
acoustic repertoire
Antartic
topic Bioacoustics
pinnipeds
Lobodontines
acoustic repertoire
Antartic
Bioacústica
pinípedes
Lobodontines
repertório acústico
Antártica
Zoologia
dc.subject.por.fl_str_mv Bioacústica
pinípedes
Lobodontines
repertório acústico
Antártica
dc.subject.cnpq.fl_str_mv Zoologia
description Pinípedes produzem uma variedade de sons subaquáticos que frequentemente são relacionados com atividades reprodutivas e interações sociais. Diversas espécies de focas apresentam evidências de vocalizações com variações geográficas e individuais. A maioria dos trabalhos com focas estudou o repertório em ambiente terrestre e com olhares para as análises lineares. Entretanto, algumas características das vocalizações não podem ser explicadas apenas com análises lineares ou levando em conta apenas uma parte da vida do animal. Os fenômenos não lineares (FNLs) presentes em vocalizações (banda lateral, harmônico, sub-harmônico, bifonação, pulos de frequência e caos determinístico) ainda são pouco estudados. Dada a importância deste fenômeno nas vocalizações para o reconhecimento individual, principalmente em mamíferos sociais, este trabalho buscou estudar as vocalizações subaquáticas de focas antárticas, visando conhecer seu repertório vocal e seus FNLs, bem como discutir a possível função dos mesmos. Em 2013, a Marinha do Brasil realizou gravações acústicas na Ilha Meia Lua na Antártica. Nesta coleta foram registrados 128GB de arquivos de som nos dias entre 12 e 30 de novembro, totalizando 7.448 arquivos de 3 minutos cada. Nestas gravações foi constatada a presença de focas pertencentes à Tribo Lobodontini. Contatou-se também a presença de 15 tipos de vocalizações no período entre os dias 12 a 16/novembro. Em todos os dias que houve gravações de focas foi observado um padrão nos tipos L, K e E, organizados na sequência K, L e E, respectivamente. Após a inspeção visual de todos os arquivos, foram encontrados pulos de frequência, bifonações, harmônicos, bandas laterais e caos determinístico em nove tipos de vocalizações (A, C, E, F, K, L, M, N e O). As não linearidades foram abundantes em todos os arquivos, estando presentes em 75,56% (N=1829) das vocalizações. O caos determinístico foi o mais comumente observado, estando presente em 53,86% das feições não lineares e 43,08% das vocalizações em geral. Levando em conta apenas as vocalizações tonais, 88,85% das vocalizações foram não lineares. A repetição do padrão KLE parece apresentar uma função de reconhecimento. Os FNLs, principalmente os do tipo caos determinístico, estiveram muito presentes nas vocalizações estudadas, indicando que este tipo de emissão possui uma função importante na comunicação. Além disso, estes parecem pertencer ao repertório acústico padrão de Lobodontines antárticos.
publishDate 2016
dc.date.issued.fl_str_mv 2016-02-02
dc.date.accessioned.fl_str_mv 2023-12-22T01:43:13Z
dc.date.available.fl_str_mv 2023-12-22T01:43:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MACIEL, Israel de Sá. Vocalizações subaquáticas e fenômenos não lineares em focas antárticas. 2016. 31 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/10805
identifier_str_mv MACIEL, Israel de Sá. Vocalizações subaquáticas e fenômenos não lineares em focas antárticas. 2016. 31 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/10805
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ANDERSON, M.J. A new method for non‐parametric multivariate analysis of variance. Austral Ecology, v. 26, n. 1, p. 32-46. 2001. BALLARD, K.A.; KOVACS, K.M. The acoustic repertoire of hooded seals (Cystophora cristata). Canadian Journal of Zoology, v. 73, p. 1362–1374. 1995. BENKO, T. P.; PERC, M. Singing of Neoconocephalus robustus as an example of deterministic chaos in insects. Journal of Biosciences, v. 32, n. 4, p. 797–804. 2007. BERTA, A.; SUMICH, J. L.; KOVACS, K. M. Marine mammals: evolutionary biology. Academic Press, p. 270-311, 2005. DIGBY, A.; BELL, B.D.; TEAL, P.D. Non-linear phenomena in little spotted kiwi calls. Bioacoustics, v. 23, n. 2, p.113–128. 2014. EDOH, K.; HUGHES, D.; KATZ, R. Nonlinearity in cicada sound signals. Journal of Biological Systems, v. 21, n. 1, p.1350004. 2013. FACCHINI, A.; BASTIANONI, S.; MARCHETTINI, N.; RUSTICI, M. Characterization of chaotic dynamics in the vocalization of Cervus elaphus corsicanus. The Journal of the Acoustical Society of America, v. 114, n. 6, p. 3040–3043. 2003. FEE, M. S.; SHRAIMAN, B.; PESARAN, B.; MITRA, P.P. The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature, v. 395, p. 67–71. 1998. FENG, A.S.; RIEDE, T.; ARCH, V.S.; YU, Z.; XU, Z.M.; YU, X.J.; SHEN, X.J. Diversity of the vocal signals of concave-eared torrent frogs (Odorrana tormota): evidence for individual signatures. Ethology, v. 115, n. 11, p. 1015–1028. 2009. FILATOVA, O.A.; DEECKE, V.B.; FORD, J.K.B.; MATKIN, C.O.; BARRETT-LENNARD, L.G.; GUZEEV, M.A.; BURDIN, A.M.; HOYT, E. Call diversity in the North Pacific killer whale populations: implications for dialect evolution and population history. Animal Behavior, v. 83, n. 3, p. 595–603. 2012. FILATOVA, O.A.; FEDUTIN, I.D.; NAGAYLIK, M.M.; BURDIN, A.M.; HOYT, E. Usage of monophonic and biphonic calls by free-ranging resident killer whales (Orcinus orca) in Kamchatka, Russian Far East. Acta Ethologica, v. 12, p. 37- 44. 2009. FITCH, W.T.; NEUBAUER, J.; HERZEL, H. Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behaviour. v. 63, p. 407-418. 2002. FLETCHER, N.H. Acoustical background to the many varieties of birdsong. Acoustics Australia, v. 38, p. 59–62. 2010. FLETCHER, N.H. A class of chaotic bird calls? Journal of Acoustic Society of America, v. 108, n. 2, p. 821–826. 2000. HANGGI, E. Importance of vocal cues in other-pup recognition in a California sea lion. Marine Mammals Science, v. 8, p. 430–432. 1992. HANGGI, E.; SCHUSTERMAN, R.J. Underwater acoustic displays and individual variation in male harbor seals, Phoca vitulina. Animal Behavior, v. 48, p. 1275–1283. 1994. HEMILÄ, S.; NUMMELA, S.; REUTER, T. What middle ear parameters tell about impedance matching and high frequency hearing. Hearing Research. v. 85, p. 31–44. 1995. KASTELEIN, R.A.; THOMAS, J.A.; NACHTIGALL, P.E. Sensory systems of aquatic mammals. DeSpil, Netherlands. 1995. KETTEN, D.R. The marine mammal ear: specializations for aquatic audition and echolocation. In: The evolutionary biology of hearing. Springer New York, p. 717-750. 1992. KOVACS, K.M. Mother-pup reunions in harp seals, Phoca groenlandica: cues for the relocation of pups. Canadian Journal of Zoology, v. 73, p. 843–849. 1995. LE BOEUF, B.J.; WHITING, R.J.; GANTT, R.F. Perinatal behavior of northern elephant seal females and their young. Behaviour, v. 43, n. 3, p. 121-156. 1973. LE BOEUF, B.J.; PETRINOVICH, L.F. Elephant seal dialects: are they reliable? Rapports et Proces-Verbaux des Reunions (Denmark), v. 169, p. 213-218 1975. MANN, D.A.; O‟SHEA, T J.; NOWACEK, D.P. Nonlinear dynamics in manatee vocalizations. Marine Mammals Science, v. 22, n. 3, p. 548–555. 2006. MENDE, W.; HERZEL, H.; WERMKE, K. Bifurcations and chaos in newborn infant cries. Physics Letters A, v. 145, p. 418–424. 1990. MERCADO III, E.; SCHNEIDER, J.N.; PACK, A.A.; HERMAN, L.M. Sound production by singing humpback whales. The Journal of the Acoustical Society of America, v. 127, n. 4, p. 2678–2691. 2010. MØHL, B. Hearing in seals. In: The behavior and physiology of pinnipeds. Editado por R. Harrison, R. Hubbard, R. Peterson, C. Rice, and R. Schusterman, Appleton-Cenrury, New York,NY, p. 172-195, 1968. MOORS, H.B.; TERHUNE, J.M. Repetition patterns in Weddell seal (Leptonychotes weddellii) underwater multiple element calls. The Journal of the Acoustical Society of America, v. 116, n. 2, p. 1261-1270. 2004. NEMIROFF, L.; WHITEHEAD, H. Structural characteristics of pulsed calls of long-finned pilot whales Globicephala melas. Bioacoustics, v. 19, n. 1-2, p. 67-92. 2009. NICHOLS, C.R., WILLIAMS, R.G. Encyclopedia of marine science. Infobase Publishing, p. 30-32. 2009. NUMMELA, S. Scaling of the mammalian middle ear. Hearing Research, v. 85, n. 1, p. 18-30. 1995. OKSANEN, J.; KINDT, R.; LEGENDRE, P.; O‟HARA, B.; STEVENS, M.H.H.; OKSANEN, M.J.; SUGGESTS, M.A.S.S. The vegan package. Community ecology package, p. 631-637. 2007. OWREN, M. J.; RENDALL, D. Sound on the rebound: bringing form and function back to the forefront in understanding non-human primate vocal signalling. Evolutionary Anthropology, v. 10, n. 2, p. 58–71 2001. PAHL, B.C.; TERHUNE, J.M.; BURTON, H.R. Repertoire and geographic variation in underwater vocalisations of Weddell seals (Leptonychotes weddellii, Pinnipedia: Phocidae) at the Vestfold Hills, Antarctica. Australian Journal of Zoology, v. 45, n. 2, p. 171-187. 1997. PAPALE, E.; BUFFA, G.; FILICIOTTO, F.; MACCARRONE, V.; MAZZOLA, S.; CERAULO, M.; GIACOMA, C.; BUSCAINO, G. Biphonic calls as signature whistles in a free-ranging bottlenose dolphin. Bioacoustics, n. ahead-of-print, p. 1-9. 2015. PERRIN, W.F.; WURSIG, B. Eds. Encyclopedia of marine mammals. In Boyd, I.L. Antartic Marine Mammals. Academic Press, p. 30-36. 2009. PETTITT, B.; BOURNE, G.; BEE, M. Quantitative acoustic analysis of the vocal repertoire of the golden rocket frog (Anomaloglossus beebei). The Journal of the Acoustical Society of America, v. 131, n. 6, p. 4811-4820. 2012. RAY, C.; WATKINS, W.A.; BURNS, J.J. Underwater song of Erignathus (bearded seal). Zoologica (New York), v. 54, n. 2, p. 79-83. 1969. REIMAN, A.J.; TERHUNE, J. M. The maximum range of vocal communication in air between a harbor seal (Phoca vitulina) pup and its mother. Marine Mammals Science, v. 9, p. 182–189. 1993. REPENNING, C.A. Adaptive evolution of sea lions and walruses. Systematic Zoology, v. 25, p. 375–390. 1972. RICE, A.N.; LAND, B.R.; BASS, A.H. Nonlinear acoustic complexity in a fish „two-voice‟ system. Proceedings of the Royal Society B: Biological Sciences, p. rspb20110656. 2011. RIEDE, R.; ARCADI, A.C.; OWREN, M.J. Nonlinear acoustics in the pant hoots of common chimpanzees (Pan troglodytes): vocalizing at the edge. The Journal of the Acoustical Society of America, v. 121, n. 3, p. 1758–1767. 2007. RIEDE, T.; OWREN, M.J.; ARCADI, A.C. Nonlinear acoustics in pant hoots of common chimpanzees (Pan troglodytes): frequency jumps, subharmonics, biphonation, and deterministic chaos. American Journal of Primatology, v. 64, n. 3, p. 277–291. 2004. ROBB, M.P.; SAXMAN, J.H. Acoustic observations in young children‟s non-cry vocalizations. Journal of the Acoustical Society of America, v. 83, p. 1876–1882. 1988. ROGERS, T.L.; CATO, D.H.; BRYDEN, M.M. Underwater vocal repertoire of the leopard seal (Hydrurga leptonyx) in Prydz Bay, Antarctica. Sensory Systems of Aquatic Mammals. De Spil, The Netherlands. Editado por R. A. Kastelein, J. A. Thomas e and P. E. Nachtigall. p. 223-236. 1995. ROGERS, T.L.; CATO, D. H. Individual variation in the acoustic behaviour of the adult male leopard seal, Hydrurga leptonyx. Behaviour, v. 139, n. 10, p. 1267-1286. 2002. ROUX, J. P.; JOUVENTIN, P. Behavioral cues to individual recognition in the subantarctic fur seal, Arctocephalus tropicalis. NOAA Technical Report NMFS, v. 51, p. 95-102. 1987. SIRVIO, P.; MICHELSSON, K. Sound spectrographic cry analysis of normal and abnormal newborn infants. Folia Phoniatrica, v. 28, p. 161–173. 1976. STIRLING, I.; CALVERT, W.; SPENCER, C. Evidence of stereotyped underwater vocalizations of male Atlantic walruses (Odobenus rosmarus rosmarus). Canadian Journal of Zoology, v. 65, n. 9, p. 2311-2321. 1987. STIRLING, I.; THOMAS, J.A. Relationships between underwater vocalizations and mating systems in phocid seals. Aquatic Mammals, v. 29, n. 2, p. 227-246. 2003. SAUVÉ, C.C.; BEAUPLET, G.; HAMMILL, M.O.; CHARRIER, I. Acoustic analysis of airborne, underwater, and amphibious mother attraction calls by wild harbor seal pups (Phoca vitulina). Journal of Mammalogy, v. 96, n. 3, p. 591-602. 2015. TERHUNE, J. M.; RONALD, K. Some hooded seal (Cystophora cristata) sounds in March. Canadian Journal of Zoology, v. 51, p. 319–321. 1973. THOMAS, J.; KASTELEIN, R.A.; SUPIN, A.Y. Marine Mammal Sensory Systems, Plenum Press, New York. 1992. THOMAS, J.A.; KUECHLE, V.B. Quantitative analysis of the Weddell seal (Leptonychotes weddellii) underwater vocalizations at McMurdo Sound, Antarctica. Journal of the Acoustical Society of America, v. 72, p. 1730–1738. 1982. THOMAS, J. A.; STIRLING, I. Geographic variation in the underwater vocalisations of Weddell seals (Leptonychotes weddellii) from Palmer Peninsula and McMurdo Sound, Antarctica. Canadian Journal of Zoology, v. 61, p. 2203-2212. 1983. THOMAS, J.A.; GOLLADAY, C.L. Geographic variation in leopard seal (Hydrurga leptonyx) underwater vocalizations. In: Sensory Systems of Aquatic Mammals. Editado por Kastelein RA, Thomas JA, Nachtigall PE, v. 61 p. 201-221. 1995. TYACK, P.L.; MILLER, E.H. Vocal anatomy, acoustic communication and echolocation. In: Marine mammal biology: An evolutionary approach. Editado por R. Hoetzel, Oxford, UK: Blackwell Science. p. 142-184. 2002. TYSON, R.B.; NOWACEK, D.P.; MILLER, P.J.O. Nonlinear phenomena in the vocalizations of North Atlantic right whales (Eubalaena glacialis) and killer whales (Orcinus orca). Journal of the Acoustical Society of America, v. 122, n. 3, p. 1365–1373. 2007. TRUBY, H.M.; LIND, J. Cry sounds of the newborn infant. In: Newborn Infant Cry. Editado por J. Lind). Uppsala: Almquist e Wiksells Boktryckeri, p. 7–59. 1965. VAN PARIJS, S.M.; KOVACS, K.M.; LYDERSEN, C. Spatial and temporal distribution of vocalising male bearded seals - implications for male mating strategies. Behaviour, v. 138, n. 7, p. 905-922. 2001. VOLODIN, I.A.; VOLODINA, E.V. Biphonation as a prominent feature of dhole Cuon alpinus sounds. Bioacoustics, v. 13, n. 2, p. 105–120. 2002. VOLODINA, E.V.; VOLODIN, I.A.; ISAEVA, I.V.; UNCK, C. Biphonation may function to enhance individual recognition in the dhole, Cuon alpinus. Ethology, v. 112, p. 815–825. 2006. WATKINS, W. A.; RAY, G. C. In‐air and underwater sounds of the Ross seal, Ommatophocarossi. The Journal of the Acoustical Society of America, v. 77, n. 4, p. 1598-1600. 1985. WATKINS, W. A. The harmonic interval: fact or artifact in spectral analysis of pulse trains. In: Marine Bio-Acoustics. Editado por W. N. Tavolga, (Pergamon, Oxford), v. 2 p. 15-43. 1968. WILDEN, I.; HERZEL, H.; PETERS, G.; TEMBROCK, G. Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics, v. 9, n. 3, p. 171–196. 1998. WYSS, A.R. The walrus auditory region and the monophyly of Pinnipeds. American Museum Novitates, v. 2871, p. 1–31. 1987. ZOLLINGER, S.A.; RIEDE, T.; SUTHERS, R.A. Two-voice complexity from a single side of the northern mockingbird Mimus polyglottos vocalizations. The Journal of Experimental Biology, v. 211, p. 1978–1991. 2008.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Biologia Animal
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Biológicas e da Saúde
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10805/1/2016%20-%20Israel%20de%20S%c3%a1%20Maciel.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10805/2/2016%20-%20Israel%20de%20S%c3%a1%20Maciel.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10805/3/2016%20-%20Israel%20de%20S%c3%a1%20Maciel.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10805/4/license.txt
bitstream.checksum.fl_str_mv 7beb346d66048577adea622f4c7fbcc0
ad14ff14bfd2a9be936b3e7cbb945ff9
cc73c4c239a4c332d642ba1e7c7a9fb2
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108133563957248